DISTINGUISHABILITY OF SETS OF DISTRIBUTIONS
(The case of independent and identically distributed chance variables)

By WassiLy HoeErrpING! AND J. WoLFOWITZ?

University of North Carolina and Cornell University

1. Introduction. Suppose it is desired to make one of two decisions, d; and d; ,
on the basis of independent observations on a chance variable whose distribution
F is known to belong to a set &. There are given two subsets G and 3C of § such
that decision di(ds) is strongly preferred if F is in G (3¢). Then it is reasonable to
look for a test (decision rule) which makes the probability of an erroneous de-
cision small when F belongs to G or 3¢, and at the same time exercises some
control over the number of observations required to reach a decision when F is
in & (not only in G or 3¢).

This paper is concerned with criteria that enable us to decide whether, for
given sets &, G, and JC, there exists a test of the described type. More precisely,
we shall consider several classes of tests, such as the class of all fixed sample
size tests, or the class of all tests which terminate with probability one whenever
F is in . Thus the restriction to tests in one of these classes is equivalent to
imposing some sort of control, of a purely qualitative nature, on the sample size.
We then shall try to find necessary and/or sufficient conditions for the existence
of a test in a given class which makes the maximum error probability in G u 3C
less than any preassigned positive number.

If such a test exists, we shall say that the sets G and 3¢ are distinguishable® in
the given class 3 of tests. If 3 is the class of all fixed sample size tests, the dis-
tinguishability of G and 3C in 3 is equivalent to the existence of what has been
called a uniformly consistent sequence of tests for testing F ¢ G against F & 3C.

The sets G and 3¢ will be called indistinguishable in 3 if for any test in 3 the
sum of the maximum error probability in G and the maximum error probability
in 3¢ is at least one. (There always exists a trivial test for which this sum is equal
to one.) In section 2 it will be shown that, with the present restriction to sequences
of independent and identically distributed chance variables, two sets are either
distinguishable or indistinguishable in any of the classes 3 which we shall con-
sider.
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Since we confine ourselves to tests based on a sequence X;, Xz, - - - of inde-
pendent, identically distributed chance variables, we may restrict ourselves to
sequential tests. A sequential test is determined by the sample size function N
and the terminal decision function ¢, and will be denoted by (N, ¢). Here N is a
chance variable whose values are the non-negative integers and 4+ «, and whose

conditional distribution, given any sequence x = (z;, 22, - - - ) of possible values
of X1, X, -+, is such that the probability of N = = does not depend on
Znt+1, Tny2, ** -, for all non-negative integers n. The function ¢ is a fune-
tion of (21, - - - , z») whose values range from 0 to 1. The test (V, ¢) consists in

taking one observation on each of the first N chance variables of the sequence,
finding the corresponding value of ¢, and making decision d; or d, with respective
probabilities 1 — ¢ and ¢. The function ¢ and the conditional distribution func-
tion of N given x are always understood to be measurable on the appropriate
o-field. The sample size function N and the terminal decision function ¢ are said
to be non-randomized if the respective functions P[N = = | x] and ¢(x) take on
the values 0 and 1 only. A test (N, ¢) will be called non-randomized if both &
and ¢ are non-randomized.

We use the term distribution synonymously with probability measure. The
set & consists of distributions on a fixed o-field @ of subsets of a space X. Unless
we state otherwise, we shall assume that X is a k-dimensional Euclidean space
and @ the k-dimensional Borel field. A distribution on @ will then be called a
k-dimensional or k-variate distribution. If F is a distribution on @, we denote
by F[A] the probability of the set A £ @ and by F(z) = F(z?, - -+ ,z2"%), z e X,
the associated distribution function, that is, F(z) = F[{y | y® < 2, -+ ,4® =
2z®}]. With the usual definition (see [5])* of the distribution of a sequence X
(X;, X2, ---) of independent chance variables with identical marginal dis-
tribution F, we denote by Pr[B] the probability of a measurable set B in the
range of X, and write Ery for the expected value of a function ¢ of X.

According to our definitions, the probability of an erroneous decision when
test (N, ¢) is used is equal to Er¢p if F £G, and to Er(1 — ¢) if F £ 3C. Thus the
sets G and 3C are distinguishable in a class 3 of tests if and only if for every ¢ > 0
there exists a test (N, ¢) in 3 such that Erp < efor F e G and Er(1 — ¢) < ¢
for all F ¢ 3C.

2. Modes of distinguishability. We shall be concerned with the distinguish-
- ability of two sets of distributions in various classes 3 of tests, which are defined
in terms of properties of the distribution of the sample size function N. Some
classes of particular interest are the following.

5: PN < w] = 1if F eF

S3(@):ExN' < 0o f FeF(r > 0).

3:ExN" < o forallr > 0if Fed.

3: Epe'™ < o for some ¢ = #(F) > 0if Fe&.
T3: max(N) < .

¢ The numbers in square brackets refer to the bibliography listed at the end.
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It will be noted that each of the successive classes contains the one following.
Some classes of obvious interest have been omitted because, for the purposes of
our investigation, they are equivalent to some of the classes listed above. Thus
if two sets are distinguishable in one of the classes J, ---, Js, they are also
distinguishable in the corresponding subclass which contains only the non-ran-
domized tests; this follows from Theorem 2.1 below. If two sets are distinguish-
able in 33 (the class of “truncated’ sequential tests), they are clearly distinguish-
able in the class of all fixed sample size tests; for if (V, ¢) is any test in 3;, and
we put N = max (N), ¢’ = E[¢ | x], then (N’, ¢') is a fixed sample size test such
that Ex¢’ = Er¢ for all F.

