ON RENEWAL PROCESSES RELATED TO TYPE I AND TYPE II
COUNTER MODELS!

By RoNaLp Pyke

Stanford University

Summary. Several renewal processes related to the Type I and Type II counter
models are defined and studied. The distribution and characteristic functions
for the secondary (or output) process of the Type I counter model are obtained
explicitly. Both the non-stationary and stationary probabilities of the state of
the counter, (locked or unlocked), are derived. Integral equations determining
the distribution and characteristic functions for the secondary process of the
Type II counter model are obtained. Also it is shown that a more general model
proposed by Albert and Nelson [1] may be solved explicitly in terms of a cor-
responding Type II counter model. An example of this general model is given.
Related with each model is a discrete renewal process which is also studied.

1. Introduction and Notation. Two important classes of counting devices are
the Type I and Type II counters defined as follows. A counter for detecting
radioactive impulses is placed within range of a radioactive material. By “an
event has happened’”’, we mean that an impulse has been emitted by the material
and by “‘an event has been registered’’, we mean that an impulse emitted by the
material has been detected and recorded by the counter. Due to the inertia of
the counting device, all impulses will probably not be counted. The time during
which the device is unable to record an impulse is referred to as deadtime.

DEeriNiTION. A Type I counter is one in which deadtime is produced only after
an event has been registered. A Type II counter is one in which dead time is
produced after each event has happened. Examples of Type I and Type II coun-
ters are the Geiger-Miiller counters and electron multipliers respectively.

In sections 4 to 7, attention will be given only to the Type I problem. It is
stated theoretically as follows. Let X, ¥ and Z be random variables (r.v.) with
distribution functions (d.f.) F, G and H respectively. Let {X.}7~1, {¥;}7=0 be
independent X- and Y-renewal processes; that is {X;, Y;:¢ = 1,7 = 0} is a
family of mutually independent r.v.’s and each X; and Y; has d.f. F and G re-
spectively. Set Xy = 0 (a.s.) and S; = E'.Lo X;fork =0,1,2,-.--. Assume
throughout this discussion that F(0) = G(0—) = 0, F isa non-lattice distribution
and that all d.f.’s are right continuous. Define no = 0 and

n; = min{ke I":8 > Y1 + Sn;_,}

forj =1,2,83, -+, where I'* is the set of positive integers. The above definitions
are valid with probability one.

Received October 29, 1957; revised March 28, 1958.
1 This work was sponsored in part by the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the United States Government.

737

[28 ((2
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz

S

The Annals of Mathematical Statistics. RIKOIRS ®

WwWw.jstor.org



738 RONALD PYKE

The secondary renewal process, {Z;}7 (to be referred to as the Z-process)
is defined by

Zi = 8u; — 8n;_, (6 eI™).

This is clearly a renewal process since the S’s are sums of independent r.v.’s
and since {n; — n;1}7-1 , a sequence of identically and independently distributed
r.v.’s, is itself a renewal process. {n; — n;_1}71 shall be referred to as the N-
process, and H shall denote the common c.d.f. of the Z-process. It will be shown
that E(n;) denotes the asymptotic bias of the counter.

One may define a related stochastic process which is of interest in counting
problems. Let {V.:t = 0} be a stochastic process, having a two point range space,
with joint distribution functions derived from its definition which is: Vo, = 0
(a.s.) and

llek+ Yk é it < Zk+,forsomekel+
0 otherwise

Set

Py(t) =1 — Py(t) = Pr [V, = 1]
and
Py=1—- Py = ll_fg Py(t)

if the limit exists. ,
A subscript, j say, affixed to any distribution function will denote its jth con-
volution with itself. The zero subscript will denote the c.d.f. degenerate at zero.
In sections 8 and 9 the Type II problem is studied. Its theoretical formulation
differs from the Type I problem only in the definition of the N-process, which
for the Type II problem is no = 0 and

(1) nj=min{k eIk >n; 1, 85> 8+ Y, ,r=n;y, - ,k—1}.

