DISTRIBUTION OF A SERIAL CORRELATION COEFFICIENT
NEAR THE ENDS OF THE RANGE!

By M. M. Smpiqur
University of North Carolina

1. Introduction and summary. If 3, , - - - , y» are observations on a stationary
time series at equal intervals of time and it is known that Ey, = 0 for ¢ = 1,
.-+, N, the most natural definition of a serial correlation coefficient with lag

unity would be
N—-1 N—-1 . N—1 . —1/2
= (Fn) [(27) (Zot)]

if the denominator 0. This is the ordinary correlation coefficient between
(i, -, yn-1) and (y2, - -+ , yn), except that instead of taking deviations from
the sample mean, we have taken deviations from the population means. Due to
the seemingly unsurmountable mathematical difficulties involved in obtaining
the distribution of 7* even on the hypothesis of independence and normality
of the observations, several alternative definitions have been proposed as ap-
proximations to 7*. However, it is desirable to consider some relevant proper-
ties of the distribution of r*.

In this paper the distribution of r* near the extremities of its range will be
considered. The observations will be assumed to be distributed as independent
N(0, 1) variates. There is no loss of generality in assuming the variance to be
unity as r* is independent of the scale parameter. A geometrical approach sug-
gested by Hotelling seemed to be particularly suitable in obtaining the order
of contact of the distribution curve at r* = Z1. Hotelling [1] shows how to
determine the order of contact of frequency curves of some statistics with the
variate axis at the ends of the range even though the actual distributions are
unknown. It will be shown here that if for a number r, in [0, 1] and close to 1,
P(r* = 1) is expanded in a series of powers of (1 — 7o), the first non-zero coeffi-
cient is that of the power (N — 2)/2. Upper and lower bounds for the coeffi-
cient of this power will be calculated. The lower bound is positive and the
upper bound gives an approximation for an upper bound on P(r* = r,).

2. Geometrical representation. Let X;, --- , Xy be N independent N (0, 1)
variates. Define

2.1) P = (Z XXe) [(Z XD (T X))

where all the summations are from 1 to N — 1 and the denominator 0, then
r* is a variate with range [0, 1].
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For every set of observations y;, - -+, y~ on these variates we take a point
8 with coordinates (31, -+, ¥») in an N-dimensional Euclidean space, which
may be regarded as a representation of the sample space. Denoting the origin
by O, we see that the points S are distributed with spherical symmetry about
0. Furthermore, a unique value of * corresponds to all the points on & straight
line 0, excepting the origin. Let the straight line O.S meet the N — 1-dimen-
sional unit sphere in @ and @', where @ is on the same side of the origin with
S. Denoting by (21, - -+, ~) the coordinates of @, we have

N
(2.2) Z; xf =1,
which may also be taken as the equation of the unit sphere. The points @ and
Q' may be considered to determine a unique value of r*. Considering only the
point @, it is easily seen that the distribution of @ is uniform over the
unit sphere; that is, denoting the total (¥ — 1)-dimensional surface area of
(2.2) by Sx_;, the probability of @ falling in an area A on the sphere is

A/Swa.

For a given 7o in [—1, 1] there exists a set of points on the unit sphere such
that for each point in this set the corresponding value of 7* lies in the interval
[ro, 1], and for no other point. If this set of points covers an area A on the sur-
face of the sphere (2.2), it follows that

P(T* g 7‘0) = A/SN_.] .

We observe that #* = 1if and only if ; = M, = 2,3, -+ ,N,A>0
and 2; 5 0, that is, z; = AN 1,4 = 2,3,---, N, A > 0 and z; # 0. Since

the point (z;, - -+, xy) lies on (2.2), we obtain for the value of z1, 1 = =£c
where
(2.3) c= (1 — N1 — N2

Denote the variable point (¢, A¢, -+, A" %¢) by P and (—¢, =Xc, -« -,

—A""%¢) by P’. As \ varies from 0 to «, each of P and P’ describes a curve
for every point of which—excepting the two points of each curve obtained by
A = 0 and o—corresponds the value of r* = 1.

