THE DISTRIBUTION OF THE RATIOS OF CERTAIN QUADRATIC FORMS
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1. Introduction. In testing the hypothesis that successive members of a series
of observations are serially correlated a number of statistics have been proposed.
Durbin and Watson [4] gave the exact distribution of several of these statistics
when they are slightly modified. We shall extend the work of Durbin and Watson
for a non-null case of two of their modified statistics and also find a simple ex-
pression for the moments of another of their statistics.

2. The Double root result. Assume that X’ = (21, 22, - - , &) has probability
density

(2.1) f(X) = [A]"*(2m) ™" exp [~ X'AX/2],

where A is a positive definite matrix and n = 2m. Let

A, O B 0 A O
(2.2) A= ; B = ;0 A= ;
0 4, 0 B 0 A

where B; is positive definite or positive semi-definite and of rank m — ¢ which
is = the rank of A4,, a real symmetric matrix. Further assume that 4, B, and
A commute pairwise, and that the characteristic roots a; of A and the charac-
teristic roots b; of B are so numbered that if a; > 0,b; > 0 and a;/b; = @j41/bj41
for all a; and a;,; which are £ 0.

Now

X'AX
< = ! — <
% = z] PIX'(A — 2B)X £ 0],

(2.3) G(z) = P[
where X is N(0, A™"). Making an orthogonal transformation X = PY where
P'AP = D,, PPBP = D,, P’AP = D, are diagonal matrices with elements
;= Qmyj, b; = bmirjand N\j = Ay, We get

(2.4) G(z) = P[Y'(D, — 2D,)Y < 0],
where Y is N(0, Dy"). Now let ¥ = Dy"*W so that
(2.5) G(z) = PIW'(Da — 2Dy)DY'W < 0],
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where W is N(0, I). Hence by the duplication of roots a;, b; and A; we get
m—gq
(2.6) G =P [Z A7 (a; — 2b)w; < O]
i=1

where w} are independent and each is a x° variable with 2 degrees of freedom.
Using a result by R. L. Anderson [1] which in general terms states that if the
c;j are all different then

P P
2.7) P [Z cjwj < 0] =1-2 ¢ g (ex — €)™
J
j=1

j=1 jes
where S = {j/¢; > 0}, we find that

m—q L
G =1 — 1N 2 (@ — be2)™ 2"
k=1

j=1

(2.8) m—g .
. I—Il: Mila — bez) — M(a; —b;2)]7,
fiot>
where
G o, <X
by T T b
for L = 1,---, m — q. This result could also have been gotten by contour

integration through the results of Gurland [6] or by Madow’s generalization of
Anderson’s result.

3. The distribution of the Durbin and Watson Statistic in the non-null case.
Using the result (2.8) and letting

2m—1 2m
3.1 R = El Tip1%; 21 :cf,
iotm =
where
14/ —p
—p .
(3.2) A = . )
. ~p
—p 1+p

we may find the distribution of R. For a; = cos (jr)/(m + 1), A\; = 1 + p* —
2pa,- ) bj = 1. Now H;Ll Aj = (1 - p2m+2)(1 - pg)_-l and A — )\j = (a,, - a,‘)
(1 + p* — 2p2) and by Geisser [5)

8 — ) =  \kHo-m 2 km
(3.3 ;I;I1 (o — a;) = (m 4+ 1)(—1)""27" csc s

ixk
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Therefore

G@p) =1—(1—p"™2"m+ 171 = o)1 + 5" — 202)' ™"

X B+ kx ™, kr PR kr \™
'IZ:I(—I) <cosm+1—z> s1nm+ 1(1-{-,9 - pcosm>

(3.4)

and
G'(2; p) = g(R; p)
@5 = A=A = Dim+ DT = 7T+ S - 2R

L kr m2 kr
c 2 (=M (COS - R) sin®

k=1 m -+ 1 m+ 1’
where
(L-I-1)1r< < Lw
COSW=R=COSm+1.

For p = 0 it is clear that

9(B) = 2"(m — Dlm + D7 3 (~1)*

(3.6) R
. (cos Ll - R)m— sin® kx
m—+ 1 m-+ 1
and hence
3.7) g(R;p) = (1 — 9™ ™)(1 — o)A + o — 20R)™"g(R).

4. Approximations. In a paper by T. W. Anderson and R. L. Anderson [3]
in which the circular serial correlation coefficient is discussed for fitted trigono-
metric series for the mean, they have fitted the trigonometric series for semi-
annual data to correct for variation of period two and get a quadratic form

(4.1) ¢ = X'CX / X'BX

forn = 2m.
They reduce ¢ to the form

2m— 2m—2

2
(4.2) >, ¢y /2 s
J=1 Jj=1
where the ¢; are identical with the a; of the previous section.