In view of the importance of the two extreme classes, 3o and J; , we shall use
the following terms. If two sets of distributions are distinguishable (indistin-
guishable) in 3, , they will be called distinguishable (F)(indistinguishable (5)).
If two sets are distinguishable (indistinguishable) in 33 , we shall say that they
are finitely distinguishable (finitely indistinguishable).

The classes J; have been defined in-terms of the set § to which the distribution
of X; is assumed.to belong (without displaying & in the notation). It may be of
interest to consider also the corresponding classes where & is replaced by-some
subset of & (compare Lemma 4.1 in section 4). It will be clear that Theorems 2.1
and 4.1 below can be immediately extended to such classes.

Our list does not contain the subclass of 3:(r) where ErN" is bounded for
F ¢, nor the subclass of 3, where P¢[N > n] — 0 as n — o, uniformly for
F ¢ &. The reason for this omission is that two sets G and 3¢ which are distin-
guishable in one of these classes are finitely distinguishable. This follows from
the following fact: If (N, ¢) is a test such that Ps[N > n] — 0 as n — «, uni-
formly for F £ G u 3¢, then for every ¢ > 0 there exists a test (N’, ¢') such that
max (N) < « and | Er¢’ — Erp | < efor all F £ Gu 3C. This is so since, by our
assumption, we can choose an integer n = n(e) such that P¢[N > n] < 2 e for
all F £ Gu 3¢, and the test (N’, ¢') defined by

¢ = &, N =Nif N £ n; ¢ =1 N =nifN>n

has the stated property.
Let 3 be any class of tests. If & = & (3) denotes the class of all terminal de-

cision functions ¢ of the tests in 3, the statement that G and 3¢ are distinguishable
in 3 can be expressed by the equation
(2.1) sup inf (Em¢ — Eg¢¢) = 1.
ded @cGQHET

Whenever 3 contains a trivial test such that ¢ = const, the left side of (2.1) is
at least zero. Let us say that a test in 3 is nontrivial for distinguishing between
G and 3¢ if supecg E¢¢ < infuege Eng. Thus the left side of (2.1) is positive if and
only if 3 contains a nontrivial test for distinguishing between G and 3¢. The fol-
Jowing theorem shows that if 3 is one of the classes Jo, -+, Js (or one of the
“equivalent” classes mentioned above), then the existence in 3 of a nontrivial
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test for distinguishing between G and 3¢ is sufficient for G and 3C to be distin-
guishable in 3, and even in the class 3’ which consists of the non-randomized tests
in 3. The special case of the theorem where 3 is the class of all non-randomized
fixed sample size tests is contained in a lemma of Berger [1] (which is there at-
tributed to Bernoulli).

We denote by ® and &’ the classes of the terminal decision functions of the
tests in 3 and 3’ respectively.

THEOREM 2.1. I 3 is one of the classes 3y, - -+ , 33, then

(2.2) sup inf (Ez¢p — Egop) >0
ped GeG,HeJC

implies
(2.3) sup inf (Br¢p — Ego) =1
¢eP®’ GQeGHeI
Hence
(2.4) sup inf (Ex¢d — Egop) = 0orl.

ped GeG,HeFC

For the proof of Theorem 2.1 we require the following

LeEMMA. If 3 is one of the classes 3, - -+ , 33, and (N, ¢) is in 3, then for every
¢ > 0 there is a test (N', ¢') in 3 such that N’ is non-randomized and | ¢’ — ¢ | < e.

Proor. Let N’ be the least integer n = 1 such that

PIN >nlx] < e
Define ¢’ by
¢’ =El¢|N = nx]if NN =n, n=12":"-

Thus (N’, ¢') is a test, and N’ is non-randomized.
We have for everyn = 1

PN’ > n] = P{PIN > n|x] = ¢} < ¢ 'EPIN > n|x]
= ¢'P[N > nl.

Since for any increasing function A on the nonnegative integers
ER(N) = h(0) + 2 [h(n + 1) — h(m)]PIN > n),

it follows that if N satisfies the condition for any of the classes 3o, - -+, 3;, so
does N’. Hence (N, ¢') is in 3.
Now if N’ = n, we have from the definition of ¢’

¢ —¢ = PIN = n|xlE[¢|N < n,x] + PIN > n|xlE[$ |N > n,x| — ¢
= P[N > n|x)(Elp |N > n,x] — ¢).

Thus |¢ — ¢'| = PIN > n|x] if N’ = n. But N’ = n implies P[N > n|x] <
¢, for all n. This completes the proof of the lemma.
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Proor or THEOREM 2.1. If condition (2.2) is satisfied, J contains a test (N, ¢)
such that
a=sup Eq¢ < 1nf Ex¢p = B.

(@eG

By the preceding lemma we may and shall assume that N is non-randomized.
Let < be any positive number. The theorem will be proved by showing that
there is a non-randomized test (N’, ¢') in J such that

(2.5) inf Eg¢’ — sup Ee¢p' > 1 — e
HejC

Choose a positive integer m which satisfies the inequality

2 ’1 €
(B—a)ﬁ<§'

Define the test (N', ¢’) as follows. First apply test (N, ¢), and denote the result-
ing values of N and ¢ by N; and ¢; . Then apply the same test to a new inde-
pendent sequence of observations and note the values N, and ¢, of N and ¢.
Continue in this way until m independent sequences of observations have been
taken. The total sample sizeisN’ = N1+ -+ 4+ N,, . Since N is non-randomized,
so is N’. Now put

- 1 &
I
1 if g>2T8
2
¢ =
0 if ag““zLB.

Thus (N!, ¢') is a non-randomized test.