Since both these curves are exactly alike, except for their position in space,
we confine our attention to the curve

(2.4) = c, zi = N, 1=2,--+,N,0 <A< oo,
Further, from now on we reserve (z;, - -+ , Zv) to denote the point on curve
(2.4) which corresponds to the parameter \, and we use (e1, - -+ , ev) to denote

any other point on the unit sphere.

To find the probability of 7* exceeding a given value 7, which is close to 1,
we consider the points within a “tube’” of geodesic radius 6 on the surface of
the sphere (2.2) with its axial curve (2.4).
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Let the length of the curve (2.4) measured from Py(1, 0, - - - , 0) to
P(JI], tee ’xﬂ)

be denoted by s, or more explicitly s(\), and an element of curve by ds. Denot-
ing by primes the differential coefficient with respect to s, the direction cosines
of the tangent to the curve at P are

’ ’ ’
T1,%2,°°, %N,

where
(2.5) zi = [(i — DN + N de/dNN, i=1,2---,N.
We note that
u ”?2
(2.6) z =1,
i=1
and since
N
2ai=1
fa=]
we have
u ’?
27) Z ziz; = 0.

i=1

Let the coordinate axes be rotated so that the new coordinates are denoted
by the elements of a vector a. Let @ = Be where

- ’ 7=

L Ty e In
Ty xe e+ xy
B=] by by --- baw |,
| b1 bwz -+ baw
and
(2.8) BB = 1.

Here I denotes the identity matrix, B’ denotes the transpose of B, and ¢ and
a denote the column vectors (e, -« -, ev) and (a1, - -+, an) respectively.
The a; axis is now parallel to the tangent of the curve at P and the a, axis
coincides with the line OP.
The (N — 3)-dimensional sphere given by the set of equations

(2.9) a =0, a; = €os 0, a; = (3; sin 6, 1=3,4,:---, N,
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with

lies entirely on the (N — 1)-dimensional unit sphere
N N

(2.10) 2ai=1=2d.
i=1 t=al

The sphere (2.10) is the same as (2.2) with a change of notation. Each point on
(2.9) is at a geodesic distance 6 from P measured on the sphere (2.10). Further,
since (2.9) lies in the plane a; = 0, this hypersphere is perpendicular to the
tangent of curve (2.4) at P.

Changing back to the original coordinates we have ¢ = B’a or

& = Tiay + Tion + buios + -+ + byiaw, ¢i=1-.--,N.
Equations (2.9) become
N
(2.11) e,~=x,~cos0+sin02b.-,-ﬂ,~, i=1,2-+---,N
=3
with
N
2 hei=1
1=3

3. The value of r* near the curve. Let us calculate the value of r* correspond-
ing to a point (e, -+, ex) on the hypersphere (2.11). We have

3.1) o (”g : e,-H) (1 — &1 — &

since
N-—-1 N—-1

D e&=1—¢ and Ze,zq.l =1—¢.
j=1 j=1

Inserting the values of ¢’s from (2.11) in terms of 2's, using equations (2.4)-
(2.8) and neglecting the terms of order sin’ 6, we have, after some algebraic
simplification

1—r*_ n (1 = A1 4+ ) + 1 = A1 -
sinZ @ 222(1 — A-2) A2(1 — A%-2)2
Ne1 N N A(l — )\2N—2) N—-1 N N
(3:2) . [)\ 2 2 bubeyBife — T 22 2 2 bibe i1 BiBe
¥=3 =3 - A i=1 k=38 i=3

120 (Bt 3 (1) ]

T21 = N) Y =
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As an approximation replace the terms in the square bracket in (3.2) by their
expectations. Since 8;, +++, By are Cartesian coordinates of a point on the
(N — 3)-dimensional unit sphere

26=1,
the distribution of (s, - - , By—1) is given by [see for example [3] p 385]
I((N —3)/2) dBs- - -dBv_a
I g — B
From this or from considerations of symmetry we have
EB; =0, EBi=1/(N —2), i=3,--,N,
EBBr = 0, 1%k, i k=3 - ,N.

