THE STAIRCASE DESIGN: THEORY

By FrankLIN A. GraYBILL AND WirLiam E. Prurrr

Oklahoma State University

0. Summary and Introduction. One of the most popular designs in experi-
mental work is the randomized block. These designs can be put into three
broad classes viz. complete block design, balanced incomplete block design,
and the partially balanced incomplete block design. These designs are all spe-
cial cases of the general two way classification with unequal numbers in the
subclasses, but since the analysis of this general classification is quite complex,
these special cases have evolved which are adequate to fit most needs and the
analysis of these special designs is relatively easy. [1], [2], [6]; [8].

However, most of the block designs considered to date have one feature in
common—they require each block to contain an equal number of experimental
units. The exceptions are given in [9], [10], where designs are considered in
which the number of experimental units in blocks differ by one. The purpose
of this paper is to extend the randomized block design to include the case where
all blocks do not contain the same number of experimental units. We have
called this the staircase design.

Suppose an experimenter, wishing to run an experiment using N treatments,
decides to use a randomized block design, but after arranging his material
into homogeneous groups he finds that he has blocks available which have
varying number of experimental units. The experimenter has various courses
open to him: (1) If enough blocks are available with N or more experimental
units he can discard the extra units in these blocks, discard all the blocks which
have less than N units, and use a randomized complete block design; (2) He
can discard units in the blocks until he has enough units and blocks
for a balanced incomplete block or a partially balanced incomplete block de-
sign; (3) He can use all the experimental units and use the staircase design
proposed in this paper.

For example, if an experimenter has N treatments with which he wishes to
experiment using a randomized block design, and if he has blocks of unequal
size, then he must rank his N treatments in the order of their importance, i.e.,
Ty, Tay -+, Tx, where he considers T; the most important and Ty the least
important. Now suppose he has at his disposal b; blocks which each contain N
experimental units. Then all N treatments are randomized in each of the b;
blocks. Suppose further that he has b; blocks which each contain N, experi-
mental units (N; < N). Then the first N, treatments are arranged at random
in each of the b, blocks. This process is continued until all the blocks are used.

A particular example where this would be useful is an experiment involving
animals as experimental units where a block consists of litter mates. Let us
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suppose that we have two litters of size seven, three of size five, and one of
size four. Using the staircase design we can include seven treatments and still
have the four we are most interested in replicated six times.

1. Notation. Consider a two-way classification model
(1.1) Yij=p+B:i+ a; + eij; t=12--,¢3;5=12---,N.

where u, 8:, @; are constants and the e;; are normal independent variables
with means zero and variances o°. Also the j’s will be ordered in such a way
that ¢; = ¢j» for j < j’. The purpose of this paper is,

1. to derive the least squares method for testing the hypothesis s = a2 =

- = ay under the model given above and to give the power function of
this test.

2. to derive the best, linear, unbiased estimates for «; — a;:, and the vari-

ances of these estimates.

First we will separate the j’s into subsets such that j and j/ will be in the
same subset if and only if ¢; = c¢; . Each of these subsets will be called a step.
We will designate the number of steps as k.

Let

ci=M for j=1,2, ---,N;
Ni+1,Ni+2,---,Ni + N,

¢j= M for j
¢j=M" for j=Ni+ N+ -+ Nex+ L N1+ Na+ -
+ Neax+2,-- ,N1i+ Na+ -+ + Ny,
where
k k
2N.=N; 2 MN,=N*
tum]l tam]l

Now, let

P
N*=> N, N =0 M=),

taml
Yij=Yiy for §=1,2,--- , M,j=N"'4+1,N"142, ..., N,
Yij= Yy for i=1,2 -, M",j=1,2---,N
aj=af for j=NT"41,N142 ... N,
aj=a; for j=1,2,...,N".

Fig. 1 will serve to illustrate some of the notation. It will be noticed that ¢,
is the number of blocks in which treatment j appears; M* is the number of
blocks in the #th step; N, is the number of treatments in the #th step. Also Y3;
is the observation of the jth treatment which appears in the sth block of the
sth step. It may be helpful to note further that Y} is a subset of ¥};; Yiiis a
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subset of the union of Y3; and Y%;, Y} is a subset of the union of Y3, and Y%
and Y3;, etc.

A subscript replaced by a dot indicates the mean of the elements when
summed over the range of the replaced subscript, eg.

M3 N2

PIDIN ¢+

/7 =] =
Y=

Since superscripts are being used in abundance, a Y, M, N, or « that is raised
to a power will always be enclosed in the appropriate brackets.

If, in a summation, the lower limit of summation should exceed the upper
limit of summation, the sum will be zero.

