ASYMPTOTICALLY EFFICIENT TESTS BASED ON THE SUMS OF OBSERVATIONS¹ By JOHN H. MACKAY Georgia Institute of Technology Summary. For tests, $\phi = \{\phi_k\}$, of composite hypotheses, ω_1 and ω_2 , asymptotic efficiency is defined in terms of the behavior as $\alpha \to 0$ of the sample size N_{ϕ} required to reduce the maximum risk to α . For problems where the ω_i contain elements θ_i whose relative densities satisfy $$\sup_{\omega_1} \inf_{t>0} E_{\theta}(f_2/f_1)^t = \inf_{t} E_{t}(f_2/f_1)^t = \sup_{\omega_2} \inf_{t<0} E_{\theta}(f_2/f_1)^t,$$ Chernoff's Theorem 1 [2] is applied to the non-randomized test ϕ^* , with $\phi_k^* = 1$ or 0 according as $\sum \log (f_2/f_1) > 0$ or not, and proves ϕ^* asymptotically efficient (Theorem 2.1). The principal results of the paper are applications of Theorem 2.1 to tests of the difference $(\xi - \eta)$ of binomial probabilities with samples of relative size m/n. For $\omega_1 = \{\xi - \eta \le -\delta\}$, $\omega_2 = \{\xi - \eta \ge \delta\}$, certain tests of the form $\phi_k^* = 1$ if and only if $\lambda(\xi - \frac{1}{2}) > (\hat{\eta} - \frac{1}{2})$, with λ increasing in m/n, turn out to be asymptotically efficient, while all tests of the form $\psi_k = 1$, a_k , 0 according as $(\xi - \hat{\eta})$ is greater than, equal to, or less than c_k are asymptotically inefficient when $m \ne n$. For given relative sampling costs, the ratio m/n may be chosen so that the asymptotic cost of observations is minimized. 1. Introduction. Our results concerning asymptotic efficiency depend heavily on the work of Cramér and Chernoff ([1], [2]). In order to use these results in connection with the binomial problem mentioned above, we find a test of the composite hypothesis which depends on the sum of observations X, each of which is the likelihood ratio of distributions indexed by θ_i ε ω_i . If $M_{\theta}(t)$ is the moment generating function of X and $\rho_{\theta} = \inf M_{\theta}(t)$, we try to choose the θ_i so that ρ_{θ} attains its maximum in ω_i at the point θ_i . We then employ a Bayes risk to establish a lower bound for the minimum sample size required to reduce the maximum risk to α , and use Chernoff's Theorem 1 to show that the corresponding sample size for our test is asymptotically equal to this lower bound. Let $\theta \in \Omega$ be a 1-1 index on a class of distributions on a probability space with elements Y and let ω_1 , ω_2 be disjoint subsets of Ω . Let $\mathbf{Y} = (Y_1, Y_2, \cdots)$ be a sequence of independent random elements with a common distribution indexed by $\theta \in \Omega$. A test (sequence of tests) $\phi = \{\phi_k\}$ with ϕ_k depending only on Y_1, \cdots, Y_k will be described by the probabilities $\phi_k(\mathbf{Y})$, assigned to the decision " $\theta \in \omega_2$." The loss of the decision " $\theta \in \omega_1$ " is denoted by $w_i(\theta)$ and it is assumed that Received May 21, 1957; revised February 14, 1959. ¹ Most of the results in this paper were obtained in research work sponsored by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract Number AF 18(600)-458, and were included in the author's PhD thesis at the University of North Carolina. (1.1) $0 \le w_i(\theta) \le \overline{w} < \infty$, $0 < w_i(\theta)$, if and only if $\theta \in \omega_j$, $j \ne i = 1, 2$. The k-observation expected loss for the test ϕ is designated $r_k(\theta, \phi)$, $$r_k(\theta, \phi) = w_2(\theta)E_{\theta}\phi_k + w_1(\theta)E_{\theta}(1 - \phi_k).$$ Definitions 1.1. For any test ϕ , any distribution P on Ω , and any $\alpha > 0$, $$r_k(P, \phi) = E_P r_k(\theta, \phi), \qquad r_k(\phi) = \sup_{\Theta} r_k(\theta, \phi), \qquad r_k = \inf_{\Phi} r_k(\phi),$$ and, with LI abbreviating "the least integer k such that," $$N_P = LI [\inf_{\phi} r_k(P, \phi) \leq \alpha], \qquad N = LI[r_k \leq \alpha], \qquad N_{\phi} = LI[r_k(\phi) \leq \alpha].$$ We note that $\inf_{\phi'} r_k(P, \phi') \leq r_k \leq r_k(\phi)$ for all k, P and ϕ and hence $$(1.2) N_P \leq N \leq N_{\phi} \text{for all } \alpha, P, \phi.$$ Thus, for each α , N/N_{ϕ} defines an index of efficiency of the test ϕ , and ϕ will be called asymptotically efficient as $\alpha \to 0$ if and only if $$(1.3) N \sim N_{\phi} \text{as } \alpha \to 0.$$ 2. Asymptotic efficiency of tests based on sums. Let X_1 , $X_2 \cdots$ denote the values of a real function at Y_1 , $Y_2 \cdots$ respectively. Definitions 2.1. $$egin{aligned} M_{ heta}(t) &= E_{ heta}e^{t\mathbf{X}}, & -\infty < t < \infty, & ho_{ heta} &= \inf_t M_{ heta}(t), \ S_k &= X_1 + \cdots + X_k \,, & \phi_k^*(\mathbf{Y}) &= egin{cases} 1 & ext{if } S_k > 0 \ 0 & ext{otherwise} \end{cases}. \end{aligned}$$ We shall use Chernoff's Theorem 1, a variant of his remark (3.11) and part of the general version of his lemma 8 [2]. THEOREM (Chernoff). If $-\infty \leq EX < 0$ and $0 < \epsilon \leq \rho$, where $\rho = \inf M(t)$, (T) $$(\rho - \epsilon)^k = o[\Pr\{S_k \ge 0\}],$$ $$\Pr\{S_k \ge 0\} \le \rho^k.$$ (R) Remark (Chernoff). If M(t) < 1 for some t > 0, EX < 0. (A direct proof consists in first noting that the existence of EX is implied, and then that M is non-decreasing on $t \ge 0$ if $EX \ge 0$.) Lemma (Chernoff). If f_1 and f_2 are probability densities with respect to μ of distinct distributions and $X(Y) = \log f_2(Y) - \log f_1(Y)$, then $$M_2(t) = M_1(t+1) 0 < t < 1,$$ (L) the ρ_i are attained for t_i with $t_2 = t_1 - 1 < 0 < t_1$ and $$\rho_1 = \rho_2 = \inf_{0 < \iota < 1} \int f_2^{\iota} f_1^{1-\iota} d_{l} \iota < 1.