The chance variables ¢, - - -, ¢ are independent, and each has the same
distribution as ¢. Hence E¢ = E ¢, and the variance of ¢ is less than 1/m.

If Geg, then Egp = a, so that

EG¢I=PG[¢—E ¢ > +B Ea¢:|
SPa[a—Ea$>B;“]

()
m B8 —a

by Chebyshev’s inequality. Hence

IIA

sup Eg¢’ < =.
@:g 2
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In a similar way it is seen that
sup Ex(1 — ¢') < =,
HeJC 2

so that inequality (2.5) is satisfied.
‘We now show that the test (N, ¢') isin 3. For 3 = Jyand 3 = 3; this is obvious.
Since for r > 0,

(N = <21N> (m max N) =m" nllax (N) £ m" 2 N}
= = o i= =1

and each N; has the same distribution as N, we have E(N’')" < « whenever
EN™ < . This proves the statement for 3 = 3;(r) and 3 = 3, .

Finally, if Ee”¥ < «, where ¢ > 0, put ¢ = {/m. Since Ny, -+ , N, are inde-
pendent and distributed as N, B¢ = Fe'” < o,

Thus (N, ¢’) is in 3 in every case. The proof is complete.

It should be noted that if X;, X, - - - are not independent and identically
distributed, the analog of Theorem 2.1 is not true in general.

3. Sufficient conditions for distinguishability. Let X be a set of distributions
on @. A distance in X is a nonnegative function & of the pairs (G, H) of distribu-
tions in & such that §(G, @) = 0, 8(G, H) = §(H, (), and §(G, H) = §(G, K) +
8(H, K), for all G, H, and K in X. (We do not require that 6(G, H) = 0 imply
G = H.) We write (G, 3¢) for infg.5 6(G, H), and 6(G, 3¢) for infe.g 8(G, 3¢).

Let F, denote the empiric distribution of the first n members, X, , --- , X,
of a sequence of independent chance variables with the common distribution
F & §; that is, nF,[A] is the number of indices ¢ < n for which X, ¢ A. We assume
throughout that the set X in which a distance § is defined contains F and all
empirie distributions.

We shall say that a distance é is conststent in § if for every ¢ > 0
3.1) lim Pp[8(F,,F) > ¢ =0
whenever F ¢ F. The distance § will be called unzformly consistent in F if the con-
vergence in (3.1) is uniform for F ¢ &.

In this section we derive sufficient conditions for distinguishability in terms of
uniformly consistent distances. We first mention a few examples of such dis-
tances. If & is the set of all distributions on the %-dimensional Borel field @, and
o denotes the k-dimensional Euclidean space, the distance

(3.2) DG, H) = su£ |G(z) — H(=) |

is known to be uniformly consistent in & (see, for example, [4]). So is the distance

([ 160 -n@r )",
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where r = 1 and K is a fixed distribution on @, since it is bounded above by
D(G, H). A further example of a uniformly consistent distance is

(3.3) D,(G, H) = D(G., H.),

where G, and H, are the distributions, according to G and H, of a fixed, real- or
vector-valued measurable function w on . If u(F) denotes the mean of a one-
dimensional distribution #, the distance | u(G) — w(H) | is uniformly consistent
in any class of distributions with bounded variances.

A sufficient condition for finite distinguishability is the following. If the dis-
tance & is uniformly consistent in G u 3¢ and

(34) 8(g, %) > 0,

then the sets G and 3¢ are finitely distinguishable.

This can be seen by using the test with N = n fixed and ¢ = 1 or 0 according
as 6(F,,G) — 8(Fn,3) 2 Oor < O0.If Feg, then §(F,, Q) < 6(F., F) and
o(Fa,3) = 6(F,3) — 8(F., F) = &, 3¢) — 6(F,, F). Hence Er¢ does not
exceed

sup Pr[a(Fru F) = %6(97 GC)]'
FeGuiC

We obtain the same upper bound for Ex(1 — ¢), F £ 3¢. Our assumptions imply
that the bound tends to 0 as n — .
In the proof of the next theorem we shall make use of a test defined as follows.

Let & be a distance, {ci}, 7 = 1, 2, ---, a sequence of positive numbers, and
{ni}, 7 = 1,2, -- -, an increasing sequence of positive integers. Put

d; = max [6(Fﬂ» ) 9)) 6(Fﬂ.‘ ) GC)].
Take successive independent samples of sizes n; , nz — 7, ng — n2, - -+ . Con-

tinue sampling as long as §; < ¢; . Stop sampling as soon as &; = ¢;, and apply
the terminal decision function
1if 8(Fa;, Q) 2 8(Fn; , %)
{o if 8(Fn; , Q) < 8(Fn;, 3).
Thus N = n;, where ¢ is the least integer for which &; = ¢; .

We shall refer to this test as the test 7'(5, {ci}, {n:}).
TarEOREM 3.1. (a) If the distance & is uniformly consistent in F, then any two

subsets G and 3C of F for which
(3.6) max [0(F,Q), 8(F,3)] > 04 Feg

are distinguishable (F).
(b) If, for every ¢ > 0, there exist two positive numbers A(c) and B(c) such that

for all integersn > O and all F ¢ §
(3.7) Ped(Fn, F) = c] £ A(c)e"",
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then any two subsets G and 3C of F which satisfy (3.6) are distinguishable in the
class of tests (N, ¢) such that Exe'™ < o for somet = (F) > 0if F ¢ &.