Rearranging the terms of (3.2) and using the orthogonal property of B, we
have after simplification
Cg e N 1 —=AMQa + a3
sing = (1 — r¥ [1 + (T — W)
3.3) (1 — N1 — AT
+ = n )

4. Integral expression for P(r* = r,). To find the probability that »* exceeds
ro where 7o < 1 and close to 1, we proceed in the following manner. For a given
\, 7o determines a unique positive value of sin 6, hence a unique value of 8 in
the interval [0, w/2], say 6o(\). From (3.3) it follows that for a given A, § = 6,
implies 7* = 7, and vice versa. By a theorem of Hotelling [2, p. 451] the
(N — 1)-dimensional “area” of a tube of length ds and geodesic radius 6 on the
surface of the (N — 1)-dimensional sphere D -, e = 1is

-2
I'(N/2)

The probability that a random point (e ; ---, ev) falls in this elemental
tube is the ratio of the (N — 1)-dimensional area of the tube to the area of the

unit sphere. This ratio equals

sin™ % ds.

(2r) 'sin 7?0 ds.

Remembering that for 7* = 1 there correspond two curves on the unit sphere,
one traced by P and the other by P’ and noting that changing the signs of all
¢’s in (3.1) does not change the value of 7*, we obtain

(4.1) Pe* 2 1) = ot [ sin™"%, ds(n),
0
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where the variable of integration is A. This can be written as

(4.2) PG*z r) =o' (1 — r 2" fo " RG) an,
where

B (1 _ >\2)(1 + )\2N) (1 - >\2N—4)(1 _ A21\)
(4.3) g()\) =1+ N (1 — NEA2) + N = 2)(1 — nev-2)e
and

4 == [i (g{_)]/ - [(1 - o (1N 2 :-)N]/

We note here that E. S. Keeping [4] has studied the integral of h(\) over the
range [0, «].

If we change the variable of integration from X to 1/\ we observe that the
integral in (4.2) remains unchanged, hence the integral from 0 to 1 is the same
as from 1 to «. Writing J for the integral in (4.2), we have

(4.5) J =2 fo 1 g™ PR (\) dn.

By considering the sign of the differential coefficient of g(A) in the interval
[0, 1] we find that g(A) is a monotonically decreasing function of A, and

9(0) = o, g(1) = [N/(V = D),

Write

(46) xO) =
g

then x(A) is a monotonically increasing function of X in [0, 1} with
4.7) x(0) =0 and x(1) = (1 — 1/N)~

6. Bounds on the integral J. From (4.5) and (4.6) we have
(5.1) J =2 fo l xIY%h(\) an.

Now x(A) can be written as
_ " 1 — A2N—2>2[ Nk2(1 - A2N—4) ]—1
(52) XO\) = 2X\ (T_‘_‘W 1 + (N . 2)(1 — >\2N) °

Make the transformation

—z [N

>
I
®

(5.3)



858 M. M. SIDDIQUI

in (5.1), then

oW-D12
J = N
N—2
(.4) w( s _ inh & 28 4o\
. cosh ¥ coth z sinh ¥ cosech i N cosechr z ) dr
o N 2z ., 2z |2
[1 +v =3 2(cosh7v— — coth z sinh Z—V—)]

Using elementary expansions of hyperbolic functions in power series, for ex-
ample,
4

2
z°
COth=1+2—'!+4~!+‘
for every z and for |z | < ,
1,z 4 22
cthe=2+3 -t
and after some binomial and exponential expansions, we finally obtain

2 4
—z/N\ (N—D) /2 _ -1 T T o,
(eI = e [1 T ]

3¢ 25t ot 2
(g ) o,

+...’

where this expansion is valid for |z | < .
Similarly

1 2
h(e-—z/N) d(e—le) - — 2__\/5 [1 x + léggox + + O(N—z)] dx.

We split the range of integration in (5.4) into the ranges [0, 1] and [1, oo]
Denoting the integral from 0 to 1 by J1, we have, omitting the terms O(N™ )’

2
_ o-l/2 -1
J1—3 e j(;( + + )

(5.5) \

-(1 - %) + %gﬁ  + ) dz = 37%71(9216) = 0.196.
Hence
: e—1IN
(5.5) J = 0196 4+ 2 fo eI 2R d.

