UNBIASED ESTIMATION: FUNCTIONS OF LOCATION
AND SCALE PARAMETERS

By R. F. Tars!
Unaversity of Washington

1. Summary. Unbiased estimators for functions of a location parameter
0 and a scale parameter p are expressed as unknown functions in integral equa-
tions of convolution type, and are then obtained by integral transform methods.
An outline of the paper is contained in Section 3. The main results consist in the
application of various derived expressions to the exponential distribution with
parameters 6 and p, the gamma and Weibull distributions with parameter p,
and to general distributions with truncation parameter 6. In the latter case, a
simple formula is given for a minimum variance unbiased estimator of any ab-
solutely continuous function of 6; this extends slightly a result of Davis [3]
concerning distributions of exponential type. Throughout the paper particular
attention is paid to the estimation of the probability that a single observation
will lie in a certain Borel set, when this probability is regarded as a function of the
parameters 8 and/or p. Extensions to sample points of m observations and Borel
sets in m-space are in most cases immediate.

2. Introduction. Estimation of location and scale parameters was first studied
systematically by Pitman [15] through the use of fiducial functions. He showed
that for a random sample X;, X,, ---, X, from a density f(x — 6) the esti-
mator

[ or(xs = 007(Xe = 0)---f(X, — 0) o

(21) ¢(X17X27 "')Xﬂ) -
[ 70X = 007X — 0. -f(X, — 0) do

has minimum variance among the class of all estimators U(X;, Xz, ---, X4)
with the translation property, that is to say estimators satisfying the condition
22) UXi4+e¢,Xo+c¢ -, Xn+¢)=UX1,Xs,-,X.) +c

for all real ¢. This was his main result concerning unbiased estimation. The
estimator for p, when the X,’s have density of(px),

(2.3) ¢( X1, Xo, o, X)) = f;'%f<%>f<%> f(-)%) dp

[y By

was shown to have a negative bias, although it possesses optimal properties
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among the class of estimators with the multiplicative property, that is among
those estimators satisfying the condition

(2.4) U(eXy,cXy,y -+, eXy) = cU(Xy, Xz, -+, Xa)

for all positive c. Sufficient statistics’ need not exist in order to apply his results,
although their existence simplifies the labor; this is also a feature of the present
paper. Pitman’s work has been extended by Girshick and Savage [6] and others
in the direction of minimax estimation.

The aim of the present paper is to consider only unbiased estimators, but to
allow the functions to be estimated to be of a more general nature than those
which Pitman considered. The methods which will be used are related to those
of Washio, Morimoto, and Ikeda [16], in that they also use integral transform
theory to obtain their results. Washio et al deal with the Koopman-Pitman family
of densities (see Koopman [12], and Pitman [14]) which possess sufficient sta-
tistics, and for which the range does not depend on the parameter. The joint
density for n independent random variables from a density of this type can be
expressed as

p(T1, 22, -, | 1) = K(7)e"PTE0 o2 w0 iUz, om0
b ’ b

where 7 is a real parameter, 7' is a sufficient statistic for 7, and the positive
sample space is independent of r (except possibly for a set in n-space with Le-
besgue measure zero). Now, the density of T' can be expressed as

f(t]r) = k(r)e ™,

where the positive sample space of 7' is also independent of r. Theorem 1 of
Washio, Morimoto, and lkeda [16] gives an estimator for a function m(7).
This estimator may be denoted by ¢(7'), where

(25) [ 6wee =m0,

k()
with integration taking place over the positive sample space of T. Two alterna-
tive sets of conditions restricting the functions m(7) and k(r) are contained in
the hypothesis of their Theorem 1.

At this point it is possible to discuss the differences between their methods and
those of the present paper, with respect to distributions which possess a single
parameter. First, the family of densities which they consider is broader than the
one we consider in that 7 can be any parameter, instead of a parameter of loca-
tion or scale, but narrower by virtue of the fact that we shall treat cases in which
the range of the density depends on the parameter. Secondly, their hypotheses
are designed to insure that m(7)/k(7) is itself a bilateral Laplace transform,
since in that event ¢(¢)e”"” is determined (up to a set with probability measure

)

2 By the existence of sufficient statistics is meant the existence of a small number of
“simple’’ continuous real-valued functions of the sample that are jointly sufficient in the
Halmos-Savage sense.
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zero for all 7) by inversion, and then the unbiased estimator obtained from it after
multiplication by ¢ . In contrast to this we shall in each case express our
estimator ¢(7T') as a simple transformation of the unknown function of some
integral equation of convolution type. The function m(7)/k(7), or some simple
transformation thereof, will then be required to possess a Laplace, bilateral
Laplace, or Mellin transform, depending on what type of parameter is studied.

Side results in reference [16] concerning the actual process of inversion are
offered, parallel to the statistical development. These results depend on the
concept of a bounded linear translatable operation. This notion was dealt with
by Kitagawa in a series of papers, including one (see Kitagawa [10]) which
refers directly to the work in reference [16], and is also of independent interest in
operational calculus.

3. Notation and outline of results. Throughout, X will denote the basic
random variable, and X;, X,, -+, X, will be a.random sample from the X
distribution. X3 and X, will denote the smallest and largest observations, re-
spectively, in such a sample. The following notation will be used for densities:®

A density of X which is completely specified will be denoted by f(x).

For those situations in which the density of X has a location parameter 6 we
denote the density by fo(x). Whenever the location parameter is actually a
truncation parameter we will let

fo(x) = ky(0) () <z <, —o f< x;
fo(x) = k2(0)he(x) —o < x < —o <0< o,
For the case of a translation parameter the notation will be
fo(z) = f(z — 0).

A density of X with a positive scale parameter p will be written as

fo(x) = of (o).

For the two parameter problems we have the notation

Jo..(x) = pf(p(x — 6)).
Throughout, gs(x), ¢g.(x), and gs,(x) will denote densities of statistics.
In the scale parameter case one more often sees the notation ;1) I (C—E) , as for

example in Pitman’s paper previously referred to. It is, however, slightly easier
to cast the estimation problem into the framework within which Mellin trans-
forms apply when the above form is used.

At various stages the Laplace, bilateral Laplace, and Mellin transforms will
be used. The symbol z will generally denote the argument of a function to be

3 All densities will be assumed positive in some interval of the real line, and moreover
piecewise continuous in the interior of that interval. Also, a density specified analytically
over part of its domain will be assumed to vanish over the rest of its domain.
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transformed, while s will be used for the argument in the transform of a function.
Thus, for a function {(z) we shall write

Qe(z); o] = fo " () dn, Re (s) > s

+o0

B¢ (2); 5] = [ ¢ t(z) dr, s < Re(s) < s1;

}— 00

Mg (z); 8] = f: 27 (z) da, so < Re (s) < s1.

For the inverse function associated with a transform &(s) of one of the above
types we shall write, respectively,

p(s); 2, BT(s);al,  MT[(s);

all functions being unique up to a set of Lebesgue measure zero. Analytic ex-
pressions for the real and complex inversion of the above transforms may be
found in Widder [17]; however, they will not be used here since all problems
considered can be solved by the tables. of the Bateman Manuscript Project [1].

Finally, ¢(X,, X,, ---, X,) will denote the unbiased estimator in a given
situation; if ¢ depends explicitly on some statistic T'(X;:, X2, - -+, X.), the
expression ¢(7') will be used. The function of # and/or p which is to be estimated
will be written as £(6, p). As one example consider the formulation used in Sec-
tion 2 to introduce some of the results in reference [16]. There we have

m(T) —v(2) qu—1 m(s) . .
(31) E(T) - k(T) ) ¢(x) =e ‘% [TC_(S—) :x]a
the estimator is then expressed as ¢(T') since in their case it depends explicitly
on the sufficient statistic T(X;, X2, -+, Xa).

Section 4, on the estimation of functions of a scale parameter p, begins with
some simple observations concerning densities with scale parameters and sta-
tistics which are homogeneous functions of the sample. A formula is then derived
which provides unbiased estimators for many functions £(p) with Mellin trans-
forms. The result is specialized to the case £(p) = P(X ¢ A | p). All estimators
depend explicitly on some homogeneous statistic (X1, Xz, -+, Xa).

Densities which may be factored into a product of a function of  and a func-
tion of z, with the range having 0 as one endpoint, are very common in applica-
tions. These are the densities which are referred to as having a truncation
parameter 8. Either X5 or X, will be a sufficient statistic. Section 5 contains the
derivation, and some applications, of results which provide minimum variance
unbiased estimators for a wide class of functions £(8). The formulas used in this
section are extremely simple, due to a fortunate relationship involving condi-
tional expectations, requiring only a single differentiation for their application.
The question of the estimation of 8 for the cases of truncation at either or both
endpoints of the range of a density of the Koopman-Pitman family was investi-
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gated by Davis* [3] in 1951. Our work constitutes a simplification and general-
ization of part of his study. Connections are discussed at the end of Section 5.

Section 6 is devoted to the case of a translation parameter 8. For those situa-
tions in which the density of X is positive over (— «, « ) or (8, » ) the derived
estimators have the translation property. In the former instance the problem
can be handled by the methods of reference [16] whenever a sufficient statistic
exists; this is not so for the latter case. It is shown that when the positive sample
space is (6, b), for some fixed b > 6, there exists no unbiased estimator with the
translation property. For this case a formula is provided for an unbiased esti-
mator of 8 based on a single observation. Results are in general less satisfactory
for the translation parameter case because of the lack of sufficient statistics;
Pitman’s estimator for £(6) = 6 is usually difficult to compute. Kolmogorov
[11] derived the minimum variance unbiased estimator for P(X ¢ A | 6) in the
case X = 9U(6, o5). The estimator was obtained again by Washio et al [16] as
an application of their theorems; they also derived the minimum variance un-
biased estimator of [P(X ¢ A | 6)]™. We shall use this example as one of the
illustrations of our methods, and point out that it is a special case of a slightly
more general result concerning stable laws. Still another way of arriving at
Kolmogorov’s result has appeared in the literature as one of the cases considered
by Hirshman-Widder [9]. Their approach is briefly described.

In Section 7 almost all results are applied to the very important cases of the
exponential, gamma, and Weibull distributions. Some of the applications are
presented in the framework of a recent paper by Birnbaum and Saunders [2]
which clarifies the need for the latter two distributions in Life-Testing. The ex-
ponential case has been studied by Epstein and Sobel [4]; they consider esti-
mators based on the first r of n ordered observations. In the present paper,
minimum variance unbiased estimators are found in particular
for [P(X eA)|pl™,m = 1,2, ---,n — 1, in the gamma and Weibull cases and
[P(XeA]6,p)]" m=1, 2, -- -, in the exponential case. It is shown that some
of the calculations can be carried out with the Table of the Incomplete Beta
Function [13].

4. Unbiased estimation for £(p). Let X be a random variable with density
fo(x) = pf(px). We wish to find an unbiased estimator for a function £(p). First
we shall make a few observations which justify the use of homogeneous statistics
in problems of this kind. ‘

If H(X,, X», -+, X.) is homogeneous of degree a # 0, with density g(x)
when p = 1, then for all values of p, H(X;, X;, ---, X.) has the density
p%g(p°x). This follows immediately from these considerations: the conditional
density of H(X;, X,, -+, X.), given p = 1, is the same as the unconditional
density of H(pX:, pXa, --+, pXa,). Thus, p *“H(pX,, pX2, -+, pX,) must
have density p°g(p°z).

4 The author would like to thank W. Hoeffding for bringing the paper of R. C. Davis to
his attention.



346 R. F. TATE

If we restrict our attention to estimators depending explicitly on some ho-
mogeneous function H of degree a, for example’ X5, > X;, TIX;, then the
problem of estimating £(p) becomes that of solving the integral equation

6 [ @irgea) a = o)

for the unknown function ¢, and then expressing the estimator as
o(H(Xy, Xz, --+, Xa)).

Basic integral equations will be designated by roman numerals.

Since the case £(p) = p” can be handled in an elementary way, it will be treated
first. A family of estimators is provided by the following theorem, the proof of
which is immediate.

TueoreM 1: If X has density pf(px), and H(X,,.X2, «--, X.) s a homoge-
neous function of degree o = 0, then an unbiased estimator is provided for
E(p) =0
by’
H—'r/a
*H) = gy

for all values of r and o for which the indicated expectation exists.
Proor: Let H have the density p"g(p°z) guaranteed by the preliminary state-
ments in this section. Then, consider the integral

(4.1) [ T %%g(p%x) da.

The stated result follows after the substitution y = p"x.
We may wish to estimate the 100 pth percentile of the X distribution. This is
equivalent to setting

(42) £(p) = 9‘—’, fpf(:c) dr = p.
P )

The quantity b, is usually available in a table. The value of the theorem stems
mainly from the fact that sufficient statistics frequently have the homogeneity
property; for example, H(X;, Xz, ---, X,) = 2, X7 is sufficient for p in the
Weibull density with (known) exponent «, namely

fo(z) = ap®c* e 7, 0<2< 0,0<p< w,a=1.

Subject to certain, not too stringent, conditions the integral equation (I)
can be solved by use of the Mellin transform. The exact result is given by
THEOREM 2: Let X have density pf (px), and H be a nonnegative,” homogeneous

§ Summations and products without indices will be assumed to have index running from
1 ton.

¢ The symbol E, stands for expectation under the condition that the parameter value is p.

7 In order to use the classical Mellin transform it is necessary to consider either a non-
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statistic with density p“g(p°x). Assume that both g(x) and £(p) have Mellin trans-
forms. If there exists an unbiased estimator ¢(H) for which the Mellin transform
exists, then it is determined uniquely by

1 lay,
w[Lewis]
ECIE

Proor: Consider equation (I). Replace p by p"*, and then make the variable
change y = 1/z, which produces the equation

LI e HE I

This is a well-known expression of convolution type. Application of the Mellin
transform to both sides yields

(4.3) m B ¢ (215) ; 8]-9.72[9(1:); sl = M [% £ 8] ;

from which the conclusion follows.

In view of the importance in applications of estimating £(p) = P(X ¢ 4 | p)
the result concerning this function will be stated as a corollary. The function
£(p) = pf(pz), for fixed z, is easier to work with in most cases; from an unbiased
estimator of it one can derive an unbiased estimator for P(X ¢ A4 | p) (Kol-
mogorov [11], page 22).

COROLLARY: Let the conditions of Theorem 2 be satisfied for the functions
H(X,,X,, -+, X,) and £(p) = pf(pz), where f(x) is a density which vanishes
for negative x, and z is a fived positive number.® If there exists an unbiased esti-
mator of £(p) with a Mellin transform, it will be given by

_ a1 [ Mf(z);e(s — 1) +1] 1
¢(H) - —H m [ Z“("—l)+19ﬁ[g(x); 8] ’f_I] .

Proor. The result follows from Theorem 2 and the fact that

— 1 —1
¢(H) = ﬁsm

mn [% £(2"*); S] = m[xlla_lf(xl/"z); s
_ eMf(z);els — 1) + 1]

pa(s—1)+1

(44)

negative or a nonpositive statistic H, so that its density will vanish on the left or right half
of the reals respectively. The proof is conducted for nonnegative H; the obvious modifi-
cation consisting of replacing H by —H and g(z) by g(—z) will provide the result for non-
positive H.

8 If the corollary is stated instead for a density, f(z) which vanishes for positive z and for
a fixed negative number z, then the conclusion as stated can be modified by replacing f(z)
by f(—z) and z by —z in order to give the desired answer. The reasoning is the same as in
footnote 7. Note also that the assumption of nonnegativity for H was carried over from
Theorem 2, but can be removed in favor or nonpositivity by the alteration described in
footnote 7.
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Once we have an estimator for pf(pz) for fixed z, estimation of P(X ¢ A | p)
can be performed if an interchange of limits of integration is valid. More pre-
cisely, denote the estimator above by ¢(z| H), to emphasize the dependence
on z. We always have

@s)  P(Xedlo) = [ o) dz= [ f0”¢<z|x)p“g<p"x> da dz.

If now, for example, ¢(2 | ) = 0 for z = 0 and z ¢ A, which is usually the case,
(46) ¢4(H) = fA ¢(z| H) dz

will be an unbiased estimator for P(X ¢ A4 | p). This is a consequence of Fubini’s
theorem. The method can also be replaced by the following scheme, if so desired.
We can consider the unbiased estimator for P(X < z| p), for fixed 2z, which can
usually be found in a manner similar to our derivation-of ¢(z | H). Call this esti-
mator ¢*(z | H). Then, P(X ¢ A | p) will be estimated by

(47) 6a(H) = f do*(z| H).

This will be required later on when we speak of the location parameter situations.
Thus, it will be seen in Section 7 that the gamma and Weibull distributions with
scale parameter p can be treated by the Corollary, while in Section 5 all trunca-
tion parameter problems will be handled by the Stieltjes integral method.
Finally, it should be noted that the probability that (X;, X,, ---, X,,) lies in
a set A4, in m-space can be estimated by the ordinary integral of the estimator
#(21,22, -+, 2n | H) of the function p™f(pz1)f(pz2) - - - f(pzm), or the Stieltjes
integral of the estimator ¢*(21, 22, -+, 2 | H) of

P(Xlé21,X2§Z2,"'me§zm|p)7

over the set A, . In connection with this paragraph see Kolmogorov ([11],
Section 8).

5. Unbiased estimation for functions of a truncation parameter. Following the
notation of Section 3, we define two types of densities with truncation parameters.
We include densities over any range (a, b), finite or infinite.

Type I: fo(x) = E(0)hi(z), a<60<z<b;

Type I1: fo(x) = ko(0)ho(a), a<z<6<hb.

In connection with these densities we assume the following: h;(2) and ky(z) are
nonnegative, continuous, and integrable over (6, b) and (a, 6), respectively, for
g in (a, b). k:(8) and A;(x) on the one hand, and k»(8), ke(x) on the other, have
the obvious relations

1

(5.1) ln(8) = ;o ha(0) =

]: hi(zx) dz ho(x) dx

fora < 68 < b.
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Any completely specified density f(x) defined over (a, b), which satisfies the
continuity and integrability conditions imposed on 4;(x) and Aq(x), will be of
Type I or Type II as soon as a truncation parameter 8 is introduced. Since
(a, b) may possibly be (— <, + =), the situation is one of some generality. If
a random sample X;, Xz, ---, X, is considered, then X is sufficient in the
Type I case, and X is sufficient in the Type II case. The purpose of this section
is to derive simple expressions which lead to minimum variance unbiased esti-
mators for a wide class of functions £(6). Results will be stated for a finite inter-
val (a, b) and then amended to take care of the infinite case.

THEOREM 3: Let X have a density fs(x) which is of Type I over some finite interval
(a,b), and £(8) be a function which is absolutely continuous over (a, b). A minimum
variance unbiased estimator for £(0) s given uniquely, by

¢ (Xs)

¢(XS) = if(X,g) - m-

Proor: The density of X is easily shown to be

—1

po(z) = nlks(8)]"halz) ( [ " ha(0) dt)n , o<z <b

Completeness for the family {ps(x)} is equivalent to the proposition

fob Y(z)h(x) <f: ha(8) dt>n_l dr = 0

implies ¢(x) = 0 a.e. This follows from a well-known result in' measure theory
due to Lebesgue. We now obtain a simple unbiased estimator in order to apply
the Rao-Blackwell-Lehmann-Scheffé method on the sufficient statistic Xs.
The hypothesis allows the equation for a single observation,

j; Y(21)k1(0) hi(1) dzy = £(8),

to be differentiated with respect to 6. This results in the relation

g(x1)ki(2y) — k()¢ (21)

(52) V(@) = ZENEED)

One can easily show that

b

L seok@me) dn

(5-3) ¢'(Xs) = E[‘//(Xl) I Xs] = glp(Xs) + n Xs B .
kl(o)hl(xl) dz,

X3

Recalling the relation between k;(6) and h;(x), we see that the ratio of integrals
in the right member is £§(Xs). From this fact and the simplifying relationship
ky(Xs) / [ki(Xs)a(Xs) = 1, the stated conclusion now follows.

REMARK 1: For the case b = « the same result is obtained if integrability is
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postulated for [£(21) — ki(21) & (21)] / hi(x1) over every subinterval (8, « ); this
holds also for @ = — .

ReEMARK 2: If the conditions above are satisfied for finite a and b, and the
corresponding estimator, which we shall now denote by ¢,(X5), is bounded by
an integrable function G(Xs) which has a finite second moment, the minimum
variance unbiased estimator for the (a, ) case can be found by computing

¢=(Xs) = Lim ¢,(Xs),

whenever this limit exists. This follows from the fact that

j; " so(2)nhn(z) ( [ " (t) dt)M dz = £(6) ( fo " (t) dt)",

since when b — oo, the right member approaches’ £(8) / [k1.(6)]" for each 6 in
(a, ), and Lebesgue’s dominated convergence theorem applied to the left
member yields

[ se@nitunorm@) ( [ mo dt)"_l dx = £0).

ExampLE 1: Consider a population of incomes, all of which are at least equal
to a certain (unknown) minimum 6, but at most equal to a certain (known)
maximum b. Let £(8) = 6. An individual income might reasonably be assumed
to follow the truncated Pareto law with density

1 (2)
fo(x)=ix—0, 0<6<z<b
)
In this example
1
k1(0) = Lo , hl(x) ==.
18 x
b
An application of Theorem 3 shows immediately that
(54) ¢(Xs) = X5 — %Xs <1 - %), 0 < X5 < b,

is the desired estimator. Notice that #;(z) is not integrable over (0, b), and that
this is not required. Remark 2 applies here, and

$(Xs) = Lim ¢o(Xs) = Xs (1 - 1)
b>o0 n

is minimum variance unbiased for the density fo(z) = 6/2°,0 < § < z < .
For a Type II density there exists an entirely similar theorem; statements

analogous to remarks 1 and 2 also apply. We state the result for completeness.
THEOREM 4: Let X have a density fo(x) which is of Type II over some finite

9 The symbol %,,(8) denotes the limit of %,(8) as b — =.
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interval (a, b), and £(0) be a function which is absolutely continuous over (a, b).
A minimum variance unbiased estimator for £(0) is given uniquely by

o
nky(X L )he(X 1)

Exampue 2: For the Pareto law in Example 1 we can change the assumptions
to a (known) minimum income a, and an unknown maximum 6. Then, the
density becomes

o(X.) = &(X.) +

] <-0->2
fo(x)=0__l_ a<_fv<0’
0 )
-—1
a
and the corresponding estimator for 6 is

(55) $(X1) =XL+11;XL({—L- ) 4 < X, < .

Note that if @ = 0, fo(z) is no longer a density. The estimators for P(X ¢ 4 | 6)
are given for both types of densities by the
CoroLLARY: Let X;, X, , - -+, X, be a random sample from a density of Type 1
or Type 11, and let
£(0) = P(X =219,

where a < z < b. Minimum variance unbiased estimators obtained from Theorems
3 and 4 are

Type I:
0, a<z2< Xg<b,
* .
¢*(2| Xs) = %4_(1__%)_{:’____, a< Xs<z<hb
fhl(x)dx
X3
TypeII:
) 1__)_L______ a<z<X,<b,
* = x ’ ’
¥zl X.) n thz(x) dx
1’ , a<XL<2<b.

We have the case mentioned, following the corollary to Theorem 2 in Section 4,
in which a Stieltjes integral is required to estimate P(X ¢ 4 | ). Both of the
above estimators are mixed distribution functions with z as the variable; a mass
of 1/n exists at z = X in the first case and at z = X, in the second case. The
following expressions can be written for the estimators, and cover all cases.
Details will be omitted.”

10 The symbols A (Xs, b) and A (a, X 1) denote set intersections, and I 4 is the character-
istic function of the set A.
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Type I:
1 1 f hi(z) dx
$4(Xs) = =~ I4(Xs) + (1 - ﬁ) b
Ls hi(z) dx
Type II:

ho(z) dx
d4(X,) = %IA(XL) + (1 - %) L—(G;I—XTD—————
he(z) dz

a

Estimators can also be obtained for P((X;, X5, -++, Xn) € A, | 8); see the
last paragraph of Section 4. ‘

It is noteworthy that in these problems the distribution function.of X is con-
tinuous, but the estimator of P(X =< z| 0) regarded as a function of z is the dis-
tribution function of a mixed distribution.

Davis [3] has looked into the question of estimation of a parameter 6 in a
truncated distribution. He assumes a distribution of the Koopman-Pitman
family, with truncation points a(8) and b(8) which are continuous when regarded
as functions of 4. Restriction to a subfamily of distributions for which X and/or
X, are sufficient takes his density into the factored form considered in the present
section. The main part of the paper concerns results regarding a single sufficient
statistic. He shows among other things that in those cases for which a “single”
sufficient statistic (one ‘simple’ function—see footnote 2) exists, one of the end-
points is a monotone decreasing function of the other; this extends the work of
Pitman [14].

The point of contact with our work occurs in his section 4 when he estimates
6 under the condition that either a(8) or b(8) is identically constant. In that
event X or X, respectively, is a sufficient statistic for §. As an example con-
sider the case which he discusses of a density which is positive over the range
(a, b(8)), with b(8) a monotone function. Suppose one wishes to estimate £*(0)
instead of just 6. Then, let £(6) = £*(b7'(9)). Theorem 4 yields the estimator

d .y
o B (X))

nka(X L)he(X 1)
which, for the case £*(0) = 6, reduces to formula (8) of [3].
Hypotheses for our Theorems 3 and 4 are expressed somewhat differently than

Dayvis’ conditions, and in our derivation the Rao-Blackwell theorem occupies a
more central role (see expression (5.3) and the remarks following).

¢(X,) = £*(b7(X0) +

6. Unbiased estimation for functions of a translation parameter. This section
is divided into two parts; the first deals with densities having the form

fo(x)=f(x~0)) —o <z <o —o < f§< ©;
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the second deals with densities of the form
f(z — 0)

fO(x) = ’
j;f(t— ) dt-

—o <f0<zx<b,

where b is any fixed number.

Let U(X:, X2, ---, X,.) denote any statistic with the translation property
(see (2.2)). When X has density f(x — ), U is known to have a density with
form g(z — 0), — o < x < «. Thus, for an arbitrary function £(8) we consider
the estimation equation

(an [ o@ata — 0 as = o).

As in the case of equation (I) Section 4, this equation is essentially of convolu-
tion type. The following simple theorem may be stated.

THEOREM 5: Let X have density f(x — 0), U(X:1, Xo, ---, X.) be a statistic
with density g(x — 6), and £(0) be a function with a bilateral Laplace transform.
If there exists an unbiased estimator ¢(U) with a bilateral Laplace transform, it will
be determined uniquely by

_ g1 | Ble(=x); 8]
o(U) =B [W U]'

Proor: Replace x by —z and 6 by — 6 in equation (II); then take the bilateral
Laplace transform' of each side of the equation.

CoroLLARY: If X has density f(x — 0), and U(X,, X2, - -+, Xa) 15 a statistic
with density g(x — 0), then the function

£(6) = P(X = z|9),
2 fixed, has the unbiased estimator
_ o | Blf(x);8l ]
$*(z|U) = B [s%[g(x);'o‘]’z vl

provided the right member exists, and hence P(X ¢ A | 6) has the unbiased estimator
64(U) = fade*(z| U).

Proor: .
Ble(—2);ol = B[ [ 0) dys o] = Lo Blst@d;

Thus, from Theorem 5 we have

_ 1| €Blf(2); 8]
#(-2) =9 [WTT]

_ o1 | Blf() ;8] .
- o [ e

(6.1)

11 Recall that for the case of a density g(z) which vanishes for z < 0, B[g(z); s] can be
replaced by 8{g(z); s]
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The latter expression can be rewritten in the form

L[l 5o
o(=2) =B [s%[g(x) ik “]’

which is equivalent to the conclusion of the corcllary.

If $*(2 | U) is itself an integral of a function ¢(z | U), then the latter will be
an unbiased estimator for £(8) = f(z — ), and can be found by omitting the
s in the denominator of the right member before inverting.

An extension to the vector case, analogous to those of the corollaries of sections
4 and 5, also holds for the present corollary.

ExampLE 3: The corollary allows another derivation for a result of Kolmo-
gorov [11] (see also [16]). Let X be normal with mean @ and known variance
oo ;let U(Xy, X,, -+, Xa) = X. Then, -

Bf(z); sl = 2 Blg(x); 5] = 0",

The estimator

82| X) = GO, )

(6.2) )

T oV/1 - 1/n\2nx

—(z—X)2/203(1—1/n)

is minimum variance unbiased for

(6.3) £0) = f(z —0) = 60\1/2_; o020 )

It can easily be shown that for 1 £ m < n

(64) St = 0)s = 0)-ofCem — 0 = (=) o[ ~F5 (o = 07268

is estimated by

(21,2, 2m| X) = 1 .
(6.5) remermls <oo\/zr>m4/__i
x| = 33 G = 22t o [ ~(a = D2t (£ - 1) .

In his derivation of the above result Kolmogorov [11] utilized the close con-
nection between the “source solution” of the heat equation

(6.6) ¥(zt) = \/—t“"’“, 0<t< o, —o<z< 4w,

and both the kernel of the equation and the function to be estimated. Hirshman
and Widder {9] considered the heat equation in a similar, but not identical
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manner in order to solve convolution equations. They defined the Weierstrass
transform of a function ¢(z) as
+o0

(6.7) . ¢(z)¢(6 — z,1) dz = £(0) .

Inversion is accomplished by the operator exp (—tD?), defined by

—tD2 _ _l_faﬂw m viit _yD
e Ex) = 27t Jaio /‘/;e ¢"E(z) dy .

Then, ¢ "”*£(z) is shown to satisfy the heat equation, and

(6.8) $(z) = Lim ¢ P’ (x).

Hirshman and Widder, in a series of papers summarized in [9], consider in
general the convolution equation
+o0

(6.9) 3} #(z) $(6 — z) dz = £(6) ,
where {(z) is a function with a bilateral Laplace transform 1/E(s), E(s) having
the form
(6.10) E(s) = e—cc2+bs H <1 _ 3_) ea/ak,

k=1 Qay,
with0 < ¢ < o, —0 <@ < ®, —0 <b< o, Y (4) < .
Motivated by the methods of operational calculus, they assign a meaning to the
operator E(D), and then write the solution of their basic equation as ¢(z) =
E(D)%(x). Their work constitutes a rather elegant unification of many separate
integral transform theories under the general heading of the convolution trans-
form, but it is essentially non-statistical. This may perhaps best be seen from
the fact that one of the cornerstones of their theory is the notion of a variation
diminishing kernel; that is, a kernel { such that the number of sign changes for
£(z) in (— o, + o) does not exceed the number of sign changes for ¢(x) in
(— <, + o) when ¢, £ and { are related as above. This concept has no special
operational meaning in statistical problems, which accounts for the fact that
Kolmogorov, as well as Washio, Morimoto, and Ikeda, who were interested in
problems of statistical inference, were apparently unaware of some of their work.
The function of the Weierstrass transform in the Hirshman-Widder theory is to
take care of the factor exp (—cs?) in E(s).

ExampLE 4: The normal distribution is a special member of the class of stable
distributions. Let us recall three facts concerning this class (see Gnedenko and
Kolmogorov [7], chapter 7). First, the characteristic function must have the form
(Khinchin and Lévy)

c(t) = exp[i()t — B|t|°‘(] + 7v sgn (&) tan%)], — 0 << o, 320,

0<a

IIA

2,0 # 1,y

A

L
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and another form (which will not be used) for & = 1. Also, all nondegenerate stable
distributions are continuous (Khinchin), and for 1 < a £ 2 have entire distribution
Junctions (Lapin). Thus, a nondegenerate stable distribution has a density f
which satisfies our conditions. Let @, B8, ¥ be known, with 1 < a =
2,U(X1,Xs, - ,X,) = X,and £(6) = f(z — 9). Theorem 5 and its corollary
can also be stated in terms of characteristic functions (which is easier in this
case than to convert C(t) to a bilateral Laplace transform). Using this fact we
obtain

(2| X)
(6.11)
= I:exp{ — B(1 —n'™) |¢* (1 + 7y sgn /t) tan L;)} ;2 — X]
Therefore,
(6.12) 64(X) = f,, (1 _1n1_a) Hef ((1 i;lff),,a) dz

is an unbiased estimator for P(X ¢ A4 | 6).