Proor. Let a be a positive number. Part (a) will be proved-by showing that
the sequences {c;} and {n;} can be so chosen that the test (N, ¢) = T(9, {c:},
{n:}) satisfies the conditions

(3.8) Ewp 2 aif FeG, Ef(l —¢)=aif Fel
and
(3.9) PN < w] =1if Fe¥.
Let {c:} be a sequence of positive numbers such that
(3.10) lim ¢; = 0.

1>

Choose the positive numbers a; , o2, - - - so that

(3.11) Z a; = a.
i=1
Since & is uniformly consistent in F, we can choose the integers 7y < ny < - - -
in such a way that
(312) PF[B(Fn;,F)gCiléai, i=1’27"'
for all F ¢ &.
IfFeg,

Erd = 2 Pelss < ci for 4 <j,8 = ¢j,8(Fa;, Q) Z 8(F,;, )]

Jj=1

cil

v

é ,Z_l PI’[B(Fn,'; 9)

é iPF[B(Fn,’F) % Cj]-

=1

It now follows from (3.12) and (3.11) that Er¢ < a if F £ G. In a similar
way it is seen that Ep(1 — ¢) < a if F ¢ 3¢. Thus the conditions (3.8) are

satisfied.
The terminal sample size N takes on the values ny, ns -+ -, and we have

PeIN > nyl = Pplds < ciy i =1, -+, 5] = Psld; < cil.
By the triangle inequality,
8 = 8% — 8(F,,;, F),
where

8* = max [6(F, §), &(F, 30)].
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By assumption, 6* > 0 for all F ¢ .
Hence if F ¢ &,

(3.13) PeN > nj] < Pelo(Fn; , F) > 6* — c;].

Since ¢; — 0, we have §* — ¢; > ¢; for j sufficiently large, and then the right side
of (3.13)is Sa; . By (8.11), ¢j — 0asj — «. Thus P¢[N > nj]—0asj— =,
which implies (3.9). This completes the proof of part (a).

Now suppose that the assumption of part (b) is satisfied. The sequences {c}
and {n;} can be so chosen that, in addition to lim ¢; = 0 and 7; < 741,

(3.14) lim inf 720 — i) > 0
and
(3.15) > Ale)e P < a

=1
(For instance, put M(c) = max [4 (c), 1/B(c)]; choose ¢1, ¢z, + « - so that ¢; > 0,
lim ¢; = 0 and M(c;) < mi'*, ¢ = 1,2, - - -, with a suitable number m > 0; and
put n; = ni, where n is so large that

Zl mil/2e—-nm_1i”5 < Ol).

The inequalities (3.7) and (3.15) imply that conditions (3.11) and (3.12) are
fulfilled. Hence the conditions (3.8) are satisfied.
For a fixed F & F, choose the integer % so that ¢; £ 6*/2 for ¢ > h. Then for

i > h, due to (3.13) and (3.7),
PN > nj] S Pelo(Fa; , F) > §%/2] £ ae™™,
where ¢ = A(6*/2) and b = B(6*/2) are positive numbers.

Now for any real ¢,

Epe™ = D e™PyN = n)

Jj=1

< o™ 4 DL e™MHPIN > n.

i=1
Thus Ere”™ < o if the series
Z etn,- +1—bng
converges. If ¢ < b/2,

g1 — bn; = —g @2ni — niw),

so that the series converges due to (3.14). The proof is complete.
The assumption of Theorem 3.1, part (b) is satisfied if F is any set of k-dimen-
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sional distributions (k = 1) and & = D, the distance defined by (3.2). This is
implied by the following theorem due to Kiefer and one of the authors [4]: For
every integer k = 1 there exist two positive numbers a and b such that for all
¢ > 0, all integers n > 0, and all k-dimensional distributions ¥

(3.16) PuD(F,,F) = ¢] £ ag "

(For k& = 1 the inequality (3.16), with b = 2, was proved by Dvoretzky, Kiefer
and one of the authors [2].) Hence we can state the following corollary.

CorovrvLARY 3.1. If § is any set of k-dimensional distributions (k = 1), then any
two subsets G and 3C of F for which

max [D(F, G), D(F,3¢)] > 0if F e5

are distinguishable in the class of tests (N, ¢) such that Exe™ < o for some t = {(F)
> 04 Feg.

4. Necessary conditions for distinguishability. Let P and @ be two distribu-
tions,on a o-field ® of subsets of an arbitrary space Y, and let ¥ be the class of
all measurable functions on Y with values ranging from 0 to 1. We denote by d
the distance defined by

(4.1) d(P, Q) = sup |Ery — Eqy|.

We note some alternative expressions for d. Let » be any o-finite measure with
respect to which P and @ are absolutely continuous (for instance, » = P + @),
and denote by p and ¢ densities (Radon-Nikodym derivatives) of P and @ with
respect to ». Then

w2 P, Q=[ G-0d=;[lp-ald=-1-[nnpqan

p>q}
(Here and in what follows, an integral whose domain of integration is not indi-
cated is extended over the entire space.) Also

(4.3) d(P,Q) = sup | PIB] — QI[B]|.

For any distribution @ on @ we denote by G'™ the distribution of n independent
chance variables each of which has the distribution G. We write g™ for the set
of all G™ such that G eg.

It is easily seen from (4.1) that

(4.4) d@G, H) < d@™™, H"™) < 4@, H"™), n=1,2, ---

and from the last expression in (4.2), using the inequality min (ab, ¢d) = min
(a, ¢) min (b, d), where a, b, ¢, d are all positive, that

(4.5) dG@™, H™) =1 - (1 — d(@, H)" < nd(G, H).