In all other instances, the definitions remain unchanged. For example, the second-
ary renewal process is still given by

Zi= 8a — Sn,_, (eI,

although, it is clearly a different process. The same notation is used for both
models in order to emphasize to the reader the common interpretation of the
various symbols.

In section 10 a more general model, suggested by Albert and Nelson [1], is
studied. It is shown that the solution of this more general model is an immediate
consequence of the solution of a corresponding Type II problem.

We shall begin in section 3 by proving a theorem from which the quantities
Py(t) are immediately deducible.

To understand the connection between the above notation and the counter
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problem itself, let ¥; represent the deadtime caused respectively by the registra-
tion of an event at time S,; in the Type I model and the happening of an event
at time S; in the Bype II model (time being measured from the registration of
some event) and let X; be the time between the kth and (¥ + 1)-st impulses.
The secondary renewal process is determined by the r.v. Z, which denotes the
time between successive counts or registrations. The event [V, = 1] corresponds
to the counter being unlocked at time £. For a more detailed description of the
physical problem, the reader is referred to the references. (See e.g., Feller [2].)

Throughout this paper, the integrals that appear are to be considered as
Lebesque-Stieltjes integrals. This will avoid the special considerations that
would otherwise be required in cases where the integrand has a set of discon-
tinuities of positive measure with respect to the Stieltjes measure. Notice that
the ordinary integration-by-parts formula holds for the Lesbesque-Stieltjes
integrals that appear in this paper. A proof of this is possible by probabilistic
methods.

2. The literature and known results. The Type I and Type II counter prob-
lems have been studied by several people. Most of these studies deal with the
special case in which the input process is Poisson. Not only does the Poissonian
input make the problems involved more tractable, but in this instance, it serves
to make the statistical model very realistic, since the impulses from a radioactive
material behave randomly over time, at least in time intervals which are short
relative to the half-life of the material. For an extensive bibliography, the reader
is referred to Takacs [3].

It is important, however, to study the more general non-poissonian models
for several reasons. First of all, it is necessary at times to make successive counts
and it is known that the secondary process of the first counter, which would
serve as the input process for the second counter, is not a Poisson process even
though the original process was. Secondly, these same theoretical models have
arisen in other contexts in which the Poisson process is not so easily justified
(e.g., in inventory theory, Arrow, Karlin and Scarf [4]).

In his recent paper, [5], received by this author after completion of the first
draft of this paper, Takacs also studies the general counter problem. Although
there is some overlap, there are many differences in approach and coverage be-
tween the two treatments of the problem. Theorem 2 is equivalent to results ob-
tained by Tackacs in [3] and again in [5], for the case of continuous F and G.
Even for this case, however, our result (4) is a simplification in that a double
integral has been replaced by a single one. Attention should also be given to a
recent paper of Smith [6], in which the Type II counter model with Poissonian
input (and related quasi-Poissonian inputs) as well as the model with constant
deadtime, is studied.

3. A related renewal problem. In this section, we shall consider two alternating
renewal processes, not necessarily independent, and obtain explicitly the prob-
abilities, both finite and stationary, of one of the processes being in effect at any
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given instant of time. To be more precise, let {U.}7~;, {Vi}71, be two renewal
processes with common c.d.f. K and R respectively. By definition U;and U (¢ # j
are independent and similarly for V; and V;. Concerning the relationship be-
tween the two processes assume only that {U; + V,}%-; forms a renewal process;
that is, independence of U, and V; is not assumed. Let H denote the common
c.d.f. of U; + V; for all 7. Define Ty = 0 and, for j = 1, set
Ty =U+ Vit U+ Vot -+ U; + V;

Tojn=U1+Vi+ U+ Vot --- + Uj.
Define
1if Ty5y < ¢t £ Ty forsomej > 1
0 otherwise

a0 -

and
Pyt) =1 — Pi(3) = Pr[A@) = 0].
TaeoREM 1. For all ¢t = 0

P = [ 11— K@~ ) aV Q)

where N(z) = > 5g Hi(x) and H; is the c.d.f. of Ta; i.e., the Jth convolution of H.
Moreover,

o= I PO = 5y ¢ g

whenever at least one term of the denominator is finite. Py is interpreted as being zero
when E(V) = « and one when E(U) = o,
Proor. By definition,