$$ The following theorem is implicit in [2] for the case where the ω_i are simple. Theorem 2.1. If - (a) $X(Y) = \log f_2(Y) \log f_1(Y)$ with f_2/f_1 the likelihood ratio of distributions indexed by $\theta_2 \in \omega_2$ and $\theta_1 \in \omega_1$, - (b) $\rho_{\theta} \leq \rho_{i}$ on ω_{i} (i = 1, 2), - (c) $E_{\theta}X < 0$ on ω_1 , $E_{\theta}X > 0$ on ω_2 , then - (i) the test ϕ^* is asymptotically efficient as $\alpha \to 0$ and, - (ii) except in the trivial case where $\rho_1 = 0$ and $N = N_{\phi^*} = 1$, $$N \sim N_{\phi^*} \sim \frac{\log \alpha}{\log \rho_1}$$. PROOF. By (c) it follows from (L) that $\rho_1 = \rho_2 < 1$. Thus if $\rho_1 = 0$, $\rho_{\theta} \equiv 0$ on $\omega_1 \cup \omega_2$ and it follows from (c) and the definition of ρ_{θ} that the distributions of ω_1 concentrate on X < 0 while those of ω_2 concentrate on X > 0 (Lemma 1 of [2]). By (a) ϕ_k^* is Bayes with respect to P^* concentrating on θ_1 and θ_2 and assigning to θ_i probabilities proportional to $w_i(\theta_j)$, $j \neq i = 1, 2$. Letting $$w^* = w_1(\theta_2)w_2(\theta_1)/[w_1(\theta_2) + w_2(\theta_1)],$$ $$r_k(P^*, \Phi^*) = w^*[E_1\Phi_k^* + E_2(1 - \Phi_k^*)].$$ (T) applied to X at θ_1 , -X at θ_2 yields for any $0 < \epsilon \leq \rho_1$: $$(2.1) r_k(P^*, \phi^*) \ge 2w^*[(\rho_1 - \epsilon)^k] \text{for all } k \ge k(\epsilon).$$ Hence $\alpha \geq r_{N_P^*}(P^*, \phi^*) \geq 2w^*(\rho_1 - \epsilon)^{N_P^*}$ for all $\alpha < 2w^*(\rho_1 - \epsilon)^{k(\epsilon)}$ and therefore $$(2.2) N_{p^*} \ge \frac{\log \alpha - \log 2w^*}{\log(\rho_1 - \epsilon)} \text{ for all } \alpha < 2w^*(\rho_1 - \epsilon)^{k(\epsilon)}.$$ To complete the proof in the case $\rho_1 > 0$ we obtain an upper bound for N_{ϕ^*} through one for $r_k(\phi^*)$. Using (1.1), (T) for each θ and (b): $$(2.3) r_k(\phi^*) = \max_{\omega_1} [\sup_{\omega_1} w_2(\theta) E_{\theta} \phi_k^*, \sup_{\omega_2} w_1(\theta) E_{\theta} (1 - \phi_k^*)],$$ $$\leq \overline{w} \max_{\alpha_1} [\rho_2^k, \rho_1^k] = \overline{w} \rho_1^k.$$ From (2.3) with $k = N_{\phi^*} - 1$ $$(2.4) N_{\phi^*} < 1 + \frac{\log \alpha - \log \overline{w}}{\log \rho_1}$$ which, with (1.2) and (2.2), completes the proof. Fig. 1. Loci of θ_i for various ratios m/n, and the sets ω_i for $\delta = .125, .75$. ## 3. Applications to tests on the difference of binomial probabilities. Example 1. (See Figure 1.) Let $\theta = (\xi, \eta)$, $\Omega = [0, 1] \times [0, 1]$, $0 < \delta < 1$, $\omega_1 = \{\xi - \eta \le -\delta\}$, $\omega_2 = \{\xi - \eta \ge \delta\}$, and Y = (U, V) with density $$f_{\theta}(y) = {m \choose u} \xi^{u} (1-\xi)^{m-u} {n \choose v} \eta^{v} (1-\eta)^{n-v} \text{ on } \{0,1,\dots,m\} \times \{0,1,\dots,n\}.