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ticular, if cov {yx — ¢, ¢} < 0, a value of A\ > 0 will provide lesser variance
than for A = 0.
From the result it is easy to show that:

(D) If F(q) s subexponential to the right, then no single order statistic, ex-
cept possibly the righthandmost, is of minimum variance among orderly
estimates of location.

(Again, the analogs with “to the left ... the lefthandmost” or “in both direc-
tions . .. statistic,” follow by symmetry.) For if y; were of minimum variance,
and y, the righthandmost, then by

(By1) cov (yn — ¥i, ¥;5) = cov (¢=— @5, q;) <O,

and by (C) y; is not of minimum variance. It is reasonable to anticipate that,
actually, all coefficients must be positive (particularly for distributions with
monotone scores), but the elementary methods used here do not seem to show
this easily.
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AN ELEMENTARY THEOREM CONCERNING STATIONARY
ERGODIC PROCESSES

By Leo BremaN-
University of California, Berkeley

1. Introduction. The purpose of this note is to state and prove a theorem
concerning strictly stationary, ergodic processes and to give some of its applica-
tions. Although the theorem itself is a simple consequence of the ergodic theorem,
its applications include a proof of the consistency of the maximum likelihood
estimates for stationary distributions and'an extension of the zero-one law for
symmetric sets given by Hewitt and Savage [1].

TuEOREM 1. Let -+ 2y, Zo, 1, - - - be a strictly stationary process such that
every set invariant under shifis has measure zero or one. Let {¢.} be a sequence of
real-valued functions, ¢, being a measurable function of n + 1 variables. Then <f
the sequence ¢n(xo, - -+, Tn) and the sequence ¢u(T_n, -+ -, Zo) both converge in
probability, their limits are almost surely constant and equal.
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Proor. We assume that ¢n(z—n, - -+, 20) L ¢, dalTo, -+, Tp) it ¢". Let f
be any differentiable function such that |f| < 1, |f’| £ 1, and let

f: = f(d’n(x—»n; Tt xo))z f-'.: = f(d’n(xoy R} xn—))°

Since | fu — f(¢7)] = |¢n(z—n, ---, m) — ¢ |, wehave thatf:£>f(¢")- From
the uniform boundedness of the f5, it follows that [ |fn — f(¢7)] — 0, and
similarly [ |75 — f(¢*)| — 0. We denote by T the shift operation, so that

Tn n(xn: ,(Eo) = ¢n(x07 )xn)-

By the ergodic theorem,
. - 1 -
im [ |60 - 135760 | = 0
n N k=1
Hence,
- , 1 o~ ke
[ 1567 - 760 | < tmsup 1 3 [ 17567 — T3 |
. 1y e
+limsup > 3 [ 171 - 61
Since T is measure preserving, the terms on the right may be reduced to
. 1 I . 1< + + _
timsup 1 3 [ 1567) = f7 | +limsup 23 [ 15 = 160 | = 0.
We conclude that f(¢*) is almost surely constant, which proves the theorem.

2. Applications. We use the above theorem first to prove a result concerning
maximum likelihood ratios, which is a special case of a theorem due to C. Kraft
2.

TaeoreM 2. Let the --- 21, %o, X1, -+ process be distributed according to
the stattonary ergodic measure P with density functions p,(*, ---, ",) and let Q
be any other stationary measure with density functions q.(", --+, *) such that P
s not absolutely continuous with respect to Q. Then almost surely (a.s.),

lim &2, 1 Z) g,
n Da(To, **°, Tn)

Proor. Let ¢, = qu(", --+, )/pa(", -+, ); it is well known ([3], pp. 93,
348) that the sequence —@.(zo, - -+, Z») forms a semi-martingale with respect
to the fields BY_, generated by zo, - - , #n_; . Similarly, the sequence

—¢n(Tn, -- -, o)

forms a semi-martingale with respect to the fields B,_; generated by z_n1,

-, o . Since in both ‘cases the first absolute moments are bounded by one,
both sequences converge a.s. From our main theorem we conclude that there
is some constant a such that

lim qn(xoa R xn)

= a.s.).
n D@0, T (as.)
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Now for any finite dimensional cylinder set I, we have for all n sufficiently
large,

Q) = f 6a(oy -+ -, 2,) dP.

Equality would obtain, except that p, may vanish on some set of positive
measure where ¢, does not. Using the Fatou lemma,

Q) = lim inffqb,,(xo, <o, T,) dP = flim inf ¢.(z0, + -+, x,) AP = aP(I).
R I I

Since the above is true for any cylinder set, it is also true for any finite disjoint
union of cylinder sets, and thus is true in general, contradicting our hypothesis
unless a = 0.