Therefore the distribution in this particular case for 2m observations is
exactly the same as that for the non-circular case of Durbin and Watson for
2m — 2 observations when p = 0. They also give the approximate distribution
of their circular statistic as a beta distribution, and if we put 2m — 2 in place
of 2m we get the approximate distribution density of R for 2m — 2 observations
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when p = 0 to be
(4.3) g(R) ~ K(1 — R*)?,
where p = (m* + m)(m — 1)™ — 3/2.

6. Moments of a ratio. The previous work was based on the assumption that
&z; = p was known. However, if x is unknown, one of the statistics used is the
ratio of the mean square successive difference to the variance;

82

'1 =
(6.1) =5

The distribution of % is for the present too difficult for explicit evaluation.
The moments of # have been found by Williams [10] and much light shed on
the distribution by Von Neumann [8]. However, the expression for the rth
moment given by Williams is in terms of the rth derivative of a function.

Durbin and Watson [4] suggested a modified statistic in this case for n = 2m.

Let

(5.2) R = X'AX /X'BX or R = 4(m — 1)s/[(2m — 1),

where
_ (4, 0
A_<O A7’
(1 -1 )
-1 2
A1= . 3
2 -1
-1 1 |
with latent roots
.o (m — P J
_ 2 - 2 Jm
a; = 4 sin o 4032 ,
and
2m — 1 -1 -1
—1
1 .
B—% )
-1
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The distribution of R is given to be

L m—1
(5.3) PR > R) = % (= B 6 [] (@ — a)”
= J=
%k

for ax41 = R = a . This result is based on a result of Anderson’s where in
addition to double roots there is a single root which is less than all of the double
roots. By simplification it can be reduced to

L

(54) P(R > R) = 4m™ > (—=1)*(ar — RH™2 sinzﬁ cos ker

k=1 2m 2m
for az41 < R £ a; . The moments of this ratio can be easily found for » < 3m — 1’
since we already have evaluated the moments of the numerator in a previous
paper (Geisser [5]) and the moments of the denominator are well known. When
the successive observations are independent, the moments of this ratio are the
ratio of the moments [9]. Therefore

2 2m + 2r — 2)12m? — m — 1)
[(@m + r!@2m — 1)@2m + 1) --- 2m + 2r — 3)]°

6. The distribution of the modified von Neumann ratio. If we consider the
ratio

(65) &R = pu, =

2m—1

Z (xi+l - xi)z

2 i=1
_25

(6.1) Mo = P == o )
; (z; — &) + 21 (z; — &)’

i.e., twice the ratio of the modified mean square successive difference to the pooled
variance, we are able to use the Double Root Result and find the distribution
of n for the non-null alternative given by T. W. Anderson [2] if we further
consider the model to be made up of two independent sets and

Ay O
(6.2) A= s
0 A
[1+0"—p —b ]

—p 1+ 0
<63) A1 = 0'_2

144 —p
—p 140 —p]

As was shown previously [2], 7 provides a uniformly most powerful one-sided
test. By the double root result we get, letting \; = o™A;,
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m—1
Glmosp) = 1= 2m7{1 + o' = 20 + pul™™ [1 3]
J=

(6.4) i )
- 22 (=1 — 70)™ 5! sin® X
k=1 m
and
m—1
G'(m0;0) = glno; p) = 2m™(m — 2)[1 + p* — 20 + pno]2_mIIl Aj
6.5) - =

L
- 2 (=)@ — o)™ sin® Ing,
k=1 mi

where az1 < 7 < a,. Forp = 0,

(6.6) G(no) = 2(m — 2)m™* Z:l (@ — 7)™ 2(—1)*" sin? Z_"

and

61 ') = gln) = 20m — Dm™ 3 (~1 ey — ™ sia® I
for a1 = m0 = a;. Hence

68 Glwio) = atmip) = 1+ 5 = 2o + o0 (T 1) g

and since

T Q=)@ —p™ 1=
7I-I1)\’ A+pd—p 1-g’

6.9)  G'(mo;p) = (1+ 0 =20+ pm) ™1 — "™ — 6% g(mo).

It is also quite easy to find the moments €7, when p = 0 since we have already
given the moments of the numerator for r < 3m — 1 and the moments of the
denominator are well known. Hence for » < 3m — 1

27 2m’ — m — r)2m + 2r — 2)i(m — 2)!
(m+r—2)I2m+r)!

(6.10) &no =
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