(See also Kruskal [6], p. 29.)
The convex hull, C®, of a set @ of distributions on a common o-field is defined
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as the set of all distributions \i\P; + - -- + \.P,, where r is any positive integer,

Py,---,P,arein @ and Ay, --- , A, are positive numbers whose sum is 1.
In order that two sets G and 3C be finitely distinguishable it is necessary that
(4.6) dcg™, cx™) > 0

for some 7 or, equivalently,
(4.7) lim d(Cg™, C3e™) = 1.

This is known and follows easily from the definition (4.1) and Theorem 2.1.

If the set G u 3C is dominated, that is to say, if the distributions in G u 3C are
absolutely continuous with respect to a fixed o-finite measure, then condition
(4.7) is also sufficient for G and 3¢ to be finitely distinguishable. This is contained
in Theorem 6 of Kraft [7] and follows from a theorem of LeCam (Theorem 5 of
Kraft [7]) which is equivalent to the statement that if the set ®; u ®. is dominated,
then
(4.8) max inf (Ep,¢ — Ep,¢) = d(Ce;, CP),

¢ed® Pre@1.P2eP2
where ® denotes the set of all measurable functions ¢ such that 0 < ¢ < 1.

If condition (4.6) is satisfied, then
(4.9) d(g, 5¢) > 0.

In fact, d(CS™, C3e™) < d(g™, 3¢') < n d(G, 5¢) by (4.5). This weaker but
much simpler necessary condition for finite distinguishability will be shown in
section 5 to be also sufficient under certain assumptions.

To obtain necessary conditions for non-finite distinguishability we first prove

the following lemma.
LemwMma 4.1. If

(410) d(Fén), Cg(n)) — d(Fé”), CZC(")) =0

Sor all n, then the sets G and 3C are indistinguishable in the class of tests (N, ¢) with
Pp, [N < »] = 1.

Proor. Let (N, ¢) be any test such that P [N < ] = 1. Define ¢, = ¢ if
N = n,¢, = 0if N > n. Thus ¢, is a function of z; , - - - , x, only, and ¢, = ¢.
Let K be a member of CG'™, so that K = MG™ + -+ + AG™, Gie G, A >
0, 2\; = 1. Then®

Ex(ﬁ,. = E)\iEG."ﬁn é ExiE0;¢ é sup EG¢.

GeG
Hence
Eryn = SUp Eo$ < Brodn — Bxén < d(FS”, K)
€G-
8 Here Ez¢. denotes the expected value of ¢. when the joint distribution of

(X1, -+, X,) is K. We keep the notation E g6 when X;, --- , X, are independent and
each X; has the distribution G.
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for all K & Cg'™. Therefore
Ery$n = sup Fo¢ < d(Fs”, cg™) =0

Since Pp,(N > n) — 0 as n — «, Ep ¢, converges to Ep¢. Hence
(4.11) Ep ¢ < sup Eg¢.
GeG
In a similar way, if we use, instead of ¢, , the function ¢, = ¢ if N < n,dm =
1if N > n, we find that
(4.12) Ery¢ 2 inf Eg¢.
Hedl
Inequalities (4.11) and (4.12) imply the Lemma.

TrEOREM 4.1. In order that the sets G and 3¢ be distinguishable () it is necessary
that

(4.13) max [d(F™, ¢g™), d(F™, C3™)] > 0
for some n if F ¢ F and hence that
(4.14) max [d(F, Q), d(F, 3)] > 0if F ¢ 5.

Proor. The necessity of (4.14) follows immediately from Lemma 4.1. That
(4.13) implies (4.14) follows from inequality (4.5).

That the condition (4.13) can be violated when inequality (4.14) is satisfied
can be seen from an example given by Kraft ([7], p. 132) to show the non-equiva-
lence of two conditions equivalent to (4.6) and (4.9). Nevertheless the simple
necessary condition (4.14) is also sufficient under certain restrictions on the set
of distributions, as will be seen in section 5.

We conclude this section by showing that a known necessary condition for dis-
tinguishability is implied by condition (4.14) of Theorem 4.1.

For any two distributions F and G on @ and any set G of distributions on (¢4
define

"#,6) = [ 118 ($/0) ds, (. 9) = int +(F, G),

where » denotes a o-finite measure with respect to which F and G are absolutely
continuous, with densities f and g. Note that 0 < r (F, G) < . It has been
shown in [3] that if ~(F, G) = 0, then F and G are indistinguishable in the class
of tests with ExN < «. Now

~47(F,®) = [ f1og (¢/1)" v

< log f /N dv = log f (fo)"* dv
and (see Kraft [7], Lemma 1)
&0 51 -{[ G al.
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Hence 7(F, §) = 0 implies d(F, §) = 0. Thus, by Lemma 4.1 (with Fo = F and
3C consisting only of F) F and G are even indistinguishable in the class of tests
with Pr[N < «] = 1. It is easy to construct examples where d(F, §) = 0 and
7(F, g) > 0, so that condition (4.14) is actually better than the corresponding
condition with d replaced by 7.

6. Necessary and sufficient conditions for distinguishability. In this section
we shall show that the necessary conditions of section 4 are also sufficient for
distinguishability under certain restrictions on the sets of distributions. Most of
our results will be such that if the necessary condition is satisfied, the sets are not
only distinguishable (F), but even distinguishable in a stronger sense.

If G consists of a single distribution @, then, by Theorem 4.1, G and 3C are
distinguishable (G u 3¢) only if d(G'™, C3™) > 0 for some #. If 3¢ is dominated,
this condition is sufficient for G and 3C to be finitely distinguishable, by the Le
Cam-Kraft theorem mentioned in section 4. More generally, we can state the
following.

If g is finite and 3¢ is dominated, then G and 3¢ are either finitely distinguish-
able or are indistinguishable (G u 3¢), depending on whether the condition

(5.1) max [dF'™, ¢g™), d(F™, C5™)] > 0
for some n if F ¢ G u 3C is or is not satisfied. Condition (5.1) is equivalent to
(5.2) d(@G™, ¢y > 0

for some = if G ¢ G.

That condition (5.1) is necessary for G and 3C to be distinguishable (G u 3¢)
follows from Theorem 4.1. On the other hand, if (5.1) is satisfied, so is (5.2).
Hence if the distributions in G are denoted by Gy, - - -, G, , then, by Le Cam’s
theorem, G; and 3C are finitely distinguishable, for each ¢. Thus, given ¢ > 0,
there exists an integer n and tests (n, ¢;) such that E¢,¢: < € and

SUP#eze Eﬂ(l - ¢,) < e,i = l’ cee T

Put ¢ = ¢up2 -+ ¢,. Then¢p = ¢p;and 1 — ¢ = Z$=1 (1 — ¢;). Hence
E¢¢ < eforall i and Eg (1 — ¢) < reif H e 3. Therefore G and 3¢ are
finitely distinguishable, and condition (5.2) is equivalent to (5.1).

If both G and 3C are countably infinite sets, it is no longer true that G and 3¢
are either finitely distinguishable or indistinguishable. To see this, let § =
{@;} and 3¢ = {H;},7 = 1,2, ---, where G; and H; are univariate normal dis-
tributions with respective means a and b (¢ # b) and common variance o7 , such
that lim ¢ = co. It follows from a result of Stein [8] (or from Theorem 3.1) that
g and 3¢ are distinguishable (9U), where 9t denotes the class of univariate normal
distributions. But one readily verifies that lim; d(G;, H;) = 0, so that the sets
are finitely indistinguishable.

In what follows it will be shown that the simple condition

(5.3) max [d(F, Q),d(F,3)] > 0if Fe&
which, by Theorem 4.1, is necessary for G and 3¢ to be distinguishable (%), is also
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sufficient under rather general assumptions. Under somewhat more stringent
assumptions the necessary condition d(G, 3¢) > 0 for finite distinguishability
(see (4.9)) will also be shown to be sufficient.

A comparison of the results of sections 3 and 4 shows that if § is any uniformly
consistent distance in a set &, then d(G, 3¢) = 0 implies §(g, 3¢) = 0 whenever
G C Fand 3¢ C . Theorems 3.1 and 4.1 also show that if the set & has the prop-
erty that there exists a uniformly consistent é such that, for all ¥ ¢ ¥ and all
g C &, 6(F, Q) = 0 implies (and hence is equivalent to) d(F, §) = 0, then the
necessary condition (4.14) is also sufficient for two subsets G and 3C of F to be
distinguishable (F). Similarly, if for all ¢ < F and all 3¢ C &, §(G, 3¢) = 0 implies
d(g, 3¢) = 0, then any two subsets G and 3C of & are finitely distinguishable if
and only if d(g, 3¢) > 0.

We first consider conditions which ensure that D(F, G) = 0 implies d(F, G) = 0.
Let F and G be two k-dimensional distributions and ¢ a nonnegative number.
Suppose that there is an integer J with the following property. There exist J
non-overlapping k-dimensional intervals I, - - - , I;such that (i) F — G is mono-
tone® in each I;, and (ii) if V denotes the complement of Uj_; I, , then min
(F[V], G[V]) £ e Write J(F, G; ¢) for the least integer J having this property.
If such a finite J does not exist, define J(F, G; ¢) = .

Note that if F — G is monotone in a set C, the difference of the densities,

J — g, is of constant sign in C except in a subset of probability 0 according to
both F and G.
Lemma 5.1. If F and G are two k-dimensional distributions,

(5.4) d(F, G) £ 2°J(F,G; ¢) D(F, G) + e

Proor. We may assume that J = J(F, G; €) is finite. Then there exist J non-
overlapping intervals I, - -+, I, which satisfy the conditions (i) and (ii). We
have

24(F, @) =;§1flilf—-gldv+fvlf—gldv.
Now
[ii-gtes[Grow=2[mm+[G-pa

—own+ S [ G-pas+SI[ G-aal.

Also,

< 2D (F, ).

[1=ote=[ t-oa

6 An additive function L on ® is monotone in a set C is either L <[A] L [B] whenever
AcBc CorL[A] =z L (B]whenever A Cc BC C.
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Hence
24(F, @) < 2J-2*D(F, G) + 2F[V].

By symmetry, the term 2F[V] can be replaced by 2G[V], and hence also by
2¢. This implies (5.4).
THEOREM 5.1. Let F be a setb of k-dimensional distributions, k = 1. (a) If

(5.5) s;g) J(F,G;e) <

for all F ¢ and all ¢ > 0, then two subsets G and 3¢ of & are distinguishable (F)
of and only if

(5.6) max [d(F, G), d(F, 3¢)] > 0

for all F ¢ F. Moreover, if condition (5.6) ts satisfied, then G and 3C are distinguish-
able in the class of tests (N, ¢) such that Ere'™ < o for somet = t(F) > 0 if F ¢ &.

(b) If
5.7 sup J(F,G;¢) < o

FeF,0¢e
for all € > 0, then two subsets G and 3C of F are finitely distinguishable if and only if
(5.8) d(g, 3¢) > 0.

Proor. The necessity of conditions (5.6) and (5.8) has been proved in section 4.
If condition (5.5) is satisfied, then, by Lemma 5.1, D(F, §) = 0 implies d(F, §) =
0 for all F ¢ F and all ¢ C §. Hence if (5.6) is satisfied, the assumption of Corol-
lary. 3.1 is fulfilled, which implies part (a). The proof of part (b) is similar, refer-
ring to (3.4) with = D.