Po(t) = ZPI‘ {sz =it < T2j+1]

7=0

= 20 jo‘_t_Pr {ng St< T+ Uin ] To = ) de(x)
= f:/ 1 — K@ — x)] dH;(x)
i=0 v0—

- fo t_ [l — K — 2)] dNG)

as required. Since we are working with an at most countable family of r.v.’s,
the conditional probability argument used above and in proofs which follow is
.valid. The second statement of the theorem is an immediate application of a
theorem of Smith ([7], Theorem 1) which we quote in a particular form for
further reference.
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THEOREM S: If k(x) is any bounded function, zero for negative argument, in-
tegrable, non-increasing in (0, ) for which k(z) — 0 as z — «; if H is a non-
negative non-lattice distribution function and

Nm=§mw
then

lmllik@-—x)wvw)==£wk®)dx{£iydﬂu%_i

t—>00

The right hand side is to be taken as zero whenever the denominalor is infinite.

In connection with the last statement of Theorem 1, observe that Pi(¢) con-
verges to the stated limit since the function k(z) = 1 — K(z) satisfies the condi-
tions of Theorem S. We mention also that the last statement of Theorem 1 is
actually a special case of a result concerning semi-Markov processes, given by
Smith ([8], cf. Theorem 5).

4. The N-Process of the Type I Model. Set po = 0 = 7o,
oo =Prm =kl =Prn; —njy =kl G, kel")
and
e = Pr [n; = k for some j] (k eI").

Moreover, define the corresponding generating functions, for | s | < 1,
0 0
P(s) = 2 pi s, R(s) = > i sk,
k=1 k=1

The N-Process may be considered as a sampling of the positive integers I +,
that is, s < 2 < m3 < --- and {n;,j = 1} < I". In this context, one may
speak of the event E, “an integer is sampled.” One may show that, in the termi-
nology of Feller [9], this event is recurrent. Since, for all &k ¢ I

k—1

T = Pr + Z; Dj Th—i
1-

one obtains directly the known relationships

_ _R(@s _ P(s)
PO = T rm - E® = =5
Moreover, it is known that (cf. [9])
2) lim 7 = lim —(—lﬂﬂ = m/E(ny)

k>0 8-»1— 1-P (S)

where m is the g.c.d. of those indices n for which p, > 0. The right hand side of
(2) is to be interpreted as zero whenever E(n,), the ‘mean recurrence time,’ is
infinite.
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The probabilities p are readily computed from the relation
v = Pr[Siay £ Yo < 8y ke I').
They are given in
LemMma 1. For all ke It

oo = [ IFisy) = Fy)] dGG),
Observe that the event E is a certain event. That is

; pe=1—1lim | F.@y)dG(y) =1

n-s0 JO0—

since limy.o Fn(y) = 0 for all y = 0 if and only if F(0) < 1, a condition which
has been assumed.

Define the r.v. N, for y > 0 as the smallest index &k for which S, > y. Set
Q,(s) as the generating function of the probabilities associated with N, . One
may then easily show that for |s|] < 1

P& = [ Q60 d66) = 1 - 9 3¢ [ 64-) an)
Consequently, setting Mi(y) = E(N,), one obtains
E(m) = f: M(y) dG(y) (keI').
In particular
®) B = [ M) a6 = [ 11 - 64— amw.
It is well known, and easily proven that
My(y) = g Fi(y)

M (y) will be used very frequently throughout this paper. We shall therefore drop
the subscript and write M (y) = Ma(y).

Set u = E(X) and » = E(Y). It is well known, (cf. Smith [7]) that if p < o,
M@y) = y/u+ o(y) asy — . Thusif u < o, by (3) E(ny) < o if and only
if » < oo, Similarly, if u = o, then M (y) = o(y) and, hence E(n,) < « whenever
v < . The case of p = © = pis special and will not be studied here.

