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Summary. Some of the sampling methods and the methods of estimation
usually employed in sample surveys are considered in terms of loss and risk
functions. The loss function is taken as the sum of two components, one pro-
portional to the square of the error of the estimate and the other proportional
to the cost of obtaining the sample. Consideration is given to the problem of
the allocation of the total sample size and only non-sequential estimates are
discussed. As the loss function is convex and of finite expectation in each case,
only non-randomized estimates are considered, since Hodges and Lehmann [5]
have shown that under these conditions the class of non-randomized estimates is
essentially complete. Only simple random sampling and stratified sampling
methods are discussed in this part, the ratio, regression and sub-sampling methods
will be discussed in subdequent parts.

1. Introduction. In the current practice of conducting sample surveys, the
statisticians have adopted one of the following two procedures (see, e.g., [2],
[3], [4], [7], or [8]): (i) to get an estimate of maximum precision for a given total
cost of the survey, or (ii) to get an estimate of given precision for a minimum
total cost of the survey. The allocation of the resources for a given survey is
usually carried out, keeping in mind one or the other of the above two aims.
It is possible, however, to consider jointly the losses resulting from the errors
in the estimates and from the cost of sampling, and to employ such sampling
and estimation procedures as will, in some sense, ‘‘minimize” the total expected
loss. Accordingly we shall take as loss function the sum of two components,
one proportional to the square of the error of the estimate and the other pro-
portional to the cost of obtaining the sample. The problems generally met in
sampling surveys will be formulated in terms of the decision theory using this
loss function and it will be seen that their solutions are the classical results in
estimation and design. This appears to be a preliminary step toward further
research in this field.

2. Bayes and minimax estimates. The estimation problem with a fixed sample
size has the following structure. We are given a sample space X, a space of
probability distributions on X, Po = {p, ‘w £ 2}, where © is an index set (gen-
erally called parameter space), and a numerical-valued function g defined on
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Q whose value g(w) the statistician wishes to estimate on the basis of the out-
come of an experiment, say = ¢ X. A non-randomized decision function for the
statistician, usually called an estimate®, is a numerical function é defined on X,
specifying for each z the number a ¢ A which will be chosen to estimate g(w)
when that z is observed. The space of actions A is here the real line. The loss
function L defined on @ X A is non-negative and is the loss incurred when g(w)
is estimated by a. The risk function R is defined by

2.1) R(w, 8) = E,L(w, ).

The subscript » appended to the symbol E for expectation indicates that w is
to be regarded as fixed when expectation is taken.

If it is assumed that w is obtained by nature as the value of a random variable
having a probability distribution A, a Bayes estimate with respect to the a
priori distribution A is defined as an estimate & which minimizes the average
risk [ R(w, 8) d\(w). If the statistician knew A, he would choose this estimate as
his best action. But in the absence of any knowledge of A the statistician may
decide to use what is called in the terminology of two person zero-sum game a
minimax strategy. A minimax estimate is defined as an estimate & which mini-
mizes the “maximum” risk, sup.eo R(w, 6). In the same terminology, a least
favorable distribution or “maximin” strategy is defined as a distribution A
such that it maximizes the “minimum” risk inf; [ R(w, 8) d\(w).

The following theorem [6] gives in many cases a minimax estimate as well as
a least favorable distribution whenever the latter exists.

TarorEM 2.1. If a Bayes estimate 6. has constant (independent of w) risk
R(w, &) = r, then & is minimax and \ is a least favorable distribution.

The following theorem [6] will give in many cases a minimax estimate where
no least favorable distribution exists.

TureoreM 2.2. If {\.} is a sequence of a priori probability distributions, {rn}
the sequence of associated Bayes risks, and if ra — r asn — «, and if there exists
some estimate 8 for which R(w, 8) < r for all w, then & is a minimax estimate.

We shall frequently need another theorem in the sequel. Using the term “mini-
max risk” for inf; sup, R(w, 8) we state and prove it as

TaeoreM 2.3. If 8, r are a minimax procedure and the minimax risk respec-
tively, assuming that the observations X follow any probability distribution w & Q¥,
and if @ D Q* is a space of distributions for which the risk associated with & does
not exceed r, then 8 is a minimax procedure and r the minimaz risk for all distribu-
tions of X in Q.

Proor. By hypothesis
(22 r = sup R(w, 8) < sug R(w,8) = 1.

wed*

s It should be more properly called an estimator, to distinguish the function from a
specific numerical value, but it is hoped no confusion will be caused by using the same term
for both.
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Hence equality holds. If d is any other procedure,
2.3 sup R(w,8) =r = sup R(w,d) = sup R(w, d),

which shows that 6 is a minimax procedure and r the minimax risk for all distri-
butions in Q.

3. Sampling from a finite population. In its simplest form, sampling from a
finite population may be deseribed in the following manner. We are given a sample
space and nature (or a conscious being) performs a fixed sample size experiment
and obtains a value of a random variable, which is a point x = (21, 22, - -+, Zw)
in the space R" of ordered N-tuples of real numbers or vectors with real com-
ponents. It should be mentioned, however, that all random variables may not
be available to nature. The statistician has to select one out of a class A of
possible actions in complete or partial ignorance of z and the particular prob-
ability distribution employed by nature to obtain z. He (the statistician) incurs
a loss which is a bounded function of the selected action a £ A and the point
z & RY, but not of the underlying conceptual distribution. However, for a given
a, the loss is assumed to be constant for all permutations of the coordinates of
z. The statistician can obtain partial information on z by observing some fixed
‘number of coordinates of x, say n. The problem is: If the cost of observing z, ,
1 =1,2 +---, N, is independent of ¢, how should the statistician select the
sample and choose a?

In the case that @ = R" and the strategy for nature corresponding to w is to
choose 2 = w with probability one, Blackwell and Girshick [1] have shown that
the invariance and sufficiency principles require the sampling scheme to select
each set of n distinct integers from 1 to N (without regard to order) with prob-

-1
ability (?{) . This is the usual strategy of simple random sampling without re-

placement. The proof extends to the more complex situations discussed in this
paper. Accordingly, we seek Bayes and minimax strategies using this sampling
scheme.

4. Statement of the problem. We shall be estimating the mean of a finite
population with our loss as squared error. If the variance is not restricted some-
how, our risk may be arbitrarily large. Accordingly, we bound, under any
strategy of nature for choosing the finite population, the expected value of the
variance of the finite population. Another possibility would be to divide the
loss by the expected variance. Our method actually shows that the sample mean
is minimax for each expected variance.

Formally, the decision problem in which we are interested may be characterized
as follows:

(a) The sample space is (X, @, p), where X is the N-dimensional Euclidean
space R", Q is the set of all distributions w on hyperplanes in R" of the form
Z1 + 22 + -+ + zy = constant, say Nu, , and subject to the restriction that

@) B G—w= [ [ @2— N d@ s & - D,
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where « is the column vector with z, , 22, - - - , » as elements, ¢ is a given posi-
tive number, and p, = w for w £ Q.

(b) The action space 4 is the real line R'.

(¢) The loss function L, defined on (2 X A), is given by

(4.2) L(w, a) = (@ = p)

(d) The space D of decision rules is the space of all ordered n-tuples of differ-
ent integers from 1 through N together with all measurable mappings of n-space
into A.If6 = (41, ,1%n;f), thend(x) = f(zsy, -+, s,) -

The application of invariance and sufficiency principles, as in the problem
stated in the last section, require the sampling scheme to select each set of
ordered n-tuples of different integers from 1 through N with equal probability.
Accordingly, it is sufficient to consider the following problem:

(a) The sample space (X, @, p), where X is the n-dimensional Euclidean
space R", Q is the same as before, and p,, for w £ Q is the distribution of a sample
z = (z1, - - ,z,) obtained by simple random sampling without replacement from
Z, %2, -+, Zv , which are distributed according to w.

(b) The action space A is the same as before.

(¢) The loss function L is the same as before.