$$ Then $$\begin{split} X(Y) &= X(Y \mid \theta_1, \theta_2) \\ &= U \log \frac{\xi_2}{\xi_1} + (m - U) \log \frac{1 - \xi_2}{1 - \xi_1} + V \log \frac{\eta_2}{\eta_1} + (n - V) \log \frac{1 - \eta_2}{1 - \eta_1} \,, \end{split}$$ and $$\begin{split} M_{\theta}(t) &= M_{\theta}(t \mid \theta_1, \theta_2) \\ &= \left[\xi \left(\frac{\xi_2}{\xi_1} \right)^t + (1 - \xi) \left(\frac{1 - \xi_2}{1 - \xi_1} \right)^t \right]^m \left[\eta \left(\frac{\eta_2}{\eta_1} \right)^t + (1 - \eta) \left(\frac{1 - \eta_2}{1 - \eta_1} \right)^t \right]^n. \end{split}$$ Since (with (1, 1) abbreviated to 1) $\omega_2=1-\omega_1$, $M_{1-\theta}(t\mid\theta_1,\ \theta_2)=M_{\theta}(\ -t\mid 1-\theta_2\,,\,1-\theta_1)$, we will seek θ_1 , θ_2 in $\{\theta_1+\theta_2=1\}$ satisfying (b) and (c) of Theorem 2.1 on ω_1 . Here $$M_{\theta}(t) = M_{\theta}(t \mid \theta_{1})$$ $$= [\xi(\xi_{1}^{-1} - 1)^{t} + (1 - \xi)(\xi_{1}^{-1} - 1)^{-t}]^{m} \cdot [\eta(\eta_{1}^{-1} - 1)^{t} + (1 - \eta)(\eta_{1}^{-1} - 1)^{-t}]^{n}$$ is the moment generating function of $$[(2U-m)\log(\xi_1^{-1}-1)+(2V-n)\log(\eta_1^{-1}-1)]$$ and [since this variable is degenerate if and only if $\theta_1 = (\frac{1}{2}, \frac{1}{2}) \, \varepsilon \, \omega_1$] is strictly convex. The component powers are either identically one or have unique infima at (3.2) $$t_{\xi} = \frac{1}{2} \frac{\log(\xi^{-1} - 1)}{\log(\xi^{-1} - 1)}, \qquad t_{\eta} = \frac{1}{2} \frac{\log(\eta^{-1} - 1)}{\log(\eta^{-1} - 1)}.$$ In any event $$(3.3) \quad L(\theta) = \left[4\xi(1-\xi)\right]^{m/2} \left[4\eta(1-\eta)\right]^{n/2} \leq \inf_{t} M_{\theta}(t \mid \theta_{1}) = \rho_{\theta}(\theta_{1}).$$ Since for $\theta = \theta_1$ equality holds in (3.3), θ_1 can satisfy (b) only if θ_1 maximizes $L(\theta)$. We first obtain an explicit characterization of the maximizer of $L(\theta)$ on ω_1 . Let $I(\delta)$ be the open interval of ξ , $$I(\delta) = (\max [0, \frac{1}{2} - \delta], \min [\frac{1}{2}, 1 - \delta])$$ $$= \begin{cases} (\frac{1}{2} - \delta, \frac{1}{2}) & \text{if } \delta \leq \frac{1}{2} \\ (0, 1 - \delta) & \text{if } \delta > \frac{1}{2} \end{cases}.$$ It follows from $$L(\xi, \eta) \leq \begin{cases} L(\xi, \frac{1}{2}) < L(\frac{1}{2} - \delta, \frac{1}{2}) \text{ if } \xi \varepsilon (0, \frac{1}{2} - \delta), \\ L(\xi, \xi + \delta) \text{ if } \xi \varepsilon I(\delta), \\ L(\xi, \xi + \delta) < L(\frac{1}{2}, \frac{1}{2} + \delta) \text{ if } \xi \varepsilon (\frac{1}{2}, 1 - \delta), \end{cases}$$ that the maximum can only occur in $\{\theta \mid \eta = \xi + \delta, \xi \in I(\delta)\}$. Since $$(3.4) \quad \frac{d}{d\xi} \log L(\xi, \xi + \delta) = \frac{m}{2} \left[\frac{1}{\xi} - \frac{1}{1 - \xi} \right] + \frac{n}{2} \left[\frac{1}{\xi + \delta} - \frac{1}{1 - \xi - \delta} \right]$$ is decreasing with respect to ξ on $(0, 1 - \delta)$ and changes sign from positive to negative as ξ traverses $I(\delta)$, $L(\theta)$ has the unique maximizer (3.5) $$\theta_1 = (\xi_1, \eta_1), \quad \eta_1 = \xi_1 + \delta, \xi_1 \text{ the unique zero of (3.4) in } I(\delta).