For a density of type f(xr — 8), and any statistic U with the translation
property, it is well known (and also follows from our discussion earlier), that if
Ey(U) exists for any value of 6, it will exist for all 8, and that ¢(U) = U —
Eo(U) is unbiased for £(8) = 6. It appears reasonable that if the first moment
of a density f(x — 6) fails to exist, there will be no unbiased estimator for 8
based on a single observation X, . The strongest result known to the author in
this direction is: for a density f(x — ) = 0 when z < 6 there is no estimator
¢ which is bounded in every interval (0, ¢) and such that the order condition
¢(r + y) = O(¢(z) + ¢(y)) holds for large x and y. The proof of this some-
what unnatural assertion will be omitted.

The existence of an unbiased estimator may well depend on the sample size.
In fact, the following observation, stated as a Theorem, will be of some interest
in this connection. The proof is simple and will be omitted.

TaEOREM 6: If X has the density f(x) satisfying the conditions f(z) = 0 for

z < 0, and
1
flz) =0 (xa+l+kln)

for large x, where & and n are positive integers, and a« > 0, then EX?% will exist
when X is based on n observations.
From the unparametrized density of Xy,

p(z) = nf(2)[1 — F(2)]"7, 0 <z < e,

where F(z) is the distribution function of X, an integration by parts shows that
(6.13) B(Xs) = [ ap(@)de= [ 11— F@)I"de
0 0

whenever the right member exists.
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ExampLE 5: Let X have the half-Cauchy density f(z) = (2/x)(1 + 2°)7,
0 < 2 < «, with distribution function F(x) = (2/x) tan™" z, > 0. If we are
interested in E(X5s), then £ = 1, and by Theorem 6 the smallest sample size
which will insure its existence is n = 2. In that event EXj3 will not exist; in
general for n = k, the first £ — 1 moments of X will exist. It is clear that

Ey(Xs) = [ (1 - —2- tan ™" :1:) dx .
0 T
From the table of Grébner and Hofreiter ([8], page 156) we see that

_ 2( n S (=1)'Byn” )

(6.14)  9(Xe) = X5 = 2 (n 1T L e - o
is an unbiased estimator of 6 in the density f(z — 6).

ExaMpLE 6: Let X have the density f(z) = exp{—(e" —z — 1)},0 <2 < w0,

with distribution function F(zx) = 1 — exp (1 — ).

Bu(Xs) = [ ¢ da,

0
soformn = 1-
(6.15) #(Xs) = X5+ €¢"Ei(—n)
is an unbiased estimator for 6 in the density f(x — 9).
We shall now consider truncated versions of the densities f(x — 6): namely,
— 6
fo(z) = _fz—06

) , —o <f<zx<bD.
ff(t—o)dt
6

Results are not analogous to those of the untruncated case, as the following
theorem shows. All estimators occurring in the sequel will carry the subscript b.
THEOREM 7: If X has the density fo(x), 6 < x < b, introduced above, then there
exists no unbiased estimator for 6 which has the translation property.
Proor: Let ¢5(X;, X2, - -+, X,) be such an estimator. We can write

o(Xy, Xoy oo, Xa) = Xi+ (0, Xo — Xy, -+, X — Xy).
Consequently,
0 = Eopp(X1, X2, -+, Xu) = Ey(X1) + ¢
for some ¢ and all 6 < b, since the joint distribution of
(X — X1, Xs— X1, -+, Xo — X))

is independent of 6, and the expectation of the bounded random variable X,
must exist. Thus, ¢ is unbiased if and only if X; + ¢ is unbiased. This quickly
leads to

b—0
fo (x —c¢) f(x)dz =0 —o <6 <b,
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which implies that f(z) = 0 for —® < z < b, contradicting the fact that f(z)
is a density.

It is difficult to construct a method leading directly to unbiased estimators
based on the whole sample for the truncated case. There is a way to construct
an estimator for 6 based on a single observation X, . An average could then of
course be obtained from a sample X;, X,, ---, X, . Since the construction is
based on an integral equation of somewhat more interest than equations (I)
and (II), in sections 4 and 5 respectively, it will be presented as

TrEOREM 8: If X has the density

filz) = 4E=0

];f(t—e)dt’

then, if there exists an unbiased estimator ¢»(X:) of 0 which has a Laplace transform,
it will be determined uniquely by the relation'

_p gt [l _¥@) ;4
$(X1) = b ¢ [3_2 s8[f(=) ;5]

Proor: The estimation equation can be written in the form

0 <z <0,

;b_Xl]

[ 1 = stz — 0) da = & - 0) [sa-oa.

Now, let
b—¢b(b—x1)=¢b(x1), b—x1=y, b—0=7

This produces the equation

(111) f W — y) dy = Tfo’fm dy, 0<r<o.

The transform L[¥s(x); s] exists by hypothesis, and [f(z); s] exists because
f(z) is a density over (0, « ). Hence,

(6.16) () ; sl f(z); sl =8 [x /:f(y) dy; 8],

and by virtue of the relation

(617) ¢ [z f:f(y) dy; s] = — ¢ I:,/;f(y) dy; s] - %(8[]”(90); S]>,

s
we obtain
1 ¥[f(z);s]

()i = 5 RI@); s

This proves the theorem.

BRf(@); s] = (d/ds)R[f(2); s].
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ExampLE 7: Consider the density

1 . g-1/2G—0)

Jo(x) = N2n " A T §<z<b.
PO, V-

From the Bateman Project Tables ([1], p. 246) we obtain L[f(x); s] =

exp (—4/2s). Also, ¥[f(x); s] = —(2s)™* exp (—+/2s). Therefore,

a1 1 -
(6.18) ¢,,(X,)=b—81[;2+@7;b—X1]=X1—1/2(1’WXI)

is an unbiased estimator for . We can also state that X — (2/x)"*n™">_(b —
X:)"* is unbiased for 6. Note that the density obtained from fs(x) by putting
b = o, has no first moment, and it is conjectured no unbiased estimator based
on a single observation.

7. Applications to Life-Length Distributions. The purpose of this section is
to derive minimum variance unbiased estimators for functions of the parameters
of the important distributions in life-testing, namely the exponential, gamma,
and Weibull distributions. The exponential distribution has been found to give a
good fit to length-of-life data in many situations not involving fatigue: for ex-
ample, lengths of telephone conversations, and lengths of life for electron tubes.
The two main distributions which describe life-length under fatigue are the
gamma and the Weibull distributions. Although the exponential distribution is a
special case of both of the latter, it is not suitable since its use carries the impli-
cation that at any time future life-length is independent of past history. This
appears untenable per se and has also been virtually disproved empirically by
Freudenthal and Gumbel ([5], p. 579) in their work on the fatigue of metals.
The model of Birnbaum and Saunders [2], which helps to explain the roles played
by the gamma and Weibull distributions in fatigue testing, will be discussed
briefly.