6. The Z-renewal process. In this section the c.d.f. of Z as well as its Laplace-
Stieltjes transform will be obtained. Consider the notation

o(s) = j; ) e ** dF (z). Y(s) = -/o. j ¢ dG(z)

2 = [ T aHG), g = | " G (w—) dM(2)
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for all s = 0. One then obtains
THEOREM 2. Forallz =2 0,s ¢ R

@) HE) = fo "Gl — Fe — w)] dM ()

(5) 8(s) = [1 — p()ly*(s).

Proor. Clearly
H() =Pr[Z 2. = ZPr Sty =Y < 8 £ 2.
k=1
Fork = 2

PriSa <V < S <2 = fo _ fo "IFG — ) — Fly — 0)] dFys(n) dG()

= ‘/; i [G(z) — Gu=)IF(z — u) dFi—(u) — L : Fi(y) dC(y)
= G@)F.() - ‘/od Glu—)F(z — u) dFia(u) — ‘lt_ F(y) dG(y)

- [ " G(u—) dFy) — [ " Gu—)F(: — u) dFsa(u).
Fork =1
Pri¥ < 8 57 = [ Gu—) dRiw)
and (4) follows by summation over k. To obtain (5) for s > 0, write

%@(s) = _/‘; i ¢ "H(z) dz
= fw ]m € "G(u—) dz dM(u) — fw fw ¢ F(z — w)G(u—) dz dM(u)
0 u— o u—

= 196 — S ol

as required. At s = 0, ® may properly be defined by ®(0) = 1. This follows by an
application of an Abelian theorem to (5). That is, consider

lim [1 — o(8)W*() = lim [ ¢**Glz—) dM () {f " dM(:c)}_l
8->04 0~

80+ JO—

= lim G(z) =1

since M(x) — © as x — .
Of particular importance to the counter problem is the expectation of the
secondary renewal process. One obtains
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TurEOREM 3. E(Z) < «,4f and only if v < « and u < «. Moreover
®) @) = wB) = » [ M) d6G).

Proor. The first statement follows from the relationship
max (Yo, X1) £ Z: = Yo+ X, (a.s.).

The second statement is a consequence of a well known result in Sequential
Analysis, for by it

E(Z| Yo =y) = pEW,)
and (6) follows by integration with respect to dG(y). E(Z) is to be interpreted as

infinity whenever » or E(n;) is infinite. Of course, (6) could also be proven di-

rectly from Theorem 2 using (5).
Let N(x) denote the expected number of partial sums of the Z-process less than

or equal to z; that is
N@) = Z; H;(z).
J=

Define the bias of the counter at time z by B(z) = M (z)/N(x). Then as a con-
sequence of Theorem 3 and a known asymptotic renewal theorem, one obtains
Lemma 2. If p < oo, then
lim B(z) = 1/E(n,)

where the right hand side s to be interpreted as zero when v = 4 .

It may be easily shown that this result 1s also valid for the Type 11 and Albert
and Nelson models.

6. The distribution of free-time. Let W = Z; — Y, represent the length of

time the counter is free during successive registrations. Denote its c.d.f. and
L-S transform by K and k respectively. Clearly E(W) = uE(n;) — ». Moreover,

K(z) = f:Pr (Z: = 2+ y|Y = y] dG(y).

Under the condition [Y = y], Z; has a c.d.f. given by (4), but with G degenerate
at y, ie., G(u) = 1if u = y and G(u) = 0 otherwise. Therefore,

© ety .
K@ = [ [0 - Fe+y — ) dMG 6

1 f_ f_ [1— Pz +y — w)] dM(w) dG(y).

It follows similarly that k(s) is the expectation w.r.t. dG(y) of the L-S transform
of Z; — y obtained under the condition [Y = y]. By (5) this is seen to be

© b = L= o) [ [ amte) aow).
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According to its definition in section 1, P;(¢) is the probability that the counter
is free at time £. Setting U and V of section 3 equal to ¥ and W, we have as a
consequence of Theorem 1, the following result: for all £ = 0

® PO = [ 1~ G0~ 2 NG
where
NG) = 3 Hi@).