The assumption of Theorem 5.1, part (b) (and hence that of part (a)) is satis-
fied for most parametric sets of univariate distributions which are commonly
used as models in statistics. In such sets ¥ the minimum number of intervals in
which f — ¢ is of constant sign is usually bounded, and then even supr.s,¢.s
J(F, G; 0) is finite. For example, if F and @ are any two univariate normal dis-
tributions, then J(F, G; 0) < 3. This is also true if the singular normal distribu-
tions (with zero variance) are included.

The assumption of part (a) is satisfied if ¥ is any subclass of the class of all
distributions on the subsets of a fixed countable set S. Since the points of S can
be arranged in a sequence, we may assume that S is the set of the positive in-
tegers. If F ¢ 5 and ¢ > 0, choose the integer M so that Flz > M] < e Since
we can choose M intervals each of which contains exaetly one positive integer
<M, we have J(F, G; ¢) = M for all G ¢ F, so that condition (5.5) is satisfied.

Actual statistical observations are either integer-valued or integer multiples
of a fixed unit of measurement. In this sense it can be said that the assumption
of part (a) is satisfied for all classes of distributions which actually occur in
statistics.

If g and 3C are two arbitrary sets of distributions over a fixed countable set,
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then G and 3C can be finitely indistinguishable even when d(g, 3¢) > 0. This
is shown by the following example. Forr = 1,2, ---and k = 1, ---, r define
the sets

4, = {2‘2—'|7‘.= 1727"'72r}7
App = {2 4927 |4=1,2,--+,2755=0,1,---,2 — 1}.

Let G, and H, ; be the discrete distributions whose elementary probability func-
tions are

o) = 27x(z; 4s),  hea(®) = 2777 x(; Ar i),

where x(z; A) = 1 or0 accordingasz e AorzzA. Letg = {G.},r=1,2,---,
and 3¢ = {H,x},k=1,---,r;7r = 1,2, --- . The reader can verify that

d(Gr ) Ha,k) g %

for all r, s, and k, so that d(g, 5¢) > 0.

Now denote by G and H'}’ the distributions of » independent chance varl-
ables each of which has the distribution G, and H., ' respectlvely, and by ¢"
and k3 their elementary probability functions. Let H™ denote the distribution
in CSC(") whose elementary probability function is

B = 3R
2 bk
Writing ¢¢™, ¢, ete. for the chance variables o™ Xy, -, Xa), 9(X), ete.,
and E for the expected value when the distribution of X is G, , we have

246", H) = B| (”/gi”) — 1] £ (BI"/g:") — 11)"
= E®" /") — 1"

We calculate

EW®[g") =1 Z kE (E(hes ha/gn)" = 1 + (2" = Dr

It follows that lim,.. d(G{™, H™) = 0 for every n. Therefore dg™, 3™y =0
for all n, so that the sets G and 3C are finitély indistinguishable. Note, however,
that since d(G, 3¢) > 0, the sets are distinguishable in the sense of part (a) of
Theorem 5.1 with § = G u 3¢ and, more generally, with § denoting any class of
distributions on the subsets of U>_; A, such that condition (5.6) is satisfied.

We shall see that all conclusions of Theorem 5.1 are true also for arbitrary sets
of k-dimensional normal distributions, for any k¥ = 1. However, for k& > 1 this
cannot be deduced from Theorem 5.1 since the multidimensional D distance does
not have the properties required by the theorem. It can be shown that if &
is any set of non-singular bivariate normal distributions, the assumption of part
(a) is satisfied. But for arbitrary sets of bivariate (possibly singular) normal
distributions, D(F, ) = 0 does not imply d(F, §) ‘= 0. (For instance, if F.
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denotes the bivariate normal distribution with means (¢, —¢), unit variances
and correlation coefficient 1, and G = {F.|c¢ > 0}, then D(Fo, G) = 0 but
d(Fo, G) = 1.) Moreover, D(G, 3¢) = 0 does not imply d(G, 3¢) = 0 even for
sets of non-singular bivariate normal distributions. (Thus if G. denotes the
bivariate normal distribution with means (¢, —c), unit variances, and cor-
relation coefficient (1 + ¢*)™,if ¢ = {G.|¢c < 0} and 3¢ = {G.]|c¢ > 0}, then
D(g, 3¢) = 0 but d(g, 3¢) > 0.)

For a fixed &k = 1 let 9T denote the set of all k-dimensional normal distributions.
To prove the statement at the beginning of the preceding paragraph it is suffi-
cient to display a distance & such that §(g, 3¢) = 0 implies d(G, 3¢) = 0 whenever
G C N and 3¢ C I, and § satisfies assumption (3.7) of Theorem 3.1 with § = 9.
We shall show this to be true for the distance 8* defined as follows.

For any k-dimensional distribution F with finite moments of the second order
define §(F) = (u(F), =(F)), where u(F) denotes the vector of the means and
Z(F) the covariance matrix of F. Denote by © the range of 8(F). Define the func-
tion d*(al y 02), 01, 0, €06 by

d*(6,, 6;) = d(Fy, Fy)if F; e and 6(F;) = 0;, i=1,2
Now define §* by
8*(Fy, Fa) = d*(0(F1), 6(F2))

for any two k-dimensional distributions F; and F. with finite moments of the
second order.

The function 6* is a distance’ in the set of distributions for which it is defined.
Obviously 6*(g, 3¢) = 0if and only if d(g, 3¢) = 0 for g C 9 and 3¢ C N.

Now let F, be the empiric distribution of » independent chance variables X, ,

-, X, each of which has the distribution ¥ ¢ 9t. Put 6(F) = 6 = (u, 2) and
6(F.) = 6 = (@, £). Thus 4 is the sample mean vector and £ the sample covari-
ance matrix. We have

&*(F., F) = d*@, 0).

It follows from the definition of d* that the distribution of d*(é, 6) does not
change if each X; is subjected to the same non-singular linear transformation.
Hence the distribution of d*(é, 6) depends only on the rank r of =. If r = [, we
may assume that 6 = (0, I) = 6, (say), where 0 denotes the zero vector with &
components and I the k¥ X k unit matrix. If 1 £ r < k, the distribution of d*
(6, 6) is the same, only with k replaced by 7. If » = 0, d*(8, §) = 0 with probability
one. Thus we may confine ourselves to the case r = k, § = 6, . We have only to
show that for every ¢ > 0 there exist numbers A(c) and B(c) such that for all
integers n > 0,

(5.9) Pld*(d, 60) > ¢] < A(c)e %"

7 Recall that 6*(F, , F3) = 0 need not imply F, = F, .
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Now the function d*(6, 6,) is continuous at § = 6, in the usual sense. Hence it
is easily seen that (5.9) is satisfied if for every ¢ > 0 the probability of each of
the inequalities

G| > e |6 — 1] > ¢ [Bis| > €
t#5,455=1" -,k
where p;; = 8i; (64 6;;)"%, and £; and 8;; are the components of 2 and £, does
not exceed a bound of the form A(e) exp (—B(e)n) with B(e) > 0. That the
latter is true is seen by considering the well-known distributions of 4;, ¢:;, and

pi; . This completes the proof.
In the proof we could have equally well used, instead of d, the distance

& (F,Q) = {f (2 — gl/z)z dV}I/Z = 2"(1 — o(F, @)}

where » denotes a measure such that F and G have densities, f and g, with respect
to », and

o6& = [ G0 .

For we have (see, for instance, Kraft [7], Lemma 1)
1 —p(F,G) 2 dF,q) = (1 - p'F, D),
so that the distances d and d; are equivalent for our purposes.
Define df (6, , 6;) and 87 (F, G) in terms of d; just like d* and &* were defined
in terms of d. We shall write p(6:, 62) for p(Fy, Fe) if F; e N, 6(F;) = 6;. Thus
dr 6y, 6s) = 22 (1 — p(61, 6:))"°. If =, and =, are nonsingular,

3 4 2|V
=5 X

(5.10)  p(01,0) = | = || e |

exp{—i (1 — o)’ (21 + 22)_1011 - uz)} ,

where u; and p» are regarded as column vectors and the prime denotes the trans-
pose. (Compare Kraft [7], p. 129, where there are some misprints.) If Z; has rank
r, 1 £ r < k, then p(6;, 6) = 0 unless 2 also has rank r and the normal dis-
tributions with § = 6, and 6 = 6, assign probability one to the same r-dimensional
plane, H; in this case p(6; , 6;) is equal to an expression like (5.10), with u; and
Z; now denoting the means and covariances, in a common coordinate system, of
the corresponding r-dimensional normal distributions on H. If the rank of 2,
is 0, then p(6:, 62) = 0 or 1 according as 6; 5 6, or 6, = 6 . '

If T and A are subsets of O, write p(8, A) for supsr.ap(6, 8') and p(T, A) for
supscrp(8, A). If g © N, define 6(g) = {6(F) | F £ G}.

Expressing the conditions (5.6) and (5.8) of Theorem 5.1 in terms of p, we can
summarize the foregoing as follows.
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THEOREM 5.2. Let N be the set of all k-dimensional normal distributions, k = 1.
(a) If § C N, then two subsets G and 3C of F are distinguishable (F) if and only if

(5.11) min [p(6(F), 6(5)), e(6(F), 6(3¢))] < 1

for all F £ §. Moreover, if condition (5.11) is satisfied, G and 3C are distinguishable
in the class of tests (N, ¢) such that Ere™ < o for somet = t(F) > 04f F ¢ 5.
(b) Two subsets G and 3¢ of N are finitely distinguishable if and only if

(5.12) p(6(5), 6(30)) < 1.

We observe that condition (5.11) can be expressed in an alternative form. Note
that p(61, 6;) = lif and only if 6 = 6. If § = (u, Z) £ O, where Z is nonsingular,
and A C 0, then p(#, A) = 1 if and only if there is a sequence {6;} in A such that
each of the real components of 6; converges to the corresponding component of
6(in the ordinary sense). If 2 is singular of rank r, the same is true, but with the
additional condition that the normal distributions with parameters 6; and 6
assign probability one to the same r-dimensional plane. Thus, for instance, if &
is a set of non-singular distributions, condition (5.11) is equivalent to the state-
ment that, for every F &%, the Euclidean distance of 6(F) from 6(G) or from
8(3c) is positive.

Condition (5.12) does not seem to have an equally simple interpretation.

By way of illustration, let G and 3C denote two sets of univariate normal dis-
tributions with positive variances such that u < 0 if (4, o°) € 6(G) and 6(3¢) =
{(g, ¢°) | (—n, ¢’) € 6(3)}. Then G and 3C are finitely distinguishable if and only
if u/o is bounded away from 0 in 6(3¢). They are always distinguishable (g u 3¢).
If F denotes a set of normal distributions with positive variances which contains
G u 3¢, then g and 3¢ are distinguishable (F) if and only if the distance of every
point (0, ¢°) £ 6(F) from 6(3¢) is positive.
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