ASYMPTOTICALLY EFFICIENT TESTS BASED ON THE SUMS OF
OBSERVATIONS!
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Summary. For tests, ¢ = {¢r}, of composite hypotheses, w; and w; , asymp-
totic efficiency is defined in terms of the behavior as « —'0 of the sample size
N, required to reduce the maximum risk to a. For problems where the w;
contain elements 6; whose relative densities satisfy

SLIP Eleo(:fz/fl)' = iltf E(fi/f1)" = sup ilg’;Eo(fz/fl)',

Chernoff’s Theorem 1 [2] is applied to the non-randomized test $*, with & =1
or 0 according as ), log (fo/fi) > 0 or not, and proves ¢* asymptotically effi-
cient (Theorem 2.1).

The principal results of the paper are applications of Theorem 2.1 to tests
of the difference (¢ — %) of binomial probabilities with samples of relative size
m/n. For w; = {§ — 9 < — 8}, ws = {§ — 9 = 8}, certain tests of the form
ot = 1if and only if N\(f — &) > (4 — &), with \ increasing in m/n, turn out
to be asymptotically efficient, while all tests of the form ¢, = 1, ax, 0 according
as (£ — 1) is greater than, equal to, or less than ¢; are asymptotically inefficient
when m £ n. For given relative sampling costs, the ratio m/n may be chosen
so that the asymptotic cost of observations is minimized.

1. Introduction. Our results concerning asymptotic efficiency depend heavily
on the work of Cramér and Chernoff ([1], [2]). In order to use these results in
connection with the binomial problem mentioned above, we find a test of the
composite hypothesis which depends on the sum of observations X, each of
which is the likelihood ratio of distributions indexed by 0; € w; . If M(2) is the
moment generating function of X and ps = inf M4(¢), we try to choose the 8; so
that ps attains its maximum in w; at the point 6; . We then employ a Bayes risk
to establish a lower bound for the minimum sample size required to reduce the
maximum risk to &, and use Chernoff’s Theorem 1 to show that the corresponding
sample size for our test is asymptotically equal to this lower bound.

Let 0 £ @ be a 1-1 index on a class of distributions on a probability space with
elements ¥ and let w; , w be disjoint subsets of 2. Let Y = (¥, Y2, ---) bea
sequence of independent random elements with a common distribution indexed
by 8 £ Q. A test (sequence of tests) ¢ = {¢} with ¢, depending onlyon ¥, --- |
Y}, will be described by the probabilities ¢x(Y), assigned to the decision “0 € w, .”
The loss of the decision “6 ¢ w;” is denoted by w;(6) and it is assumed that
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ASYMPTOTICALLY EFFICIENT TESTS 807

(L1) 0=2wi(8) Sw< o, O<wy(h),ifandonlyiffew;, j=i=1,2.
The k-observation expected loss for the test ¢ is designated r4(9, ¢),
(0, &) = wa(0)Eodr + w1(0)Ee(1 — ¢1).
Definitions 1.1. For any test ¢, any distribution P on £, and any « > 0,
n(P, §) = Epri(0, ),  1u(¢) = sup7i(6,9), 1= igf e(d),

and, with LI abbreviating ‘“the least integer & such that,”
Ne=Ll[iofre(P,$) < a], N=LIrn=<a], Ng=LIrd) = al
P

We note that infy (P, &') < r < () for all k, P and ¢ and hence
(1.2) N =N =N, for all @, P, ¢. -

Thus, for each o, N/N, defines an index of efficiency of the test ¢, and ¢ will
be called asymptotically efficient as o — 0 if and only if

(1.3) N~N, asa — 0.

2. Asymptotic efficiency of tests based on sums. Let X;, X, - - - denote the
values of a real function at ¥, Y, - - respectively.

Defingtions 2.1.
Mo(t) = Bee'*, —o <t< o, pp=inf Mo(t),
t

1ifSk>O}

=X+ -+ X, &)= .
0 otherwise

We shall use Chernoff’s Theorem 1, a variant of his remark (3.11) and part of
the general version of his lemma 8 [2].

TaeoREM (Chernoff). If — < EX < 0and0 < ¢ < p, where p = inf M (2),
(b — o = oPr{8; = 0}],

PI‘{S], = 0} = pk.

(R) Remark (Chernoff). If M(t) < 1 for some ¢t > 0, EX < 0.
(A direct proof consists in first noting that the existence of EX is implied, and
then that M is non-decreasing on ¢ = 0if EX = 0.)

Lemma (Chernoff). If fi and f» are probability densities with respect to u of distinct
distributions and X (Y') = log f2(Y) — log f1(Y'), then

My(t) = My(t+ 1) o<t<l,
(L) the p; are attained for t;with &, = t, — 1 < 0 < ¢, and

(T)

p=p= inf [fifitdn<1.
1<t
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The following theorem is implicit in [2] for the case where the w; are simple.
TeEOREM 2.1. If

(a) X(Y) =logfo(Y) — log f1(Y) with fo/f the likelihood ratio of distributions
indexed by 0 £ wy and 6, € o ,

(b) po S pion wi (1 =1,2),

(¢) EeX < 0onw,EX > 0o0n w, then

(i) the test $* is asymptlotically efficient as « — 0 and,

(ii) except in the trivial case where py = 0 and N = Ngo = 1,

log o
logpr

Proor. By (c) it follows from (L) that p; = p, < 1. Thusif py = 0, pp = 0
on w; U wp and it follows from (c¢) and the definition of ps that the distributions
of w; concentrate on X <,0 while those of w; concentrate on X > 0 (Lemma 1
of [2]).

By (a) ¢ is Bayeswith respect to P* concentrating on 6; and 6 and assigning
to 6; probabilities proportional to w(6;), j > ¢ = 1, 2. Letting

w* = wi(0)w2(61)/[wi(6:) + we(6)],
n(P*, ¢*) = wEgi + Ex(1 — )],
(T') applied to X at 6,, —X at 6, yields forany 0 < ¢ < p, :
(2.1) r(P*, ¢%) 2 20*[(py — €] for all k = k(e).

N~N¢#N

Hence a 2 rwpe(P* ¢*) 2 2u*(s — €)™ for all & < 2u*(; — )" and

therefore

log a — log 2w*
Npz2z2—_ "°°7~
(2.2) »*F = 10g(p1 — G)

To complete the proof in the case py > 0 we obtain an upper bound for N«
through one for r;(¢*). Using (1.1), (T) for each 6 and (b):

r.(¢*) = max [sup we(60)Eepr, sup wi(0)Ee(1 — ¢1)],

for all & < 2w*(py — €)*9.

(2.3)
< Wmax [p5, pi] = Wp} .

From (2.3) withk = N4» — 1

log o — log @
log p1

which, with (1.2) and (2.2), completes the proof.

(24) Ny <14
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Fi1a. 1. Loci of 6; for various ratios m/n, and the sets w; for § = .125, .75.

3. Applications to tests on the difference of binomial probabilities.
ExampLE 1. (See Figure 1.) Let = (£, 79),2 =1[0,1] X [0,1],0 < < 1,
wm={—91= -8, m={t—n2¢,and Y = (U, V) with density

wo) = (2) e —om (B =0 on (0,1 m) X 10,1+, .

Then
X(Y) =X(Y|6y,6)

2

= UlogE—2+(m— U)log1;&3+Vlog7—'3+(n—V)log1_77 ,
31 1—-& m 11—
and

Moy(t) = Mo(¢]6,,0.)
L@ a0 GEDTHE) +o-»(=2)T
[5(&) +a E)(l—a) o) T\ =,) ]
Since (with (1, 1) abbreviated to 1) we = 1 — w;, My o(t| 6, ) =

Mo( —t|1— 6,1 — 6), we will seek 6, , 6, in {6 + 6, = 1} satisfying (b)
and (c) of Theorem 2.1 on w, . Here

Mo(t) = Mo(t| 61)
(3.1) =EHE' -D'+Q-)&E -1
(o = 1D 4+ (1= )t = 1))
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is the moment generating function of
[(2U — m) log (&' — 1) + (2V — n) log (41" — 1)]

and [since this variable is degenerate if and only if 6, = (%, 1) £ w] is strictly
convex. The component powers are either identically one or have unique infima
at

—1
(3.2) & _llog(n" —1)

_llog (' —1) 1
"~ 2log (it - 1)

TolgE -’ "

In any event

(33) L(0) = [4&(1 — )™ Mn(1 — )]™* < inf Mo(t]61) = po(61).

Since for 6 = 6, equality holds in (3.3), 6, can satisfy (b) only if 6, maximizes
L(9).

We first obtain an explicit characterization of the maximizer of L(6) on w; .
Let I(6) be the open interval of £,

I(3) = (max|[0, 3 — 8], min [}, 1 — 3])
(-9 3ifo =3
(0,1 —0) ifs>3
It follows from
L(§E+98) <LGF,3+0)ifte(3,1—0),
that the maximum can only ocecur in {8 | n = & + &, £ £ I(8)}. Since

d m|1 1 n 1 1
. —log L === L -
(34) 3 18 (&£ +9) 2[{__ 1—£]+2[£+6 1_5_6]
is decreasing with respect to £ on (0, 1 — &) and changes sign from positive to
negative as & traverses I(8), L(0) has the unique maximizer

(35) 6= (&,m), m =&+ b & the unique zero of (3.4) in I(3).

Since by (8.3) ps(61) < Mo(3 | 61) and My, (3| 61) = p1, (b) will be satisfied
if 6, maximizes My(3, 61). Because p; < 1 the remark (R) will then show that
(e) is also satisfied.

To dispose of this maximization, note that & < } < =g and hence
that M,(3 | 6:) can be maximal only on {n = £ + 6}. For such 8

d%log Mo (5 61)
(3.6)
(1—-4&)-—& + (1—m)—m

T - +A-Dh TEFOA-—m+A—E—om’
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which is decreasing with respect to £ on (0, 1 —'8) and, by (3.5), vanishes at
& . Thus 6, is the unique maximizer of My(% | 6:) and (b), (c¢) of Theorem 2.1
are satisfied.

We summarize this application of Theorem 2.1 to Example 1 in terms of the
maximum likelihood estimates (sample proportions), £ and 4.

TaEOREM 3.1. For testing {§ — n < —38} against {§ — n = 6} with bounded
positive losses for wrong decisions, the nonrandomized test $* with ¢x = 1 if and
only if (£ — $)mlog (&' — 1) + (4 — ) nlog (31" — 1) > 0, where & < } <
m = & + 6 and & 1s the unique root of (3.4) in I(8), ts asymptotically efficient.

To characterize the behavior of this test with respect to (m, n) variation,
first note that by (8.5) m/n increases from 0 to « as £ increases across I(8)
and hence that

(3.7) £, increases across I(8) as m/n increases from 0 to «

To find the ratio m/n of maximum efficiency put m + n = 2M, m(1 — 2) =
n(1 + 2), and minimize p; = L(%, & + &) by choice of z. By (3.4), & is a mono-
tone increasing function of z and we have

9 log Lty &2 + 8) = dE‘(

4 log L5, £ + ) _ )

3
(3.8) + ];—I [log &(1 — &) — log(& + (1 — & — 8)]

= %[log (1 — &) —log (& + 8)(1 — & — 3)),

which increases from — to + as & crosses I(8), and vanishes for & = (1 — 8)/2.
Thus p; has a unique minimum for z = 0 and m/n = 1.

