PROPERTIES OF MODEL II-TYPE ANALYSIS OF VARIANCE
TESTS, A: OPTIMUM NATURE OF THE F-TEST FOR
MODEL II IN THE BALANCED CASE! ?

By Leoxn H. HErBACH

College of Engineering, New York University®

1. Summary. A distribution analogous to the canonical distribution used in
testing the general linear hypothes's is developed for Model II analysis of vari-
ance for balanced classifications. As in the case of Model I analysis of variance,
this standard distribution exhibits the sums of squares going into the analysis
of variance table. By use of the standard form it is also shown that (i) all exact
F-tests used in testing hypotheses based on balanced multiple classifications
determine uniformly most powerful (u.m.p.) similar regions although they are
not likelihood ratio (L.R.) tests, but (ii) in the balanced one-way classification,
for all practical purposes, the test is an L.R. test, and is u.m.p. invariant. An
exact F-test exists when we have a sum of squares, S; distributed as (k 4+ o5)
times a chi-square variate, where £ > 0, independently of S,, which is dis-
tributed as k times a chi-square variate. The test is then to reject the hypothesis
that o5 = O whenever S;/S. is greater than some suitably chosen number, c.
As a corollary to property (i) it is shown that “of all invariant tests of o5 = 0
against oo > 0 whose power is a function of o5/ (k + o) only, the test S;/S; > ¢
- is most powerful, providing S; and S, , as defined above can be found.”

2. Notation and terminology. We use the notation ps(x) for the probability
density function (p.d.f.) of the vector-valued random variable, X, which depends
on the vector-valued parameter 6 ¢ 2, where @ will always represent the un-
restricted parameter space. This notation is generic so that p may not be the
same density each time it appears. The difference in functional form is indicated
by the change in variable. The actual form will always be clear from the context.
This same generic notation will be used for constants; ¢ will usually be a constant,
not necessarily the same one each time it appears. It will be clear from the con-
text when ¢ is not a constant. The subspace of © specified by the hypothesis
being tested will be denoted by w. No confusion will be caused when dealing with
the hypothesis H: 6 ¢ w if we sometimes speak of w rather than H as the hypothe-
sis. By a test of an hypothesis we mean any measurable function ¢(z) with the
property that 0 < ¢(x) < 1. When X is observed to take on the value x one
rejects H with probability ¢(z).

3. Introduction. In Model II (components of variance model) analysis of
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940 LEON H. HERBACH

variance, the following stochastic model is assumed in the case of a two-way
classification with K observations per cell:

X = p+ € + ef + eif + eiin,
(3.1)
i=1,---,I; j=1--,J; k=1,---K,

where X is the kth measurement on the (7, 7)th cell, u the main effect is as-
sumed a constant and the “components” ei, e7, ei;, ey are normally and inde-
pendently distributed (NID) with means zero and variances o3, o, oo, oo
respectively. These will be referred to as the Model II assumptions. If, as here,
one has the same number of observations in each cell, the classification is called
balanced, otherwise unbalanced.

The corresponding model for Model I (general linear hypothesis model)
analysis of variance is given by (3.1) where it is now assumed that in addition
to u, ef, ef and e’ are also constants, and e, are the only random variables, and
these are NID(0, ¢*). Furthermore it is usually assumed that Y ;i = X ;ef =
i€t = > ei? = 0. These equations for the effects may be assumed without
loss of generality in Model I but would violate the assumed independence in
Model II. The usual theoretical procedure in setting up any Model I hypothesis,
say Ho: a; =0 (2 =1, ---, I), is to find the likelihood ratio test of the hy-
pothesis. This gives the usual F-test. In addition to having the backing of the
intuitive appeal of the likelihood ratio test, the resulting F-test has been shown
by Hsu [4], [6], Wald [14], Wolfowitz [16] and others to have many optimum
properties.

Analysis of variance, to many, also means a technique of calculating the analy-
sis of variance table given in Table 3.1, where

8 = IJK (X... — p)’
S = JK2 (Xi — X...)°

(3.2) S =IK) (X5 — X..)"
Si=K> > (Xi — Xo. — Xjo + X.)°
Ss =Z;; (Xip — Xip)2

TABLE 3.1
Analysis of Variance Table for a Balanced Two-way Classification

Source d.f. S.S. m.s. qu:::')n
011:Y: | vy =1 S S1 M
Aeffect.................n.. vy = (I - l) Sg Sz/llz Ae
Beffect........................ vy = (J _ l) Ss Ss/Vs A3
AB interaction ................. vy = (I - l) (J bt l) S4 S4/V4 A
CITOT . . ...t e e e vy = IJ(K —_ l) Ss S5/V§ )\5
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The mean row and E (mean square) column do not always appear in the usual
analysis of variance table and will be explained later. The statistic used in Model
I to test Hois (vsS2)/(»2Ss), which is distributed as F with », and vs degrees of
freedom.

The procedure in Model II is to set up the analysis of variance table that is
used in Model I, and then to add a column which gives the expected mean
squares. One then notes that the five mean squares are always independently
distributed and that S;/(v:\;) is distributed as x* with »; degrees of freedom.
Using the fact that the expected mean squares are

M = o> + Kooy + JKo2 + IKop
N = o) + Kooy + JKoo

(3.3) N = ot + Kok + IKot
N o= o + Kok
)\5 = 0%

we have, under the hypothesis of no Model II 4 effect (H 0ol = 0), that A\, =
A and (v4S:)/(12Sy) is distributed as F with v, and »s degrees of freedom. This,
in fact, is the F-statistic used in testing H o. All exact F-tests used in Model II
are obtained by taking ratios of mean squares which have equal N’s under the
hypothesis, whenever there are equal N’s. No attempt has been made previously
to show that these tests are optimum or to even show they are likelihood ratio
(L.R.) tests, which they sometimes are not. Two of the purposes of this paper
are to derive optimum properties for some tests of Model II hypotheses and to
show that in this model the analysis of variance table can be obtained without
borrowing it from Model I.

4. Some useful lemmas for a certain matrix. The following n X n matrix
plays an important role in what follows:

a+b a a-- a

a a+b a- a
(4.1) A=1 ,

a a a---a+bd

where a and b are either scalars or square matrices of the same size. Since 4 is a
function of a@ + b and a only, the notation

(4.2) A = (a+ ba)'
shall be used.

4 It may be noted that for a, b scalars, 4 = bd + ag*, where g is the unit matrix and
g* is the matrix with all elements unity.
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We shall make use of the following two lemmas:
Lemma 4.1: If A is of the form (4.1) then the determinant of A satisfies

|4 =1b+nallb]"

where | D | means the determinant of the matriz D.

The proof is exactly the same as that given by Wilks ([15], p. 109) for the
case in which a and b are scalars.

Lemma 4.2: If a, b are real numbers with b(b + na) = 0,

o 1
(4.3) AT = ®F na)b (b + (n — 1al\—a).

b. Standard form for the balanced two-way classification. Consider the two-
way Model II classification with K observations per cell, given by (3.1). Let the
transpose of the observation vector X be

X = (X, Xonn, Xanny oo, X3 X, Xom, ~v- ,Xmj -
(5.1) Xin, Xonn, Xan, o0, Xeny Xue, Xoz, Xag, 3 Xne
X, Xowo, ++ , Xpm; -+ 5 Xk, Xox, Xox, -+, Xuk),
that is, the triplets ¢, j, k are ordered so that
(i, j, k) precedes (¢, j, k)  if i < ¢,
(¢, 7, k) precedes (¢, j’, k) if j <7,
(¢, 4, k) precedes (¢, 7/, k') if Bk <Fk.

Let % be the covariance matrix of X and N = IJK. Then it is known that
there exists an orthogonal matrix D with the following properties: (a) its first
row is N %', where

(52) & = (1) L., 1)7

a 1 X N row vector, (b) the covariance matrix of Z = DX isD £ D’ = A =
diag. (1, --+, M), \i > 0 and (c¢) the N’s are the roots of the characteristic
equation | £ — Ng | = 0, where 9 is the identity matrix.

We shall now find these N’s in terms of o4 , 03 , oo and o . Now

| 2 —N|=|a\8&]|
KXK

where
@ = (4:\By)
® = (Az\Bz)
JIXT
(5.3) Ay = (o2 + o3 + oo + o2 — N\os)

By = (02\0) = B,

Ay = (02 + ot + om\ot).
TIXI
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It should be noted that ¥ is an N X N matrix of scalars, but is a K X K ma-
trix when the elements are submatrices (@’s and ®’s). Repeated use of Lemma
4.1 yields

[T —M|=]@a—-@®) +K&|a—a&"
= |4, + (K — 1)A\KB, |-| Ay — ANO[*
=41+ (K- 14+ K(J — 1)B: |-| Ay + (K — 1)4,
_ KBg ‘J—l ' Al _ A2 IJ(K—l)
= D; - Dy - Dy, say,
where
Dy = | K(o2 + o3 4 00s) + 02 + K(J — 1)os — N\Kos |
= | