A NOTE ON PERFECT PROBABILITY!
By GoriNnaTH KALLIANPUR?
Michigan State University

1. Introduction. The purpose of this note is to define and characterize a class
of perfect probability spaces which we shall call D-spaces. Gnedenko and Kol-
mogorov seem to have been the first to introduce explicitly the notion of perfect
measure [1], although a special case (‘“normal space’”) was studied by Halmos
and von Neumann as long ago as 1942 [2]. An illuminating appendix by Doob
in [1] (see also his remarks in the appendix to his own book [3]) further testifies
to the fact that the notion of perfectness of a measure has been well known to
mathematicians for quite some time.

The triplet (2, F, ) is said to be a perfect probability space if u is a probability
over the o algebra § of subsets of 2 and if for every univalent, real valued, F-meas-
urable function f the following is true: For every linear set A such that f(4) ¢,
there exists a linear Borel set B with B € A and

wlf7(B)) = wlf (@A)

While a perfect probability space (2, ¥, ») has many desirable properties
([1], [4]), the definition of perfectness clearly involves the measure u in an es-
sential manner. This raises the interesting question of defining classes of meas-
urable spaces (2, F) with the property that for every probability u, the space
(@, F, u) is perfett. The Lusin spaces introduced by Blackwell [4] as well as the
D-spaces to be defined in the next section, possess this property. Theorem 3
gives a necessary and sufficient criterion for a D-space. This result is similar
to (though not identical with) an unsolved problem posed by Blackwell for
Lusin spaces ([4] Problem 2).

2. D-spaces: definition and characterization. We shall say that a linear set
A is a D-set if A is measurable with respect to F for every Lebesgue Stieltjes
probability measure F. Borel sets and analytic sets are examples of D-sets.

A measurable space (2, §) will be called a D-space if

(1) ¥ is a separable o-field of subsets of 2, and

(2) The range of every univalent, real valued, F-measurable function f is
a D-set.

TueOREM 1. Let (Q, ) be a D-space. Then if @ & F 18 any separable sub o-field
of F-sets the probability space (2, @, p) is perfect for every probability u defined
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over Q. In particular, (R, F, p) is perfect for every probability u defined over .
The proof of this theorem is based on the following

LemmA. A necessary and sufficient condition for (2, 5, u) to be perfect s that for
every univalent, real valued, F-measurable function f there exists an F-set Qo such that

(2.1) #(Q) = 1 and f(Q) is a Borel set.

The above lemma is known in the literature, but we shall give a short proof
of the sufficiency. The necessity of (2.1) is almost obvious and its proof is omitted.
If (2.1) holds, Halmos and von Neumann have shown [2] that to every F-meas-
urable function f and every F-set B corresponds a measurable set B, contained
in B such that u(By) = u(B) and f(By) is a Borel set. Hence, if 4 is any linear
set with f™A &, there exists a measurable subset X, of {4 such that u(Xo)
= u(f"A4) and f(X,) is a Borel set. Since f(Xo) C A we may write ™ 4 in the
form f74 = f{f(Xo)} U N, where N C f(4) — X, and u(N) = 0. Writing
B = f(X,) we have B a Borel set, contained in 4 and u(f™'B) = u(f'4), so
that (2, ¥, u) is perfect.

To prove Theorem 1, let 4 be an arbitrary probability over § and &, the
o-field obtained by completing § with respect to u. For any F-measurable f let
F* be the o-field of linear sets A such that 4 £, , and let u, be the probability
over 5* defined by u;(4) = u(f"A). us is then a complete probability over F*.
Finally, if F is the Lebesgue Stieltjes measure generated by the distribution
function of f and Gr the o-field of F-measurable sets, it is easy to see
that G» C 5* and 4y = F on @r . Since (2, ¥) is a D-space by our assumption,
f(@¢@r, so that there. exists a Borel set B C f(Q) such that F(B) = 1. Since
F and u; agree on Borel sets, u/(B) = 1. Now setting @ = f (B) we
have u(2) = 1 and f(Q) = B, a Borel set. The perfectness of (Q, &, u) then
follows by the Lemma. Since (Q, ) is a D-space and every @-measurable f is
a-fortiori F-measurable, (2, @) is a D-space. The perfectness of (2, @, x) for every
u follows on replacing § by @ in the above proof.

The converse of Theorem 1 is given by

THEOREM 2. Let (2, F) be a measurable space with the following property:

(I) If @ s any separable sub o-field of F-sets, the probability space (Q, @, ) s
perfect for every probability u defined over Q.

Then, the range of every F-measurable function f is a D-set.

Proor or THEOREM 2. Let @ be a separable sub o-field of §. Then there exists
an F-measurable function f such that @ is the minimal o-field with respect to
which f is measurable. In other words, @ is the o-field of sets f*(E) where E is
a Borel set. Let » be a Lebesgue Stieltjes probability measure and 8, the o-field
of »-measurable sets. If F is any subset of the real line it is known that there
exists a Borel set F such that F D E and such that, for every Borel
set B C F — E, we have »(B) = 0. We also have v*(E) = »(F), v* being outer
v-measure ([5], pp. 50-51). Such a set F we shall call a »-cover of E. Let R, = f(Q),
the range of f. Denote by K, the v-cover of R, . If v*(R;) = 0, it is a well-known
fact that R, € 8, . If »*(R;) > 0 we also have »(K;) > 0 and we may now define
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a probability u on @ as follows: If A ¢ @ then A = f~ Y(E) for some Borel set
E. Define (1)u(4) = »(EN K,)/v(K,). First we show that (1) defines x uniquely.
Suppose E; and E; are two Borel sets such that 4 = f(Ey) = f~ Y(E,). Then
clearly the Borel sets E; — (E;N E,) and E; — (E1N E.) are contained in the
complement of Ry. For ¢ = 1, 2, (B; — E.1 N E) N K, € K; — Ry
and (B; — E1N E,;) N K, is a Borel set. Since K, is a v-cover of R, we have
V[(E,' - Elﬂ Eg) n K1] = 0. From this it follows that v(E’lﬂ K]) = V(Ezn Kl),
proving that u(4) is uniquely defined. Since @ = f~ 'R1, Ry being the real line,
we have according to (1)u(2) = 1. Thus u is a probability defined over sets of
@. However, it is to be remembered that u is not defined for all sets of &.

By the hypothesis of the theorem, (2, @, p) is perfect. Therefore, since
fYRy) ¢ @, there exists a Borel set Ko C R, such that

w(f"Ko) = u(f'Ry) = p(@) = L.
But by the definition of p,

WK = "(Ii‘zg)K‘) - :gg so that  »(Ko) = v(Ky).

Thus, there exist two Borel sets Ko and K; such that Ko C R; C K, and
»(Ko) = »(K,). Hence, remembering that » is complete, we have E; ¢ S, . Since
v is an arbitrary Lebesgue Stieltjes measure, the theorem is proved.

From the two theorems proved above we obtain the following characterization
of a D-space (¥ is assumed to be separable):

THEOREM 3. A necessary and sufficient condition for a measurable space (2, §)
to be a D-space is that condition (I) of Theorem 2 be satisfied.

If f is any F-measurable function, G, the minimal o-field with respect to which
f is measurable is known to be separable. Hence, Theorem 3 can also be given
the following form:

TaEOREM 3'. Let (2, F) be a measurable space, f any univalent, real valued
F-measurable function and Gy the o-field defined as above. Then, a mecessary and
sufficient condition in order that (Q, G, u) be perfect for all probability measures
u 18 that (@, §) be a D-space.

Recently Blackwell has defined a Lusin space to be any (2, §) with &, a sepa-
rable o-field and with the property that the range of every real valued F-meas-
urable f is an analytic set. Since analytic sets in metric spaces are Lebesgue
Stieltjes measurable for every Lebesgue Stieltjes measure, it follows that a
Lusin space is also a D-space. Whether, in reality, the concept of a D-space is
more general than that of a Lusin space, we do not know. We have not succeeded
in demonstrating the existence of a (2, §) and a real-valued F-measurable func-
tion whose range is a D-set other than an analytic or a Borel set. As far as we
are able to determine, very little seems to be known about the properties of
D-sets beyond the fact that a set S on the real line is a D-set if and only if every
homeomorphic image of S situated on the real line is Lebesgue measurable [6].
Nevertheless, the introduction of the notion of D-space is justified by the fact
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that we are able to prove a characterizing property of such spaces given by
Theorem 3, whereas we are unable to prove a similar result for Lusin spaces.
In fact, Blackwell has posed the following unsolved problem for Lusin spaces:
If (Q, §), with & separable, is such that (2, &, u) is perfect for every probability
u defined on &, is (Q, §) a Lusin space? Theorem 2 proves a somewhat weaker
property for D-spaces. Condition (I) of Theorem 2 is more stringent than the
restriction that (2, &, u) be perfect for every probability x on §. If the latter
is given it is, of course, true that (Q, @, u) is perfect, @ being any sub o-field
of § and u being regarded as the contraction on @ of the probability u already
defined on §. Condition (I) goes beyond this in requiring the perfectness of
(Q, @, 1), (@ an arbitrary, separable sub o-field of &) for all probabilities x on @
and not merely for those u which are contractions of probabilities defined over
the larger o-field 5.
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