If the relative costs of sampling are cand 1 — ¢(0 < ¢ < 1), the total sampling
cost is N[em + (1 — ¢)n], which is asymptotically K(z) log o where

M1 + 2(2¢ — 1)]
log Lk, &+ ) ~

Thus asymptotically minimum cost occurs when z is chosen to maximize K(z).
Using (3.8),

K(z) =

K M M _ a5 (1 — )
59) - = m{(% —1)logL — -2—[1 + 2(2¢ — 1)] log41' o= ")}
- 108 {146 (1 — &)1 laCes + )1 — s — O}

The log in (3.9) decreases as & crosses I(5) and vanishes for £ in I(5) satis-
fying

log 46(1 — &)
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Hence the asymptotic cost of sampling is minimized for # in I(3) satisfying
(3.10). ¢ decreases monotonically from 1 to 0 as & crosses I(3), and £ decreases
across I(3) as ¢ increases from 0 to 1. Therefore the most economical ratio m/n
decreases from « to 0 as ¢ increases from 0 to 1.

Representing the set of ¥ where ¢3 = 1 in the form MNE=DH > (- 3),

—mlog (&' — 1) _  R(&)
nlog (n7f — 1) RA — )’

(3.11) A=

where

R = A=p o lep g ooy
From1—v" <logov <v —1forv>1,p < R(p) <1 — p. Thus R(p) is
positive and increasing from B(0+) = 0 to R(3 —) = % and from this, (3.7),
and (3.11), as m/n increases from 0 to «, \ increases
(3.12) from 2R (3 — 6) to 1/[2R(% — §)]if 6 < &,

from 0 to « if § = 1.

If m = n(c = %), it is noteworthy that & = (1 — 8)/2, m = (1 + 8)/2,
N = 1land ¢ = 1if and only if £ > 4. If m > n the following theorem shows
that this test is asymptotically inefficient.

TueoreM 3.2. If m = n and & = §*° is a test with Y4 = 1, ax, O according
as (£ — %) is>a, = ¢, < ci, then { ¢s asymptotically inefficient as a — 0.

Proo¥. Let w = min[ws(6;), wi(62)] and abbreviate 4™ to 4*. It follows from
the definition of 7:(¢) and the relations Ey(1 — ¢&*) = Ewiz®'™, ¢i'*"® >
¥r, that r () = w max{Eyt®, E; '™ = wEys. Now ¢* is a test based on
(2U — m)/m — (2V — n)/n which [cf. (3.1), (3.2)] has moment generating
function (at 61), Mo(t) = [&e™ + (1 — &)e ™" [me™ " + (1 — m)e’™"
As in (3.2)-(3.3), po = inf My(¢) = p, but equality would imply X = 1, hence
is impossible by (3.12). As in the development of (2.2) it follows from (T) that

Ny 2 %‘H forall o < w(po — €)*©.
Thus, asymptotically, Ny2, log a/log po, and N/Ny < Ns+/Ny < log po/log p
< 1, which completes the proof.

It should be added that for several binomial two population problems, in-
cluding the one of this example, tests of the form ¢ = 1if and only if (£ — 4) > ¢
turn out to be asymptotically efficient as § — 0, [5].

ExampLe 2. Consider the problem of Example 1 modified only by taking
w1 = {§ — 9 < 0} and specialized to the case m = n = 1.

We will be content to show that (b) and (¢) of Theorem 2.1 are satisfied

for the choice,
1446 1-95
o = (%’%)’ 02:(%7T>'
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For this choice we have (by specialization in Example 1)
*

X(Y) = (U = V) log 123 + log (1 — &),

Mo(t) = [E(1+8) 4+ (1 — (1 = 8)a(1 — &) + (1 — n)(1 4+ 8)].
Since
Men(t) < My(t)forew ,t>0
Men(t) < Ma(t) for 0 e e, t < o}’

(b) and (c) follow from (L) and (R), and the non-randomized test ¢*, with
ér = 1if, and only if,

Mo(t) = {

—log (1 — &%)

S Y (S T (=)

is asymptotically efficient.
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