The notation used in Section 3 is that used by Kempthorne [4], pages 79—
82, with the following exceptions. To be consistent with the notation given
above, the normal equations are divided by a constant to give them in terms
of means instead of totals. Q; will refer to only the Q; where j = N7+,
N7 42, ..., N

2. The test function and its distributional properties. The purpose of this sec-

tion is to give a test of the hypothesis & = a; = -+ = an and to derive the
Ny
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distributional properties of the test function. The proof that this test is the
same as that given by the method of least squares will be given in the next
section.

Consider the following quadratic forms:

Mt Nt
qt B Z; i—mz—l.q-l (Y"’ - Ytl - Y‘J + Y.t.)2> t= 1: 2: :k°
t Mt+l
g = NN]YS‘ 2 (Tl =V =Y+ VY, t=1,2 k=
. Nt
g =M 2 (Y;-7Y), t=1,2-,k
j=Nt—141
t+1 a7t
q§=]‘_[_]\fvﬁ__‘+_}(y.’.‘_yf_+l)2, t=1,2 -,k — 1
1 ut ’ °
q? = —_E Z (Nt—lYi.‘—l + Nl Yﬁ.)za t = lv 2) ttty, k'
Nt sapttigg
Mt Nt
qs: ; i—N‘Z-:l+1 (Yﬁj)z’ t=1, 2: STty k
We will prove the following:
Taeorem 1. If
@D v = 2t ¢+ udg M- DWW =1 = Sh. W — MHYWN)
. ® 1 =1 2 N — 1
t=1 Q¢ + Zz-l qe

then v is distributed as Fp g , where Fp g represents the non-central F with de-
grees of freedom p and g and non-centrality \ [7], also

p=N—1,q=(M1-—1)(N—1)—:‘22(M1-—M')N¢,

k Mt Nt k—1 M¢+1N¢N ’
A=2 [Qo_“ i_Z . (af — a.‘)z:l + 2 [————‘“ (a* — af“)z]

t=1 NE-14 t=1 202Nt

2.2)

and N = 0¢fandonly if ey = ag = -+ = an.
Proor. It is clear that

' k k—1 E k—1 k E
(2.3) Eq}+;qf+;q3+§qt+‘};q‘l=;qﬁ.

Now it is easily shown that the rank of qt is (M*' — 1)(N, — 1), the rank of
g is (M'** — 1), the rank of ¢} is (N, — 1), the rank of ¢} is 1, and the rank
¢t is (M* — M'*"). Adding we see that

301 = DW= D+ X M~ 1) + 3 (- D)

teml

k—1 k
+ =1+ 2 (M — M) + (M — M) = 3 M'N,
]

t=1
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Thus we have the fact that the sum of the ranks of the quadratic forms on the
left of (2.3) above is equal to the number of squared observations on the right.
We may now invoke a theorem proved by Madow [5] showing the quadratic
forms to be independent, and verifying the following distributions. (E will be
used to denote mathematical expectation, and x,a will represent a non-central

chi square distribution with degrees of freedom p and non-centrality A).

1. ¢i/d’ is distributed as x;":x , where p = (M' — 1)(N, — 1), A = 0, since

E(YY, — Y — Y4+ 7Y =

2. qi/d” is distributed as x,a, where p = (M*** — 1), A = 0, since

E(Y: —Yi' —Y'4+v#) =0
3. qi/d’ is distributed as x,», where p = (N; — 1),

M & ¢ 82
)\—_ NZ1+1 (ai—'a.)y

20? jmNt-
since
E(YY —YH) =a}—d.
4. ¢i/o" is distributed as x» , where p = 1,

Mt+1N N
t+l( t a.t+l)2’

M= ey @

since
EY! — Y& =o' — ot
Therefore it follows that

i—z [Z ¢ + Z q.]
is distributed as x, , where
k
=4M—nw—n—§@f—wmm
£ o
and A = 0. Also we have
) ,
LZa+ ]
is distributed as x;z,)‘ , where

P= WD+ k-D=N-1,

k t Nt 41
[ E o ] B

20% jant=141 =1 202NtH

el

a't-i-l)z
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TABLE 3.1
Due to af Sum of Squares
Blocks ignoring treatments. .......... M1 2N;.(Y:)?
Treatments eliminating blocks. ....... N -1 >iQia;
Error...........ooo N*— M — N+1 By subtraetion
Total.......... ... N* E.',-(Yi;)’

Hence, we have v as defined in (2.1) above is distributed as F}, .. , where p,
¢, and X are as defined in (2.2) above.