(d) The space D of decision rules is the set of all measurable mappings of
X into A.

The problem of obtaining a minimax estimate of the mean u, of the finite
population (z;, ---,zy) is solved in the following way. Consider nature’s
strategy as picking u, from N(0, 6*), a normal distribution with mean zero and
variance 6, and given u, , letting w, with probability one, be singular N-variate
normal with mean g, and variance o*(N — 1)/N for each component and co-
variance —o'/N for each pair of components. A Bayes estimate is obtained
with respect to this strategy of nature, regarded as a member of a sequence
{Ae} of a priori distributions; and the limit, if any, of the corresponding sequence
of Bayes risks {rs} as § — « is obtained, say r. Then if we can find some esti-
mate § for which the risk R(w, §)—without assuming normality of w—does not
exceed r, then by virtue of Theorems 2.2 and 2.3, § is a minimax estimate.

The discussion so far is given in detail for the case when the sampling plan
is simple random sampling without replacement. Under somewhat different
situations different sampling plans will be required. We shall not discuss the
derivation of the minimax strategies for the choice of sampling plans (it can
be shown by an extension of Blackwell and Girshick’s proof of the optimality
of simple random sampling [1] that the sampling plans given are optimum under
the circumstances) but will take the sampling plans as being given and confine
our attention to the problem of estimating the mean of the populations by em-
ploying techniques similar to the one outlined above.

6. Bayes and minimax procedures for estimating the mean of a finite popu-
lation with simple random sampling (without replacement). The average risk
corresponding to an a priori distribution £ for nature and a decision function &
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used for estimation of g(w) by the statistician is obviously

(5.1) B9 = E E[6E) - 9())*| ),

where r stands for (z,, zz, ---, ) and the symbol below E indicates the
space over which the expectation is to be taken. For the sake of simplicity we
shall not attempt to distinguish between a random variable and its observed
value. Since the integrand is non-negative, we may change the order of taking
expectations and write

(5.2) R o) = B B ((6@) — g(w)*|4l.

This is minimized by choosing, for each z, that number §(z) which minimizes
lg[(&(x) — g(w))* | z] and the number §(z) which does it is clearly

(5.3) 8(z) = E(g(w) | ).
This gives the minimum value of %«J[(a(x) — g())*| 7] as a:(@“, , the variance

of the conditional distribution of g(w) given z. Then, by (5.2), the Bayes risk
r¢ is given by '

(54) re = B 03)z-
X

These results hold in general whenever the loss function for the estimation of
9(w) is of the form L(w, a) = [a — g(w)].

In the problem under consideration, taking the a priori distribution for nature
as mentioned in the last section, the distribution of the sample (z1, - -, Za)
given w is n-variate normal with mean u, and variance o’(N — 1)/N for each
«; and covariance —o”/N for each pair (z; , z;), ¢ # j. Since it can be shown easily
that the sample mean £ is a sufficient statistic for u,, we see from (5.3) and
(5.4) respectively that the Bayes.estimate 8(z) = E(uo |z) = E(uo | £), and
the Bayes risk 7 = Eob, . = Eo-,z.a,i. Now u. is N(0, 6°) and, given p,, & is
N(po , v) where v = (0™ — N V)¢, 50 po and & have a bivariate normal distri-
bution. It is then easily seen that the conditional distribution of . given Z is
normal with mean 6*Z(6° + v)™* and variance 6°(6* + »)™". Since the variance is
independent of z, these are respectively Bayes estimate 85(x) and Bayes risk 7, .

To find a minimax estimate for u, , we consider if the sequence {rs} tends to a
limit as @ — co. It is seen that it does and the limit r is given by

N—nz

g.

(5.5) r = %{.12 T = v = o

By Theorem (2.2) if we can find some estimate & for which the risk does not
exceed r, then that & is a minimax estimate. Trying 6(z) = £ (=limy.. 5(z)),
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we see that the risk corresponding to § is given by
R(w,8) = Eu(F — o)’ = EEl(& — p)’ |21, -~ 2]

N — 2
ANV =D E '2_; (i — po)
N - n o

=T

Hence # is a minimax estimate and theé risk corresponding to this estimate
(minimax risk) does not exceed (N — n)a’/nN.

6. Bayes and minimax procedures with stratified sampling plan. In survey
designs stratification is a procedure whereby the entire population is divided
into a number of strata and sampling is carried out independently in each
stratum. Let ¢; be the known cost of sampling per unit in the sth stratum, u;
and o> the unknown mean and the known variance of the population in the 7th
stratum, and let k be the number of strata. Then, for a given cost C = > imcmi,
where n; is the number of observations sampled from the ¢th stratum, it is well
known (see e.g. [2], [3], [4], or [8]) that the procedure which estimates
> %1 Niu; with minimum variance is to choose n; proportional to Nisi/ Ve
and to use i1 N:X; as an estimate, where N is the size of the ith stratum
and X; the sample mean of the n; observations selected at random from it.
The same values for n; are obtained when for a given variance of the estimate,
the object is to minimize the total cost of sampling. In this section we shall
investigate for this problem some Bayes and minimax procedures, first for an
infinite and then for finite populations.

A. Infinite populations. Suppose that the 7th stratum cons1sts of an infinite
population with unknown mean y; and known upper bound o: for the variance,
i=1,2 -,k and that we have to estimate a linear function of the u;, say
U= Z?.l a.m where the a; are some given real numbers. Without loss of gen-
erality we may take Y a; = 1. For the sake of simplicity we shall assume that
none of the a; is zero. The loss function L is given by

6.1) LW,9 = 6 U + X ems,

where n(>0) is the size of the sample chosen from the ¢th stratum, c; the sam-
pling cost per unit in that stratum, and & is a function of the sample
{X:j;0=1,2,---k;7=1,2, -+, n;}, where X;; is the jth observation from
the sth stratum. For the sake of s1mp1101ty of notation, as before, we shall not
attempt to distinguish between a random variable and its observed value.

It may be noted that a slightly more realistic loss function would be

6.2 L(U,8) = a(d — U)? + il CiNng,
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where « is some constant depending upon the desired relative accuracy of the
results and the cost of experimentation in a given situation. But it is easily seen
that any procedure corresponding to this loss function can be obtained from the
corresponding procedure when the loss function is (6.1) simply by substituting
ci/a for ¢; . The risk associated with it will be simply « times the corresponding
risk when the loss function is (6.1). For this reason also the condition Y a; = 1
in this section does not detract from the generality of the a; .

Assume at first that, given w, the distribution in each stratum is normal, with
variance of in the sth stratum, s = 1,2, --- , k. We may conjecture that for this
problem there is no least favorable distribution of nature, since as U could have
any real value, what we would expect it to be is a uniform distribution over the
real line, but this is not a distribution.’ We shall assume that the u; are normally
and independently distributed each with mean zero and variance ¢, and find
Bayes solutions corresponding to the sequence {\s} of a priori distributions of
U resulting from the distribution of u;. Let 8 denote a corresponding Bayes
estimate of U. If the Bayes risks 7, corresponding to 8 tend to a limiting value
r when 6 tends to infinity, then any estimate which has its risk less than or
equal to r will be a minimax estimate by Theorem 2.2 under the normality
assumption of the observations. This assumption may then be removed easily
with the help of Theorem 2.3.

We may regard the n; as fixed for the purpose of finding the estimates. Letting
6* be a minimax estimate for given n,, we shall choose the 7, so as to minimize
the risk,

(6.3) R(U, 8% = E@* — U)* + il cini,

as a function of the n; .

Since we are working with fixed n;, we shall omit the Y ¢ term. The loss
function is now simply the square of the difference between the estimate and
the quantity U being estimated and, as in the last section, Bayes estimate &
and Bayes risk ry are given respectively by the mean and the expectation of
the variance of the conditional distribution of U, given the sample z. However,
since the stratum sample means are jointly sufficient for u;, -+ -, ux, we may
replace the sample z in the last sentence by X , - - - , Xi , where X is the sample
mean from the 7th stratum.

Now, the u; are independently and normally distributed with means zero and
variance ¢, and given pu;, the X; are independently and normally distributed

with mean ; and variance o%/n:, 50 1, -+, ux and X, - - - , X; have a joint
2k-variate normal di§tribution._ It is then easily seen that the conditional distri-
bution of u;, given X;, ---, X;, is normal with mean
ng 02 X <
6.4 P =
(6.4) Vi= a0

¢ I understand from an oral communication from H. Rubin that a proof of this con-
jecture has been given by M. A. Girshick.
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and variance

(6 5) v; = __joi{f;_-_

| Y 4
and that g, -+ -, w are mutually independent given X, - -+, Xix. Thus, for
given X, - -+, X, the distribution of U is normal with mean > ay; and vari-
ance Y aw; . We thus conclude that the Bayes estimate d(z) = &(Xy, -+ -, X)
= Y %aay;, and since the variance of the conditional distribution of U is
independent of X;, - -+, X, the Bayes risk r, = E'f..l at; .

Minimazx estimate for given n;. Letting 8 — o, we see that r, — r, where
r = Y %1 aioi/n;. Thus, if we can find some estimate & with risk < r, then
6* will be a minimax estimate by virtue, of Theorem 2.2. Let us try the limiting
Bayes estimate,

k
(6.6) }’imsg(x) = Zl a: X; = *(2), say.

Since the X; are normal and independent with means u; and variances o3/n; ,
3" ;X is normal with mean ) a; = U and variance ) aloi/n; . Hence the
risk corresponding to the estimate 8*(z) = 2 a;X; is equal to r which proves
that > a.X; is a minimax estimate of U for given n; .

It may be of interest to point out that although the Bayes estimates
% = 2 ay: , where y; is given by (6.4), being unique (for given 6) are admissible,
we cannot conclude from this the admissibility of 8* because of the limiting
process. The same remark applies to the other Bayes and minimax estimates
obtained later, but we shall not go into the question of admissibility in this
paper.

Removal of the normality assumption. Let us now do away with the assumption
of normality of the distribution of X,; . Suppose that whatever the joint distri-
butions of the X;;, the distribution in the sth stratum has an unknown mean
ui, and the sample mean X;, for any sample size n;, has a variance not ex-
ceeding a known positive number oi/ni for ¢ = 1,2, -+, k, and that the X;
are uncorrelated. This is somewhat more general than the usual assumption of
X:; being independent with mean u; (unknown) and variance o+ (known) in
the sth stratum, in which case the stratified sampling procedure is generally used.
Let us calculate the risk R corresponding to the minimax estimate *(z) = Y a.X;
obtained under the assumption of the normal distribution of the observations
in each stratum. It is easily verified that under these general assumptions, for
given n, ,

k 2

R=E<z:la.'X,' - U)
6.7) .
=E|Y ai(X: — u;):r < aloi/ni = r.

Tl
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Applying Theorem 2.3 now, we conclude that the minimax estimate Y a;X;
obtained under the assumption of normality of observations is still a minimax
estimate for given n; under the general assumptions given in the beginning of
this paragraph.

Minimaz strategy for choosing the n;. Restoring the term Y ¢ in the risk
function, one can choose “optimumn’ =; if the variances of the populations in
different strata are known, rather than only the upper bounds, by minimizing
the risk as a function of the n;. However, if only the upper bounds and not
the actual variances are assumed to be known, the optimum choice of the n;
against the largest allowed variances ¢; may not be optimum for other values
of the variances, but it will still be a “minimax”’ choice. In other words, a mini-
max strategy for the statistician is to choose the n; to be “optimum’ against
the maximum allowed variances ¢, and then estimate U using the 5* for these
n; . This statement follows from the following theorem.

THEOREM 6.1. Suppose the space of strategies for the statistician is a union
of spaces, say D = U.D. . If 8. is minimaz in D, against Q, the space of nature’s
strategies, and if R(w, 8.) is constant for each ¢, say R(w, 8.) = ., then the 8. mini-
mizing r. , if it exists, 1s minimax in D.

Proor. Let 6 ¢ D be any strategy for the statistician. Then 6 £ D, for some c.
Since &, is minimax in D, ,

(6.8) max R(w, §) = max R(w, 8.) = r..

Let &+ be the 8. minimizing r. and denote the risk corresponding to 8.+ by 7« .
Then

(6.9) Te 2 Tee = max R(w, 8..).

From (6.8) and (6.9), max, R(w, 8.+) < max, R(w, 8) for all § £ D, hence 5. is
minimax in D.
We, therefore, choose optimum #; corresponding to the variances in the differ-

ent strata as the o7 . For given n;, the risk corresponding to &* is given by

k 2 2
(6.10) R(w, 8%) = Zl [ﬁni + cin.:I.
Now we want to choose the n; so that this risk is minimum under the restriction
that the n; are positive integers. Since the sth term on the right hand side of
(6.10) depends on n; alone, it is sufficient to minimize alo?/n; + cm; subject to
the restriction that n, is a positive integer. Denoting this expression by f(n.),
we see that

2 2
a; o¢

T+ D
To minimize f(n,), we choose the smallest positive integral value for n; for which
the difference (6.11) is positive; in other words, the smallest positive integer n;

(6.11) fni + 1) — f(n) = ¢
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for which (n; + 1/2)* exceeds af o3/c; + 1/4. This gives

2 2
(6.12) n; = integer nearest to @i gi + l
Ci 4

When Vd:oi/ci + 1/4 lies exactly between two integers, say m and m + 1,
the risk is equal and minimum for both n; = m and n; = m + 1, and it is im-
material which of the two nearest integers is chosen for n; .

B. Finite population. Suppose that z;;, (1 = 1,2, --- ,k;7=1,2,---,N,)
denotes some numerical characteristic of the jth unit in the 7th stratum. Sup-
pose further that the N;(>1) are known, the means u; of the strata are unknown,
the upper bounds of the variances of the populations in the strata are known,
say o3 = 1/(N: — 1)EX %% (z:; — us)’, and that we are required to estimate a

linear function,

k
(6.13) T=3 aiu:,

=1
of the population means u;, where a; are arbitrary known real numbers with
Y a; = 1, the loss function L being given by

(6.14) L(T,8) = 6 — 1)+ ‘é cini,

where 8 is an estimate for 7', and ¢; , n; denote the cost of sampling per unit and
the number of units sampled in the ¢th stratum. The sampling plan given is to
decide upon k positive integers n; ,7 = 1,2, - - - , k, and then choose a sample of
size n; by simple random sampling without replacement from the 7th stratum,
thus obtaining a sample of total size n = Y i—; n;. We shall first assume that
the n; are determined somehow and obtain Bayes and minimax procedures and
the corresponding risks for given n,. Later we shall see how to choose the n;
so that the risk obtained is minimized over the choice of n; . As before, by Theo-
rem 6.1, this choice of the “optimum” n; will be a minimax strategy for the
statistician.

As in the case of simple random sampling discussed in Section 4, which is a
special case of this problem for & = 1, we are considering now a decision problem
in which the distribution w & @ consists of the product of k¥ independent distri-
butions w; on hyperplanes in R"* of the form z; + --- 4+ =z, = constant,
say Nius, , and subject to the restrictions that

Ny

(6.15) Bo 2, (@ — u)* £ (N: = Do, i=1,2 -,k
i=1

where the constant is denoted by N u., to make p,; themeanof ziy, zi, -+ , Zaw,

and p., itself is being written as u; for the sake of convenience of notation, the
o; are given positive numbers, and p, for w £ @ is the distribution of k independ-
ent samples z; = (xa, -+, Tin,), the ¢th sample being obtained by simple
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random sampling without replacement from =za, ---, Ziv, , distributed ac-
cording to w; .

The problem of obtaining a minimax estimate of T for given n; is solved as
before. Consider nature’s strategy as picking each w.(=u,,) from N(0, 6°) and
given u;, letting the distributions w;, with probability one, be singular N-
variate normal with mean w; and variance ¢3(N; — 1)/N; for each component,
and covariance —o3/N; for each pair of components. A Bayes estimate of U is
obtained with respect to this strategy of nature, which is regarded as a member
of a sequence {\} of a priori distributions, and the limit, if any, of the corre-
sponding sequence of Bayes risks {rs} as # — o« is obtained, say r. Then an esti-
mate 8 for which the risk R(w, §)—without assuming normality of »—does not
exceed r is, by Theorems 2.2 and 2.3, a minimax estimate for given n; .

With nature’s strategy as explained in the last paragraph, the distribution of
the sample = {x;;;7=1,---,n;,7 =1, .-, k} given w is the product of
k distributions, the ¢th being n;-variate normal with mean u; and variance
o?(N: — 1)/N; for each component and covariance —o3/N; for each pair of
components. Again, since the set (&, --- , &) of the sample means from the
k strata is a sufficient statistic for the set (u1, - - - , w), and hence for T', we may
replace the sample z in (5.3) and (5.4) by the set (£, - - - , #x). Now, the strata
are independent, i.e. the & pairs (u; , ;) are independent, and it follows from the
calculations in Section 5 that the conditional dlstrlbutlon of an individual u,
given &; is normal with mean y; = 6°%;(6* + v;)™" and variance 0'v:(6* + v)7,
where v; = (n7" — N3")o?. Thus, for given Z, , - - - & , the conditional distribu-
tion of T = . au; isnormal W1th mean Y ay;, and variance Y az0v:(6° + v;) .
We thus conclude that the Bayes estimate for T is

(6.16) S(z) = i a; Y = il a: (6" + v)7,

fm=]

and as the variance of the conditional distribution of T is independent of z, the
Bayes risk is

6.17) re = zk:l a: 60" + v)t + i cin;.

To find a minimax estimate for T now, we consider if the sequence {ry} tends
to a limit as 6 — «. It will be seen that it does, and the limit r is given by

k k
. 2
r=hmn=2a.-v.-+_2:c;n.~

0> Tl [
(6.18) N —
- Z 2 Vi — N o2 2 4 Z i .
i=1 ant =1

All we have to do now is to find some estimate 6* for which the risk does not
exceed r, and by Theorem 2.2, if any such &* exists, it will be a minimax estimate
for given n;. Trying 6*(z) = . a.&:(=lims.. 5(z)), we see that the risk cor-
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responding to &* is given by

k
R(w, 8% = E.(6* — T)' + X cing
el
(6.19) e . .
= E, [z a:(&: — us’)] + El cing.
Noting the fact that the strata are independent and utilizing the result (5.6) for
a single stratum, it is seen at once that (6.19) reduces to

(6.20) R(w, 8% SZ :N: — ms 2+Ec,n. =7
N ing teml
Hence the usual estimate ) a.%; is a minimax estimate for given n; .

Minimax strategy for choosing the n; . We now choose the 7; so that the mini-
max risk for given n; and largest allowed variances in the strata is minimum
under the restriction that the n; are positive integers and <N;. This risk is
given by
(6.21) _ zk: 2 (1 1 )

. r—'__l a; E_N—: oi + cins |.

This expression differs from that in (6.10) by a quantity which is independent
of ny, mg, -+, m, and hence is minimized by the same n; as before provided
n; = N;, and otherwise by n; = N;.

As a special case, consider the problem of the estimation of the overall mean
of the finite population, up = N D %, > ¥ xij, where N = > %=1 N;. Choos-
ing a; = Ni/N, T = Y au; = p, and we see that a minimax procedure of esti-
mating the mean u is to choose the n; as

s Niot 1 ]
(6.22) n; = integer nearest to ,‘/ N, + 1 and <N;,

and then employ the usual estimate N IZ N, for these n;. This rule for
finding the minimax 7; is more exact than the one commonly stated in the
literature, namely the allocation of the total sample size in proportion to
Nuoi/A/c; . This greater exactness may be quite useful in the case of high c.’s.
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