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A GENERALIZATION OF THE GLIVENKO-CANTELLI THEOREM

By Howarp G. Tucker
University of California, Riverside

A theorem referred to as the Glivenko theorem or the Glivenko-Cantelli
theorem states thatif X; , X,, ---, X,, - - - is a sequence of independent, identi-
cally distributed random variables with any common distribution function F(z),
then the sequence {F.(z)} of empirical distribution functions converges uni-
formly to F(x) with probability one. (See Loéve [3] and Gnedenko [2].) The
assumption of independence is not necessary for this theorem, and it is readily
observed that the same conclusion holds if the sequence of random variables is
a strictly stationary, ergodic (or metrically transitive) sequence. The purpose
of this note is to prove a generalization of this theorem in the case where the
sequence of random variables is strictly stationary, not necessarily ergodic, and
with the same assumption that the common distribution function is arbitrary.

It is assumed that the reader is familiar with strictly stationary stochastic
processes (with discrete time) and is acquainted with the notion of measure-
preserving set transformation determined by the process and the notion of ran-
dom variable transformation determined by this set transformation. Information
on these concepts is available in Doob [1] and Loéve [3]. The principal result
to be used in the proof of the theorem is the ergodic theorem for random variables
(see Loéve [3], p. 434), which can be stated as follows:

Let 8 be a measure-preserving set transformation over the probability
space (R, @, P), let T be the random variable transformation deter-
mined by S, and let 3 be the invariant sub-sigma-field of @ determined
by 8. If X is any random variable for which E | X | < «, then

Pn ' (X +TX+ --- + T"'X) - E(X|3)} = 1.
By means of the ergodic theorem in this form the following theorem is obtained.
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TrEorREM: If {X,} is any strictly stationary sequence of random variables, if 3
18 the tnvariant sigma-field of events determined by it, and if {F.(x)} denotes the
associated sequence of empirical distribution functions, then

P{ sup | Fu(z) — F(z]|5) |—,ro} =1,
—0Lz<lt0
where F(x | 3) denotes the conditional distribution function of X1 given 3.

Proor: All equalities and inequalities between random variables, and all
limits of sequences of random variables in the proof that follows are to be under-
stood to hold with probability one. Also, equality between events means that
their symmetric difference is an event of probability zero. Let 7 and & be two
arbitrary, fixed integers for which 0 < j < k. We define a random variable X j
by

(1) X, = inf {s| s is rational, F(s|3) = j/k}.
In order to verify the fact that X is indeed a random variable one need only

observe that [X; < z] = N {[F(s|3) = j/k]|s = =, s is rational} for every

real number z. By this definition of X j , it is measurable with respect to 3, and,
consequently, if we denote by T the measure preserving set transformation
determined by {X,} as well as the transformation of a random variable which
is measurable with respect to the sigma field determined by {X,}, we have
TX = Xj, and T[X eB] = [X eB] for every linear Borel set B. Formula (1)
easily implies that

(2) F(Xp —0]3) <j/k < F(Xul9)

and that there is no 3-measurable random variable smaller than X ; with posi-
tive probability for which inequality (2) is true. Since

Fu(z) = n—liz; Ix;<a,
it follows that
Fo(Xn) = n—lg Iixi<xjp -
It is now shown that the sequence of random variables
Txigxm,2=1,2, -}

is strictly stationary. Indeed, by the properties of T, if {r.} denotes the set of
all rational numbers, then

TX; > Xa] = T(U,[X; > r)[ X < 1))
= Ur,,[Xi+1 > rn][Xjk < rn] = [Xi+l > Xik]'

Thus T[X; £ Xa] = [Xiqa = Xl
By the ergodic theorem stated above, we get

PlF.(X3) = P{[X: £ Xa]|3}] = L
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Let z be any real number, and let
4, = [13 < X]_k],
A;=[XjpS2o<Xp, 25jsk-1,

and
A = X = 2]

(It should be noted that any of the events A,, -+, As_1 can be empty sets.)
We further use the notational conventions F(Xy |3) = 0 and F(X |3) = 1.
Then, for fixed & and fixed z, we may write

k k
(3) ZIF(X:-—M |8)14; = F(z|3) = ZIF(Xj.k — 0]3)14;,
i= j=
and
k k
(4) ;Fn(Xj—l,k I S)IA,' § Fn(x) é Zan(Xjk - O)IA:‘ .
Jj= =

From inequality (2) we obtain
(5) F(Xpp —0[3) — F(X;a4|3) = 1/k.
Inequalities (3), (4), and (5) yield

k
Fo.(z) — F(z|3) < él(Fn(Xjk = 0) — F(Xj1|3)) 14

k
= ;(Fn(ka) — F(X5]3))14;
(6) k
+ ;(F(Xﬂcw) = F(Xjas|8)) 14
< max | Fo(Xu) — F(Xu|3) | + 1/k.
1=i<k
In precisely the same manner we arrive at
(7) F(z|3) — Fa(z) 2 —1/k — max | Fa(X3) — F(X|8) .

Combining inequalities (6) and (7) we obtain
(8) | Fu(z) — F(z|3) | = 1/k + llilfgkiF’n(Xjk) - F(Xal|3)|.

Since the right hand side of (8) does not depend on z, (8) will continue to hold
if we take the supremum of the left hand side over all real z. If we then take
lim sup of both sides as n — « and make use of the fact that the integer & may
be arbitrarily large, we obtain the conclusion of the theorem.
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