Now it is clear that A = 0 if and only if o4 = @2 = -+ = ay since A is a
sum of non-negative terms and can be zero if and only if each term of the sum
is zero. Therefore to test the hypothesis &y = @; = -+ = ay We use v as Snede-

cor’s F with p degrees of freedom and ¢ degrees of freedom, where p and ¢ are
as defiried in (2.2).

3. The analysis of variance. In Section 2 it was shown that the test function
v could be used to test the hypothesis @y = a; = -+ = ax. We will now show
that » can be derived by the method. of least squares. The model can be con-
sidered as a two-way classification model with unequal numbers in the sub-
classes. In this case the conventional analysis is given in Table 3.1 [4]. If we now
denote the mean square for treatments eliminating blocks by 7' and the mean
square for error by E, then W = T/E is the least squares test function used
to test the hypothesis @i = a2 = -+ = ay. (N,. is the number of treatments
in the 7th block). We will now show that the function » in Section 2 is the test
criterion given by least squares.
In the above table, the Total SS minus the Block ignoring treatments SS is
equal to
k 13
DI HED IS
te=l bl
It remains only to show that

N k 3 k—1 4
2. Qia = 2@+ 2 g
J=1 ©ot=1 texl
and the rest follows by subtraction (&; is the least squares estimate of «;).
We have the following system of normal equations:
3.L1) Y. =i+ pBi+a i=M 4+ 1, M 42, M
(3.1.2) Y. =a+B +a” i=MY 1, M2, .., M

I

Blk—1) Y. =a+pf+a* i=M+1,M+2 ..., M
(38.1.k) Y. =i+8+a., =12 -, M
(32.1) Y, =a+B8+ &, j=1,2---,N

.,
[
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(3.2.2) Y =i+ B+ a4, j=N'4+1,N' +2-.-,N
(B2k—1) Yl=p+p'+a&Y j=NTH1,N?4+2...,N
(3.2.k) Yy =4+ B+ &, g=N714+1,N'4+2 ... ,N*
where
i=1 Bs
g - Zibe
Imposing the linear restriction @, = 0, we find from (3.1.k) that
ﬁ.+5.’=Y.'., i=112:"'1M"'

Substituting this into (3.2.k) we have

1y /it
&= v — N'Y L N Y . =N F LN 42,0, N

N
Now since
Nk-1 N
ORI
jmal j_Nk—l+1

under the restriction, & = 0, we may now substitute back and solve (3.1.k — 1)
obtaining

Nk Nk—l

P~]
W'T(Yi - Y..k l)

i+ B:i=Y; +
=Y +%‘(Y.’f — Y, =M+ 1, M 42, M

Substituting back into (3.2.k — 1) we get

Sy ]l%: [N"“Y.'."_;v+ N, Y.’f]_ :L;.;:i Y.
A N ey
=r5 - ﬁ: Yyt — %fj; ]NV_“ (r*=7v*"
—pn N Y"'b_;;'LN SR )

j = Nk—2+ l,Nk—2+ 2’ vee ,Nb-l.
Finishing the solution in this manner, we obtain
N YP 4N Y2 5 N o
e - 2§ -,
j=N7'4 1N 42 ... , N ,p=1,2 -,k

- Y —
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which may be written as

-~ Np— Ip—1 < Nt t ’l—l
P_y?_y?— =l _ yry _ Y
by STV @rToyn- B og@l-vi,

j=Np_1+17er+2"°')Np’p= 172’“'7k

Now
MP
Q =M"Y5- 3 Y,
i=1
j = Np—l+1,Np—l+27 "'7Np’p = 1727 e ,k
But
ﬁ-pl Y.-, _ Mk . Nk_l Y.,.k_l + N, Yk Ei-ukﬂY
M?» M Nt M
Hence

N
Q;" = M? [Y.’:‘ o S _N_"— (Y.."_l - Y.’.’)

‘N y'
t—;-lMpN:(Y‘— ¢ )]1 p=1’2""7k-
Therefore
NP NP
E Gi =2 > ’-"?—Z[M" 2 (v5 - Yf)”]
pm=l j=NP—141 pa=l jeaNP—141
k Np—l - »
+z:1Mpr [_p (Y —'Y)
p-
S MUN, e re—1 N
2 amy Y || -1
N Ne oyt t—l :I
Y. R
+ _Ep_; g ¢ )
Collecting coefficients of (Y." — ¥Y"*")?, we have
Mf+l Nf+1 (Nr)z + M Nr Mr+1(Nr+1)2 + o + Ml Nl Mr+1(Nr+1)2
(N™1)2 M+ (N™H)z M1 (N™H)?