Denote by J; the second term on the right hand side of (5.6) and substitute
A = y'” so that
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Jy = 202 f THN o (1 - yN_l)N_z

o QI=yp)\ 1 —y~
(6.7) Ny — %) o N1 — )t
[+ W -0 - y~>] [1 T a— gy ] W
It can easily be shown that
el Ny — 47 ]-(N—2)/2 1
68 gy <[ Vtwlnnem] < arge

The other factors in the integrand can be expanded by the binomial theorem,
e.g.
[1 _ N2yN—-l(1 _ y)2]l/2 _ 1 _ N2yN—l(1 _ y)2 _ N4y2N—2(1 _ y)4

(1 —y")? 2(1 — y)? 8(1 — y)*
We then have
(5.9) Q< T < Q,
where

e"2/N y(N—3)/2 dy

— o(N-2/2
Q=2 _/; 1+ y)@-2ar

. 1 _ N-1 N y" 71 — y)
[T:—y (N 2)y —2—_1__ yN _+ "'].

(5.10)

We observe that we have to evaluate integrals of type

2N

(5.11) M(p, g, ¢*") = fo y*A +y) " dy
and

e—2IN
(5.12) L(p, g, ") = fo y*(1 + )71 — ») " dy,

where ¢ = (N — 2)/2and p = sq + b, s > 0.
Substituting y = ¢ *"z and expanding (1 + z¢ ¥¥)™?
and integrating term by term, we obtain

in powers of (1 — 2)

—2(p+1) IN
e (p+1)/

—2/N\ 1
M(p, g, e") = CER e—zm)qF(l’ %P+ 2 w)

and

—2(p+1)/N ©

—2/ _ € 1
L(p, g, ") —mm—)qlgF(ly%p'l‘k'l'zyw)-
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Ifs>1,b6>0andz >0

glg +1) Pt

F(Q, g, b,z) = g
(g sg+be) =1+ MCELCEXES)

sq+bx

-1
(i _ &
- (1 sq + b)

9
F(l,q.s + b,z) < 1+sq+bx

2

2+.

q q
R AR T

and

g + 1) \
(sq+b)(sq+b+l)x[1+x+xz+ 1.

Since ¢ = O(N), omitting the terms of O(N ") we have

2s 1 14 s+ 2¢
——<F(1,q,sq+b,1+em)< T .

2s — 1
A systematic calculation then shows that

542 629

sampi L+ O] < Lp, g, ™) < g 1+ OW ).

Denoting the integrals of successive terms in (5.10) by @:, @:, etc., as they
occur in order and neglecting the sign, we see that

Q. = 29272y, (N '2-' 3’ N 2— 2’ e—z/zv) .

Hence
0.542 < @ < 0.629.
Similar calculations on the following terms show that
Q < .629 — .065 — .101 4 .029 — .005 = .487
and
Q@ > 542 — 066 — .103 4+ .028 — .006 = .395.

The terms diminish very rapidly and the later terms do not affect the second
decimal place. Thus from (5.9)

239 < Jp < 487,
and since
J=J + J = .196 + J,
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therefore
(5.13) 435 < J < .683.

These calculations are valid to two decimal places and O(N™"). Finally, the
first term, Py, in the expansion of P(r* = 7)) in powers of (1 — 7y) is
Py = J/m(1 — )",

It is easy to see that the first term in the expansion of P(r* = —rg) is the

same as Py .
If the population mean is known to be zero, the frequency function of the
ordinary correlation coefficient, r, for a sample of size NV is given by

()
r(=5—
1) = — 2l (1L = )
\V/aT ( 5 )
Therefore the first term in the expansion of P(r = ro) in powers of (1 — rg) is
approximately

P = 2(N—3)/27r—Q(N _ 2)-—4}(1 - ro)\N—2)/2'
Hence
Po/P = 27 VN — 2)ir7),
which tends to zero as N tends to infinity.
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