Another application of Theorem 1 results in an extremal property of random
variables having symmetric distributions. While we do not know of an explicit
statement of this theorem, it can also be proven using de Finetti’s representa-
tion theorem (see, for example [1] and [4], p. 364), without too much difficulty.

‘THEOREM 3. Lef xy, x1, - -+ be a sequence of random variables whose finite
dimensional distribution functions are tnvariant under permutations of the argu-
ments and such that every ‘“tail” event has measure zero or one. Then the sequence
18 equivalent to a sequence of independent random variables.

Proor. From the symmetry of the x,, z;, - - - sequence follows its station-
arity. By the usual procedure we extend the measure to the double-ended se-
quence --- Z_y, &, &, --- , noticing that the symmetry is preserved under
this extension. We also verify that the zero-one hypothesis implies the process
is ergodic so that we may apply Theorem 1. We define ¢,(%o,- 21, - - , Zn) =
p(x_1 = a|xo, -+, Z,). Then, by symmetry and stationarity

On(Ton,y o, m0) = P S alxo, -, 2.
By the martingale convergence theorem, both
Bu@o, -+, Tn), $ulEn, -, )
converge a.s. and we conclude that both
p@a S alxe, 21, ), p@ S a2, 20, )

are a.s. constant, which proves the theorem.

A more specialized consequence of Theorem 1 runs as follows.

THEOREM 4. Let xo, 21, --- be a sequence of identically distributed, inde-
pendent random variables, and {$,} a sequence of real-valued functions, ¢. a meas-
urable function of n + 1 variables. Then if both ¢n(xo, -+ , Z,) and

¢n(il?n y "y xo)

converge in probability, their limits are a.s. constant.
Proor. By the usual procedure we extend the measure on z,, z;, --- to a
measure on the two-sided process ---, 21, %o, 1, - -+ . The set
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[I ¢m(x—m, te ,xo) - ¢n(x—ny e ,xo)l >€]

has the same measure as the set [| ¢m(Tm, +*+, Z0) — Sa(@a, -++, To)| > €.
Hence ¢n(z_n, - - - , Zo) converges in probability and Theorem 1 applies.

The above theorem is an extension of the Hewitt-Savage zero-one law for
symmetric sets, as the following theorem makes clear.

THEOREM 5. Let xo, 21, + - - be a sequence of identically distributed, independ-
ent random variables and f any integrable function on the process such that f is
invariant under finite permutations of the coordinates. Then f is a.s. constant.

Proor. Let ¢n(xo, -+, .) = E(f|x0, -+, Zu). Then ¢u(@n, -+, 7o) =

én(To, - -+, T,) by the symmetry of f and the ¢.(zo, - - -, &.) sequence forms a
martingale which converges a.s. to f. The conclusion follows from Theorem 3.
REFERENCES

[1] E. Hewitr AND L. J. SAvAGE, “Symmetric measures on Cartesian products,” Trans.
Amer. Math. Soc., Vol. 80 (1955), pp. 470-501. ~

[2] C. KraFT, “Some conditions for consistency and uniform consistency of scatistical pro-
cedures,” Univ. of California Publ. Stat., Vol. 2, No. 6 (1955), pp. 125-141.

(3] J. L. Doos, Stochastic Processes, John Wiley and Sons, New York, 1953.

[4] M. Lotvg, Probability Theory, D. Van Nostrand, New York, 1955.

et

A TEST OF FIT FOR MULTIVARIATE DISTRIBUTIONS!

By LioNneErL WEIss

Cornell University

1. Summary and introduction. Suppose X is a chance variable taking values
in k-dimensional Euclidean space. That is, X = (Y1, ---, Y&), where Y;is a

univariate chance variable. The joint distribution of (Y;, -+, Y%) has density
f(yl‘y ] yk)y say.
We shall call a function h(y:, --- , yx) ‘“piecewise continuous” if it is every-

where bounded, and k-dimensional Euclidean space can be broken into a finite
number of Borel-measurable subregions, such that in the interior of each sub-
region A(y:, -+ -, ¥) is continuous, and the set of all boundary points of all
subregions has Lebesgue measure zero.

We assume that f(y1, - -, y) ic piecewise continuous. Let A(y:, - - - , yi) be
some given nonnegative piecewise continuous function, and let X, ---, X, be
independent chance variables, each with the density f(y1, - -, ¥x). Choose a
nonnegative number £, and for each %, construct a k-dimensional sphere with
center at X; = (Y, -+, Ya) and of k-dimensional volume

th(Yi, -+, Yi)
—
Such a sphere will be called “of type s” if it contains exactly s of the (n — 1)
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