Combining the last r terms this becomes
M Ney(N)? | NMP(Newt)® ~ MY Nt NNV + Noy)
(NT+1)2 (NT+)2 - (NT+1)2
_ MT-H. ]V".'-1 NT
- N+

+
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Collecting coefficients of (Y. — Y™™)(¥Y* — Y*™), r < s, we have

_jWWMMM“+MMMmMMMWPH+MMMMMMMI
NH—I N¢+1 Mr Nr+l Nc+1 M Nr+1 Nc+1

Mr+1 Nr+1 Nr Ma+l N:+l Mr Nr Nr+l Mc+1 N.+1
- N+ M+ et N+ M+ N+

+ +...

M'NyNepy M Ny
Nr+l Jf1 NotH *

4

Combining all but the first term of each part gives

_M+1 Nr+1NfNa+l + Nf MH-I Nr+1 Nc+1 _ Nr+1Nf M'-HN s+1
N+l Net+1 Nr+1 N1 N+l N+l
+ N N,-.’H M."-1 N,+1 =0.

Nr+1 Nt

Now since these two general terms are the only possible ones involved in the
second summation of the expression for

N
2 Qiaj,
=1
we have

N k NP

»Qa= [M", $ - Y.‘.’)’]
j=1 pm=l j==NP=141
= MPYN, . N7

B

k k-1
=2 ¢d+24
tm=] tmal

since N° = 0.
Now by subtraction the Error S.S. must be

k k—1
o+ 4.
t=1 t=1

Also-since the degrees of freedom for error and treatments eliminating blocks
in Table 3.1 are the same as ¢ and p of (2.2), then we have W = v. Thus we
have shown that the test function given in section 2 is that given by the method
of least squares.

4. Means and standard errors. We will now derive the best, linear, unbiased
estimates of a, — o and the standard errors of these estimates.
TrEOREM II.
P—1 L
Z=vi-v =Mooy - 3 Ny,

? tmpt1
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s=N"4+1,N7" 42 .- ,N°
p= 172"”’]0

18 the best, linear, unbiased estimate of a; — «., and therefore &, — & is the best,
linear, unbiased estimate of aty — v .

Proor. Since @, was found by the method of least squares (3.3) using the
linear restriction @, = 0, this result is a consequence of the Markoff Theorem
[3].

TueoreM III. The variance of the estimate of of — af is 26°/M? if s = u,
and s, u = N* ' 4+ 1, N°* + 2,..- ,N? forp = 1, 2, -- -, k. The variance
of the estimate of af — o 18

. [N” -1, N'4+1, & N,

M» N> + Mr N1 + tmpt1 Mt Nt N1

fors=N"'4+1,N'4+2 -« ,Nyu=N"'"4+1,N"'+2---,N,p=
1,2, .-, k—Lr=p4+1Lp+4+2 -,k
Proor.

&:’—&1‘:': Y‘.’a"" Y’.’u,
s tands,u=N"+ LN 42 Nyp=12 -,k
And

Var (af — &)

E [Zf’-pl €is Zfll-px es’u]
Mr Mr

_ 7 o’ _202 — 19 k
—M—p‘l'm—w: p=124-""-,K
Now
p—1y/p—1 P r—1
PP C A S L2 6 S TY SRS (O TG RS )

N» t=pt+1 N'¢

and by straightforward application of expected values we arrive at the result.
From the theory of least squares it follows that the error mean square
k—1

k
2 g +§qf

teml

1
q
(where ¢ is defined in 2.2) is an unbiased estimate of o* and is independent of
&; . Therefore, these quantities may be used,to set confidence limits about the
difference between treatment means or any linear contrast of treatment means.
Therefore, by using equation (2.1), the analysis of variance for the Staircase
Design is easily computed. By using the formulas in Theorem II and Theorem
III, the means and standard errors can be easily computed even if the number
of steps is large. In another paper we will give detailed computing instructions
with a numerical example of the Staircase Design.
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We have assumed throughout that the variance of e;; is a constant inde-
pendent of 7 and j. It may be that if the variance of e; is in some way depend-
ent on the number of experimental units in a block, and if the number of units
differ widely, then this may somewhat invalidate the exact distributions of the
test function. The variances will probably have to be quite different before
the distributions are disturbed appreciably. On the other hand it may be that
an experimenter divides his material into homogeneous groups with constant
variances and finds he ends up with different number of plots in a block. This
would suggest using the staircase design.

Also this design may be useful in case an experimenter desires to conduct an
experiment on two sets of treatments and is satisfied with different precisions
on the two sets. '
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