This formula differs from equation (26) of Takacs [5]. Moreover, in the limit

Po = lim Po(t) = V/[.I.E(’nl).
t-»c0
Let the L-S transform of Po(f) be denoted by

w(s) = ‘[” et dPo(t).

Then, by direct computation one obtains from (8)

I el 40
7|'(8) = i—:-azs—).

7. Examples of the Type I counter problem. (a) F(z) = 1 — ¢ *: This is the
well known Poisson input counter problem which with various assumptions on G
has been studied by several authors. For arbitrary G, the problem was treated
by Takacs [3]. Because of special properties possessed by the exponential dis-
tribution, this particular example may be (and indeed has been) solved in several
different ways. In [6], Smith has shown that much of the essential simplicity of
this case carries over in asymptotic considerations to a wider class of ¥ which
generate so-called quasi-Poisson processes. For the present example, p = 1/A
and M(z) = Az + 1 forz = 0 and M(z) = 0 for 2 < 0. The formulae of the

previous sections become
Q,(s) = se ™0
P(s) = s¢y(\ — As)
E(m) =M+ 1

HE = [ 1= ) dow)

A (s)
N+ s
These last two results may, of course, be obtained immediately from the known

characterization of the exponential distribution that truncation on the left does
not change the form of the distribution function. This implies that Z; = Yo + X~

®(s) = p(s)y(s) =
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where X is exponentially distributed and is independent of Y, . Finally, for this
example, we have

O+ 9l = (o)
) = N = G)

(b) Y = d (a.s.): This important oft-studied case is applicable to counters
for which the deadtime is independent of the intensity or amplitude of the in-
coming radioactive pulses. For this case G(z) = 0 or 1 according as xz < or = d,
and the formulae of the previous sections become

Pr = Fra(d) — Fi(d)
E(m) = M(d)

o if z2=<4d
H(z) =

L‘[I—F(z —u)] dM (u) if 2>4d

®(s) = [1 — ()] j:o ¢ “dM(x) =1 — [1 — ¢(s)] .L ¢ dM(z)
and

d -1
w0 = (= {1 - o) [ am@)

(¢) G(y) = 1 — ¢*: The above two cases have been studied previously,
whereas, the present case has not, to this author’s knowledge, as yet been con-

sidered. In a different context, (7) has been employed by Scarf [4] for G ex-
ponential. For this example, we have v = 1/8.

e = le(B) 1 — «(B)]
P(s) - 3[1 - ‘P(B)]

1 — sp(B)
Em) = [1 — (@)™
HG) = F(&) — fo _ N — Fl — 2)] dM ()

_ o) — (B + 9)
A B R

n(s) = S = e + 9]
B+ 91 — (9]

and

B Ble(s) — o(B — 9)]
) = G — ool =G = 91"
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8. The general Type II counter. This problem is a very difficult one to solve
in general. Discussions of the general problem have been given by Takacs [5]
and Pollaczek [10]. Certain particular cases have been studied in the literature
in greater detail. For example: Poisson input and constant deadtime by Feller
[2], Poisson input and general deadtime by Takacs [3] and, with a different
approach, by Chernoff and Daly [11], and exponentially distributed deadtime by
Takacs [5]. The same notation as that used for the Type I problem will be em-
ployed in this section, but with the corresponding definition of »; , namely (1).

In this model, it is simpler to evaluate r: than pi , contrary to what was ob-
served in the Type I problem. For k = 1

re=Pr(S, + Y, < Sir=01,-,k— 1] =f0 fo fo
——— ———
) k
Gy + 2+ o F we—) oo Q=) dF () - -+ dF(xk).
Therefore, by the same argument leading to (2), one obtains the relationship

(10) E(ny) = m/lim 7y
Kk-»00

where m is the g.c.d. of those integers n for which p, > 0. If X < Y (a.s.) set
m = 0 and n; = o (a.s.). In all other cases Pr [X > Y] > 0. However, since
p1 = Pr[X > Y], one obtains m = 1. That is to say, whenever Pr[X > Y] > 0

E(nl) = 1/Iim Tk
k-» o0

With a knowledge of 7 , one is able to compute E(n;) and hence the expectation
of the secondary renewal process.