ExPONENTIAL DISTRIBUTION. Let X have the density
(7.1) foo(x) = pe ™77, > 0.

Ttis well knownthat (X5, > X;) is a (vector) sufficient statistic for the (vector)
parameter (8, p). It will be convenient in what follows to consider instead
(Xs, X — Xj) which of course is also sufficient for (8, p). This statistic was
extensively discussed by Epstein and Sobel [4]. They derived minimum variance
unbiased estimators for § and p after verifying completeness for (Xs, X — Xs).
For our purposes the joint density of Xsand X — X is required; it is implicitly
contained in the.work"of Epstein and Sobel, but was not written down. In view
of the facts that Xgand V = >_(X, — Xj) are independent, and that V is
distributionally equivalent to the sum of » — 1 independent exponential random
variables when § = 0 and p = 1, it is quickly shown that Xsand ¥ = X — X5 =
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V/n have joint density

n " n—e —nplz, '~ q
(72) ho,o(ws,y) = f,(—(n—-p_)—l)y st s K 0,0 <y < .
All estimators given below will be functions of X and Y, and will have minimum
variance.

For a general function £(6, p) the estimation equation is

© L) —npld
7 7 n—2 —np(zgty) — (n - 2) 15(0, P)e ?
@) [ e,y dy das o

If £(6, p) has one partial derivative with respect to 6, and if there exists an
unbiased estimator ¢(Xs, Y) which for almost all X5 is continuous and has a
Laplace transform in Y, this estimator will be

ak-
an (0y s/n)
(74) ¢(Xs,Y) = ("Y—n_?)!ga [E(e’f;{n) _ a6 ,. ;Y]

) s S 0=Xg

This formula is easily obtained from (IV) after differentiating both sides with

respect to 6 and replacing np by s.
ExampLE 8: £(6,p) = 6, r = 0.

.

_ 1 7 r—1
¢<XS,Y>=(—"T_?>~'8“‘[——":1—”’—;Y] .
) = S" Sn 0=Xg

By virtue of 7'(s™) = Y"7'/T'(»), » > 0, we have

¢(Xs,Y) = X5 — rY X5

n—1
For £(6, p) = 6,¢(Xs, YY) = X5 — Y/n — 1 (Epstein and Sobel [4], Corollary
8).
ExampLE 9: £(0,p) = p,r <mn — 1.
—_ r+l—n —_
(n ~2)18~1 s ;Y:I _1 Tr(n-1)
yr—2 n" Y"nT(n —r — 1)

{See Epstein and Sobel [4], Corollary 6, for the case r = —1)
ExampLE 10: (100 pth percentile) £(6, p) = (1/p) In (1/1 — p) + 6.

¢(X37 Y) =

¢(Xs,Y) = Xs — n—l_—l Y(1+4+nln(1 — p)).

ExampLE 11: £(0,p) = [P(X £ 2|6,0)]",m = 1,2, ---
We have
£(6,0) = [1 — )7, 0 < z
and zero elsewhere.

ad ms —s(z—0)/nym—1 —s(z—0)/n
S0, 5/m) = =2 (1 — e,
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Thus,
m —g(z—0)/n
1—{1——)e
(n—2)! = ﬁ[ ( n) —s(z—0)/nym—1,
¢>(0,y)=7_—1——8 l prm {1—e 1"y
The expression in the first pair of braces inverts to the function
n—2

(v (2 —10)
75 ¢ y) | (n — 2)1” < n
7. ,Y) = _ _

j v _(1_@)[y—(z—0)/n]“ 52—

|t = 2yt n m—2! Y7
Now, a formula of the Bateman Project Tables ([1], p. 244) states that

[za~}]

() (1 — ™)l = 2 Ci(—1)"[8(s); & — akl.
k=0 -
An application of this formula, together with (7.5), to the expression for ¢(0, y)
yields
¢(XS ) Y)

@0 =1+X [CZ‘“ + (1 - %L) 02”:1‘] (—1)* (1 — k(_z..;Y_Xs))2

with the summation extending over k = 1, 2, ---, Min [m, nY(z — Xs)™.
Note that £(6, p) isalso P(X, < z| 6, p) if X, is the maximum of m observations.
Form = 1,£(6,p) = P(X = 2|6, p),

07 z < Xs,
(77) anAw=1—(uJ)Q—z‘Xﬁ Y> (e Xa)/n,
n nY
1 Y < (2 — Xs)/n.

)

The estimator for P(X € A | 8, p) is then

$4(Xs, V)

78) (n = 1)(n — 2)

) 1 B 2 — Xs n—3
= ;LIA(XS) + g A ke Xetnt) (1 nY ) dz.

Now consider the truncated exponential as an example of a Type I density
(see Section 5) with '

fo(z) = Ei(0)h(z), 6 <z <b,

kl(ﬁ) = —_‘_o—l"Tb, hl(x) = e—x.
(4 — €

IixampLE 12: £(8) = 6, r = 0.

F(Xs) = X5, fxg(Xs) = (75— )T,
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and by Theorem 3
»(Xs) = X5 — %TX;—I(I _ 6_(1)_‘\—8)),

Remark 2, following Theorem 3, applies and we have the estimator

¢a(Xs) = X5 — X5
ExampLE 13: £(8) = P(X < 2| 9).

: IO, 2 < Xs <D,
(7.9) o*(2| Xs) = 1 1\1 = %9 }
Iﬁ+(l_ﬁ)l_—zm’ —x < X5 <z
and
— ]. 1 e“z
(7.10) oa(Xs) = = I.(Xs) + (l — —)f —— dz.
n n) Jaxgh €% — €

GamMAa pISTRIBUTION. The model of Birnbaum and Saunders [2] provides a
framework for the discussion of results in this and the next subsection. They
consider a structure consisting of m components which is subject to stress of
some sort. Let S, be the length of life for the structure until A < m components
have failed. It is shown that Sy has the density

B 1 f:t >)\-—1 f _ fa:
(711) f(:c) = P()\) ( A ‘Y.s(t) dt ‘)’5(13) exp\ A ’Y.s(t) dty.
They term v;(¢) the failure rate of a single component at time ¢ under the damage
function §; it is assumed that