$$ Since by (3.3) $\rho_{\theta}(\theta_1) \leq M_{\theta}(\frac{1}{2} | \theta_1)$ and $M_{\theta_1}(\frac{1}{2} | \theta_1) = \rho_1$, (b) will be satisfied if θ_1 maximizes $M_{\theta}(\frac{1}{2}, \theta_1)$. Because $\rho_1 < 1$ the remark (R) will then show that (c) is also satisfied. To dispose of this maximization, note that $\xi_1 < \frac{1}{2} < \eta_1$ and hence that $M_{\theta}(\frac{1}{2} \mid \theta_1)$ can be maximal only on $\{\eta = \xi + \delta\}$. For such θ (3.6) $$\begin{aligned} \frac{d}{d\xi} \log M_{(\xi,\xi+\delta)}(\frac{1}{2} \mid \theta_1) \\ &= m \frac{(1-\xi_1)-\xi_1}{\xi(1-\xi_1)+(1-\xi)\xi_1} + n \frac{(1-\eta_1)-\eta_1}{(\xi+\delta)(1-\eta_1)+(1-\xi-\delta)\eta_1}, \end{aligned}$$ which is decreasing with respect to ξ on $(0, 1 - \delta)$ and, by (3.5), vanishes at ξ_1 . Thus θ_1 is the unique maximizer of $M_{\theta}(\frac{1}{2} \mid \theta_1)$ and (b), (c) of Theorem 2.1 are satisfied. We summarize this application of Theorem 2.1 to Example 1 in terms of the maximum likelihood estimates (sample proportions), ξ and $\hat{\eta}$. THEOREM 3.1. For testing $\{\xi - \eta \leq -\delta\}$ against $\{\xi - \eta \geq \delta\}$ with bounded positive losses for wrong decisions, the nonrandomized test ϕ^* with $\phi_k^* = 1$ if and only if $(\xi - \frac{1}{2})m \log (\xi_1^{-1} - 1) + (\hat{\eta} - \frac{1}{2})n \log (\eta_1^{-1} - 1) > 0$, where $\xi_1 < \frac{1}{2} < \eta_1 = \xi_1 + \delta$ and ξ_1 is the unique root of (3.4) in $I(\delta)$, is asymptotically efficient. To characterize the behavior of this test with respect to (m, n) variation, first note that by (3.5) m/n increases from 0 to ∞ as ξ_1 increases across $I(\delta)$ and hence that (3.7) $$\xi_1$$ increases across $I(\delta)$ as m/n increases from 0 to ∞ . To find the ratio m/n of maximum efficiency put m+n=2M, m(1-z)=n(1+z), and minimize $\rho_1=L(\xi_1,\xi_1+\delta)$ by choice of z. By (3.4), ξ_1 is a monotone increasing function of z and we have $$\frac{d}{dz} \log L(\xi_1, \xi_1 + \delta) = \frac{d\xi_1}{dz} \left(\frac{\partial}{\partial \xi} \log L(\xi, \xi + \delta) \Big|_{\xi = \xi_1} \right) \\ + \frac{M}{2} \left[\log \xi_1 (1 - \xi_1) - \log(\xi_1 + \delta) (1 - \xi_1 - \delta) \right] \\ = \frac{M}{2} \left[\log \xi_1 (1 - \xi_1) - \log(\xi_1 + \delta) (1 - \xi_1 - \delta) \right],$$ which increases from - to + as ξ_1 crosses $I(\delta)$, and vanishes for $\xi_1 = (1 - \delta)/2$. Thus ρ_1 has a unique minimum for z = 0 and m/n = 1. If the relative costs of sampling are c and 1 - c(0 < c < 1), the total sampling cost is N[cm + (1 - c)n], which is asymptotically $K(z) \log \alpha$ where $$K(z) = \frac{M[1 + z(2c - 1)]}{\log L(\xi_1, \xi_1 + \delta)}.$$ Thus asymptotically minimum cost occurs when z is chosen to maximize K(z). Using (3.8), (3.9) $$\frac{dK}{dz} = \frac{M}{(\log L)^2} \left\{ (2c - 1) \log L - \frac{M}{2} \left[1 + z(2c - 1) \right] \log \frac{4\xi_1(1 - \xi_1)}{4\eta_1(1 - \eta_1)} \right\} \\ = \frac{M^2}{(\log L)^2} \log \left\{ \left[4\xi_1(1 - \xi_1) \right]^{c-1} \left[4(\xi_1 + \delta)(1 - \xi_1 - \delta) \right]^c \right\}.$$ The log in (3.9) decreases as ξ_1 crosses $I(\delta)$ and vanishes for ξ_1 in $I(\delta)$ satisfying (3.10) $$c = \left[1 + \frac{\log 4(\xi_1 + \delta)(1 - \xi_1 - \delta)}{\log 4\xi_1(1 - \xi_1)}\right]^{-1}.$$ Hence the asymptotic cost of sampling is minimized for ξ_1 in $I(\delta)$ satisfying (3.10). c decreases monotonically from 1 to 0 as ξ_1 crosses $I(\delta)$, and ξ_1 decreases across $I(\delta)$ as c increases from 0 to 1. Therefore the most economical ratio m/n decreases from ∞ to 0 as c increases from 0 to 1. Representing the set of Y where $\phi_k^* = 1$ in the form $\lambda(\hat{\xi} - \frac{1}{2}) > (\hat{\eta} - \frac{1}{2})$, (3.11) $$\lambda = \frac{-m \log (\xi_1^{-1} - 1)}{n \log (\eta_1^{-1} - 1)} = \frac{R(\xi_1)}{R(1 - \eta_1)},$$ where $$R(p) \, = \frac{\log \, (1-p) - \log \, p}{p^{-1} - (1-p)^{-1}} \quad \text{on} \quad 0 \,$$ From $1 - v^{-1} < \log v < v - 1$ for v > 1, p < R(p) < 1 - p. Thus R(p) is positive and increasing from R(0+) = 0 to $R(\frac{1}{2} -) = \frac{1}{2}$ and from this, (3.7), and (3.11), as m/n increases from 0 to ∞ , λ increases (3.12) $$\begin{cases} \text{from } 2R(\frac{1}{2} - \delta) \text{ to } 1/[2R(\frac{1}{2} - \delta)] \text{ if } \delta < \frac{1}{2}, \\ \text{from } 0 \text{ to } \infty \text{ if } \delta \ge \frac{1}{2}. \end{cases}$$ If $m = n(c = \frac{1}{2})$, it is noteworthy that $\xi_1 = (1 - \delta)/2$, $\eta_1 = (1 + \delta)/2$, $\lambda = 1$ and $\phi_k^* = 1$ if and only if $\hat{\xi} > \hat{\eta}$. If $m \neq n$ the following theorem shows that this test is asymptotically inefficient. THEOREM 3.2. If $m \neq n$ and $\psi = \psi^{c,a}$ is a test with $\psi_k = 1$, a_k , 0 according as $(\hat{\xi} - \hat{\eta})$ is $> c_k$, $= c_k$, $< c_k$, then ψ is asymptotically inefficient as $\alpha \to 0$. PROOF. Let $w = \min[w_2(\theta_1), w_1(\theta_2)]$ and abbreviate $\psi^{0,0}$ to ψ^* . It follows from the definition of $r_k(\phi)$ and the relations $E_2(1 - \psi_k^{c,a}) = E_1\psi_k^{-c,1-a}, \psi_k^{-|c|,0} \ge \psi_k^*$, that $r_k(\psi) \ge w \max\{E_1\psi_k^{c,a}, E_1\psi_k^{-c,1-a}\} \ge wE_1\psi_k^*$. Now ψ^* is a test based on (2U - m)/m - (2V - n)/n which [c.f. (3.1), (3.2)] has moment generating function (at θ_1), $M_0(t) = [\xi_1 e^{t/m} + (1 - \xi_1) e^{-t/m}]^m [\eta_1 e^{-t/n} + (1 - \eta_1) e^{t/n}]^n$. As in (3.2)-(3.3), $\rho_0 = \inf M_0(t) \ge \rho_1$ but equality would imply $\lambda = 1$, hence is impossible by (3.12). As in the development of (2.2) it follows from (T) that $$N_{\psi} \ge rac{\log \, lpha - \log w}{\log \, (ho_0 - \epsilon)} \; ext{ for all } \; \; lpha < w(ho_0 - \epsilon)^{k(\epsilon)}.$$ Thus, asymptotically, $N_{\psi} \gtrsim \log \alpha / \log \rho_0$, and $N/N_{\psi} \lesssim N_{\phi^*}/N_{\psi} \lesssim \log \rho_0 / \log \rho_1$ < 1, which completes the proof. It should be added that for several binomial two population problems, including the one of this example, tests of the form $\psi = 1$ if and only if $(\hat{\xi} - \hat{\eta}) > c$ turn out to be asymptotically efficient as $\delta \to 0$, [5]. Example 2. Consider the problem of Example 1 modified only by taking $\omega_1 = \{\xi - \eta \le 0\}$ and specialized to the case m = n = 1. We will be content to show that (b) and (c) of Theorem 2.1 are satisfied for the choice, $$\theta_1=(\frac{1}{2},\frac{1}{2}), \qquad \theta_2=\left(\frac{1+\delta}{2},\frac{1-\delta}{2}\right).$$ For this choice we have (by specialization in Example 1) $$X(Y) = (U - V) \log \frac{1+\delta}{1-\delta} + \log (1-\delta^2),$$ $$M_{\theta}(t) = [\xi(1+\delta)^{t} + (1-\xi)(1-\delta)^{t}][\eta(1-\delta)^{t} + (1-\eta)(1+\delta)^{t}].$$ Since $$M_{\theta}(t) \leq \begin{cases} M_{(\xi,\xi)}(t) \leq M_1(t) \text{ for } \theta \in \omega_1, t > 0 \\ M_{(\xi,\xi-\delta)}(t) \leq M_2(t) \text{ for } \theta \in \omega_2, t < 0 \end{cases},$$ (b) and (c) follow from (L) and (R), and the non-randomized test ϕ^* , with $\phi_k^* = 1$ if, and only if, $$\hat{\xi} - \hat{\eta} > \frac{-\log(1 - \delta^2)}{\log(1 + \delta) - \log(1 - \delta)}$$ is asymptotically efficient. 4. Acknowledgements. I am grateful to Professor Wassily Hoeffding who, as thesis advisor, proposed the problem and gave many helpful suggestions. I also owe much to the referee, who went to a great deal of trouble to point out ways of simplifying proofs and resolving various questions, and to Professor Herman Chernoff for his aid and encouragement. ## REFERENCES - [1] H. Cramér, "Sus un nouveau théorème-limite de la théorie des probabilités," Actualités Scientifiques et Industrielles, No. 736, Paris, 1938. - [2] H. Chernoff, "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Stat., Vol. 23 (1952), pp. 493-507. - [3] W. Hoeffding, "The large sample power of tests based on permutations of observations," Ann. Math. Stat., Vol. 23 (1952), pp. 169-192. - [4] W. HOEFFDING AND JOAN R. ROSENBLATT, "The efficiency of tests," Ann. Math. Stat., Vol. 26 (1955), pp. 52-68. - [5] J. H. MacKay, "On the efficiency of certain tests for 2 × 2 tables," Ph.D. thesis, University of North Carolina, 1956.