As before, set Zy-= 0 (a.s.) and Z; = S,;, — Sn,_, . Clearly the Z/s form a
renewal process. The problem of deriving an explicit expression for H, the com-
mon c.d.f. of the Z-renewal process, is extremely difficult. However, it is possible
to display an integral equation which formally, but not always in practice,
determines H. In section 10, an example will be given for which the solution is
readily attained from this integral equation whereas it is not easily derived by
other methods. Takacs [5] has, for the Type II problem, obtained an integral
equation in N (¢), the expected number of counts (partial sums of the Z-process)
in [0, #] for all £ = 0. These two representations are equivalent in the sense that
H and N are uniquely determined one by the other. More precisely, for s = 0,
the relationship between H and N is given by

(11) [ eravo =3 [ "t a0 = T—_%@.

7=0
THEOREM 4. For all z = 0

a2  HE = fo ’ fo Tl = HG - 5 6@ + t—) ANG) dF(z)
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and fors > 0

(13) &(s) = AL + A&

where

(14) Mo = [ ) | " Gt t—) dF(x) N ().

(Notice that because of (11), A(s) + 1 is the L-S transform of N.)
Proor. (12) is obtained as follows. [Z; = z] is the union of two disjoint events,
A and B say, where

A=1[Ye< X1 247
and
B=0=sY —Xi<Z;=z2 — X, for some j = 1].

Clearly
Pr(4) = [ Go=) dF@).
0
Under the condition, [z > Yo=y = z = Xi] = C say,
Pr (B|C) =1 — Z{)Pr[zj Sy—2Zip>2— 2

11— fo_— [l — HG — 2 — )] dN()

_ ff [l — HGe -z — )] dNQ).
Therefore,
1o - [ ey arw + [ [ [ - He - = - 0] dNW d6G) dF @)

and an interchange of integration gives
H(z) = NO)IF(2) — F(e—)IG(—)

+ f— f"’ [l — H( — « — )]G + t—) dN () dF (2)
0—- JO—

= .[o f.,: 1 — He — z — )]G + t=) dN () dF (@)

as required. For the proof of (13), consider changes of integration according to

f: dz fozdxf':zdt - f: dxf:dz foz:zdt - f: dz j:dtf;”_dz.
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It then follows that, for z > 0,
1 I - _ [T el -
< &(s) = fo e " H(z) dz = /‘; j;_e < 1 tIJ(s)]G(:c + t—) dN(t) dF (z).

Solving for ®(s) gives the desired result. As was stated earlier, Takacs [5] derived
an integral equation in N(¢), which may be shortened to read

No-1=[ ' 6—) W@
where
W(z) = f:_ F(z — y) dN(y).

Upon taking Laplace transforms of both sides one may check that it satisfies the
relationship (11).

Of particular interest is the expectation of the secondary renewal process,
namely E(Z). As in the Type I problem, it follows from known results
of Sequential Analysis that

ni
(15) 5@ = B(3 %) = ube.
=
From the above theorem, one obtains
E@) = 111131;:‘8—) = 1/lim \(s).

Thus, by (10), one obtains a double relationship
1/E(ny) = » lin‘} s\(s) = lim ;.

k-»0
Although it may well be that in a particular example one of the above limits
will be computable, in most cases they will be unwieldy. For example, even
in the case of Poisson input, the quantities r, are complicated expressions, al-
though E(n,) is a simple expression best obtained in an entirely different way
using the particular properties of the exponential distribution. The p:’s may be
expressed in terms of the r,’s as follows;

(16) Pn= — D% fI ((—r,-)"" I'c',l_—') k. !

7=1

where k. = D_.;.k; and D>.* denotes summation over all vectors of integers
(ky, ko, -+, ka) for which X 1y jk; = n. However, (16) will be, in most cases,
very unwieldy, especially when one recalls the complicated structure of the r;’s.