(7.12) vs(t) = w(8)d(¢),

where «’(t) represents the deterioration of a component with time, and &(¢)
represents the instantaneous damage at time ¢. The other assumption on which
the above result depends is that the instantaneous damage to the remaining
m — j components after j( < A) have failed is inversely proportional to m — j.
The gamma distribution with scale parameter p and known parameter A has
the density
fol@) = 1‘”(‘;7) (px)le", 0<z<w®, 0<p< x,
and is the distribution of the life-length of a structure which survives until A
components have failed, and is subject to constant instantaneous damage with
no deterioration; that is, v;(¢) = p. The statistic ) X, is sufficient and complete
for p; hence, all estimators in this subsection (except (7.19)) have the property
of minimum variance. The density of Y, X, is known to be pg(px), where
g(z) = ™% */T(n\), 0 < & < . Thus, by Theorem 1, Section 4

(7.13) ¢ (L Xe) = r(ix(ni) r) (Ele)r
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is & minimum variance unbiased estimator for £(p) = p’, r < n\. This result was
also obtained for 0 < r < n\ by Washio et al [16].
Now consider

(7.14) £p) = FM,,,(II z) lexp(—pgzj),

the joint density of m gamma distributed random variables, with known pa-
rameter A and unknown scale parameter p, evaluated at a fixed sample point
(21, 22, "+, 2m). Recall two properties of Mellin transforms:

(i) Mla"¢(z); sl = M (x); s + 7],

(ii) Mg (az); s] = (1/a”) Mg (x); sl

The corollary to Theorem 2 is to be used; accordingly, we employ properties
(1) and (ii) to calculate

m

kN <1=Il zj)H T(mA + s — 1)
i) ror(%a)

j=1

Mig(z): ] = r'(n\ +s—1)

T'(n\) ;
whence,
w1 . (]Iill zj)x—l I'(m\ + s — 1)T'(n\)
m [;; 4 <%) ; S] _ <E z])’")\’f‘x—l e .
Let

Bus(z) = (1L — 2)"7/B(u, »)
for 0 < x < 1, and O elsewhere. It can be shown that

g _Tu+s— DI+,
(7.15) MBer(2); 8l = w5 = g

consequently, from property (ii)
m A1
~¢\;) =
o \w

m
j=1
=i B, (n—my (’UZI 2;‘) )
. §=
and finally for the estimator we have

[T (g
(2n 20 s _ T'(n\)
sla e, el LX) = g NI (S X)™

. et i (n—m)\—
(Hz’) (1 - "=‘z’>

2 X

(7.16)
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for 0 < X 7z, < D Xk, and 0 elsewhere. The special case m = 1 is easily
handled. The estimators for P(X = z|p) and P(X e 4 | p) are, respectively,

( /Xy 4 .
(7.17) ¢*<2| Z Xk') _ i_{ B, (1) dt 0<z< E X
1, z > Z Xk,
d
an ( 2 ))\_1 <1 2 )(n——l))\—l p
' = 1 2 X 22X ¢
(7.18) 6.2 Xi) = fA(O,Exk.) SX, BOw (n = DN

Numerical calculations can be carried out with the Table of the Incomplete
Beta Function [13].

ExampLE 14: Consider the following sample of life-lengths in hours for a
structure with 3 components: )

592 198 1458 780 132
1012 884 530 582 606

Suppose we wish to estimate P(X =< 100 | p), the probability that the life of a
given structure will not exceed 100 hours.

n=10, AX=3, (n—1DA=27, D X,= 5774
The estimate is then (see (7.17))

One might also want to know one of the percentiles, say the 99th. We then esti-
mate b.ge/p; Where b g is the 99th percentile of the unparametrized distribution,
that is, for A = 3, p = 1. The above formula (7.13) gives the estimate

#(5774) = —L_ (5774)(8.40) = 1680 hours.

10(3)
Let us consider for a moment the case of the gamma density f(x — 60) =
(x — 6)" % “®/T(\) with translation parameter. The following unbiased

estimators, which do not have the minimum variance property, have been calcu-
lated from the formula (6.13) for Eo(X5):

1<& (n)j!
Xs— -~ L) = A=2
y n;é(])n” ’

1< (n 2]')1;!
Xs— = ; = A =3.
s n;;;.(])(k n*’

For A = 1 we have the exponential case, and the estimator is known to be
Xs — (1/n). Each higher integral value of A produces an expression with an
additional summation sign.

(7.19)
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WeiBuLL pisTRIBUTION. This distribution fits the Birnbaum-Saunders model
for the failure rate vs(¢) = ap® 't*"" which may arise in a variety of ways. For
example, the instantaneous damage may vary as a power of the time, with no
deterioration in the component or vice-versa; it, is also possible for both w(t)
and 6(t) to vary as powers of the time. There appears to be no way to distinguish
between these possibilities with their methods. We consider first the Weibull
density with parameter p and fixed a,

(7.20) fo(z) = ap(px)® e, t>0,p>0a21.

The statistic »_ Xi is sufficient for p and has densiy p°g(p“r), with g(x) =
2" "¢ */T'(n). This follows from the fact that (pX)® has an exponential distribu-
tion with parameter 1 whenever X has the Weibull distribution with parameter
p (see the first part of Section 4). The family of distributions for > X7 is known
to be complete and hence all estimators (except (7.28)) for functions of p will
have minimum variance. )

By Theorem 1, Section 4,

., r'(n) 1\’

7.21 Xr) = , <n
(7:21) #(2 Xi) PM—N®<ZX9 Ten
is the proper estimator for p". The joint density of m independently distributed
observations, evaluated at a fixed point, can be estimated in a manner entirely
analogous to the gamma case.

m

(7‘22) E(p) =a" (H zf>a— pma exp <—Zl (pzj)a> ) m = 1) 2) e, N — 1.

j=1
Then,
m a—1
N [1«# (1)'8] _° <JI=]1 Zj> I'(s+m — 1I(n)
N ’ m—1 m 3 ’
A (Zzi-‘) (Zz;') I(s+mn—1)
=1 =1

and finally

m a—1 m n—m—1
3 T'(n) o <H zi) Z Zj

=1 j=1

“ta-m (oxp) \| S

for 0 < Ymizf < 3 Xi, and 0 otherwise. For the cases £(p) = P(X = z|»p)
and P(X ¢ A | p), respectively, we then have

2o n—1
1-Q——~Q, 0<z< (XX,
. X 2> (S xpyve,

(723) (X X¥)

(7.24) o*(z1 2 X5) =

, . (n — Dot~ e\
(725)  ¢u(X Xi) = -’;(o,(zxz)l/“ > X: (1 > X:‘?) “
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The 100 pth percentile of the Weibull distribution is

(7:26) w0 = (2)]

for which the estimator is

la
[m (1 : p)] rn)
a - - a\1l/a
For the location parameter case formula (6.13) of Section 6, previously used
for the gamma distribution (A = 2, 3), provides the estimator for ,

(7.28) 6(Xs) = Xs — L/

antle
which does not possess the minimum variance property.
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