9. The case of constant deadtime. Partial results for this example have been
given by Takacs [5] for the Albert and Nelson model to be studied in the next.
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section. Also, this case has been studied from a different viewpoint by Smith
[6]. We shall study this special case in full. Set ¥ = d (a.s.). Then G’(:c_) = 0 or
1 according as ¢ < or 2 d. From (9) we obtain for k = 1

rnn =1 — F(d) = qsay.
Consequently by (10)
6] Em) =[1 —F@I" =g
which is interpreted as being equal to « if 1 = F(d). Using the notation intro-
duced in section 4, one obtains
R(@s) = grksk = gs(1 — 8™

and hence

— $q
P(s) T+ 1 -5

From this relationship, or by direct computation, one obtains
p = g1 — 9

Therefore, n; has a Pascal (or geometric) distribution. The quickest way to
obtain H and & for this example is as follows. Clearly H(z) = 0 for z < d. For
zz=d

H(z) = ZlPr[S,, S z|n = n] pa

= q”f_:l PriS.=z|m =n](1 — ¢
Now
PriS.Szlm=n=Pr[S.=22|X;<d,12j<n—1X,>d]
=Pr(Ui+ Us+ -+ Una+V =2
. where the U’s and V, are mutually independent with c.d.f.’s given by
PriU: 2 ul=Kwu = Fw/F@d); u=4d1=1i<n)

F(u) — F(d) (u z d).

Therefore, for z = d

18) H(z) = qi‘;l a-gq™* j:_ K.(z — w) dL(w)
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where K, denotes the nth convolution of K with itself. It is then immediate that
f e * dF (x)

d

(19) &(s) = . .
1 - l ¢ " dF (x)

One may check that expressions (18) and (19) satisfy the cquations of Theorem 4.
In [6], Smith has obtained for this case N(!) = 1for 0 < ¢ < d and

N@ —1 = j:_d [F(t — x) — F(d)] dM(x)

for ¢ > d. By means of (11), one may show that this expression agrees with (19).
(19) has also been obtained by Takacs [3]. From (15) and (17) it follows that
E(Z) = ug . One may also compute

d
var (Z) = ¢ var (X) + 2uq”" '4; z dF(x)

which disagrees with the expression given in Theorem 7 of [6].
For this example, not only is it possible to compute Po(¢), the probability that
the counter is free, but one may also derive the quantities Px(¢) defined by

Pi(t) = Pr[S; 4+ Y; = ¢ for exactly k values of j]

fork = 0,1, 2, --. That is, Px() denotes the probability that ¥ impulses are
in process at time ¢. Now then

Pi(t) = Zo PriS;=t—d < 8in1 £ Sipx <t £ Sjsil
J vl

= l‘_—" ﬁt_‘ [Fialt — 2 — y) — Fit — 2 — y)] dF(y) dM ().

—d—z

In particular

(20) Py(t) = '/; - 1 — F@t— 2)ldM(x).

Define the real functions hn, (m = 0) as follows: for v < d set hn(v) = 1 and
for v = d set

v—d
) = 1= [ Fulo — 9) dFG).
(]
With these definitions we may write for k = 1

Pit) = V[:—d [Fit — ) — Frat — 2) — bt = 2) + hea(t — 2)] dM ().
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The functions k., and 1 — F,, (m = 0) clearly satisfy the conditions of Theorem
S, by which

(21) Py =lim Pi(t) = u* j:o [Fr(w) — Frpa@) — ha(@) + hiaa(0)] dv.

t-»>00

Moreover, by definition

L © v—d
[ ) = hesto) o = f [ st = ) = B0 — 1 aPG) o

fw f°° [Fia(v — y) — Fiulo — y)] dv dF (y)
0 y+d—

d
= ‘£ [Fk—l(v) e Fk(v)] dv.
Therefore, by (20) and (21)

P =y f Fia(o) — 2F,0) + Fen @] dv (& = 1)

It

Po=1 —,rlf:u —F ) d

10. The Albert and Nelson generalization. Let p ¢ [0, 1]. Define
yo _ Y with probability p
0 with probability 1 — p = ¢

which has c¢.d.f. G, where G,(0) = p, G,(z) = ¢ + pG(z) for x > 0. Albert and
Nelson [1] suggested as a generalization of the Types I and II counter models,
the model in which the deadtime caused by an incoming pulse is ¥ or Y® ac-
cording as the pulse is registered or not. Formally, define no = 0 (a.s.) and 7 = 1

(22) nj=min{kel™: S+ ¥ £ S (njm <4 <k), Sn;_, + ¥ = Si}

where as usual the subscript on ¥{” denotes identically and independent random
variables with ¢.d.f. G, . The purpose of this section is to show that the ¢.d.f. H
of the secondary renewal process, Z; = S,; — Sn;_, (j = 0) obtained for this
generalization is in fact completely solved once the general Type II problem
is solved, and in this sense this generalization is a very slight one.

Let Z” be the secondary renewal process of a Type IT counter model in which
the deadtime r.v. is Y*?. Let H® denote its ¢.d.f., ® its characteristic function
and N®(z) = D70 H” (z). The distribution function of the Z-renewal process
may then be given by

THEOREM 5. For all 2 = 0

HE = [ ’ | Tl = BYG — 2 — ) G + y-) dNPG) dF ()
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and for s > 0
@) () = [1 — 32(s)] f f TGz 4 y—) dF (@) AN ().
0— J0

This theorem is proven in the same way as Theorem 4 upon noticing that in
evaluating Pr (B | C), one need only consider a Type II model with r.v.’s X and
Y. Thus, although at first glance one might suspect that this more general
model would offer difficulties peculiar to itself, it is seen that a solution of the
corresponding Type II problem automatically provides a solution of the general
problem. For p = 1, this model reduces to the Type II model and for p = 0,
to the Type I model, as can be seen by comparing the definition of the N-process,
(22), for these two values of p.

ExampLrE. In [5], Takacs works out the special case of the Albert and Nelson
model in which Y is constant a.e. As a further example, we evaluate here the
case in which G(z) = 1 — ¢™ (z = 0). As was pointed out above, it will be suffi-
cient to solve the Type II problem in which the deadtime, Y, has
cdf. @P@) =1 — pe™ (z = 0) and zero elsewhere. For this case we have

by (14),
)\(p)(s) — f f e—s(z+y)[1 - pe—k(zw)] dF(.’lJ) dN(p)(y)
0— J0

= fo e [p(s) — pe”“™M(s + N] AN®(y)

__ el o(s + N
T1-—e0() PI—ewi+ N

Therefore

oy _ 26 —aes +N)  ols + M) m
N = 1 — (s PT—o® " (s +2)
since 1 — &P (s) = [1 + A®(s)]™. Since this relation holds for all s > 0, we
obtain by recursion that for all n = 1

L o — R
)\(p)(s) - E (_p): [Z] Doit1 H Pr+1
i=0 1l —¢; 01— ¢

+ (=p) I 72 Pl \P (s 4 X + n))
k=0 - Pk

where for convenience we have set ¢; = ¢(s 4+ 7\). Since ¢(s) — 0 and A\(s) — 0
as s — o we finally obtain

P — 1 1 — )7 . P
\X()(S)—ilgzsa—@jg( P)gl_%
N+1 i
(24) + > (—p) ]I -2
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Thus 7 (s) = AP (s)[1 + \® "(s)]™, the solution to the Type II model in which
the deadtime distribution is G (z) = 1 — pe™ (z = 0), is determined. From
Theorem 5, in particular equation (23), one obtains

— &?
¢(s) — ols + ) 1—15—3((4?—»
1 4+ \@(s)

Upon substitution of (24) into this expression, one obtains the solution to ‘the
Albert and Nelson model with exponential deadtime. When p = 1, (23) yields
the solution to the corresponding Type II problem with exponential deadtime
as given explicitly by Takacs [5] and implicitly by Pollaczek [10].

®(s)

o(s) — o(s + )
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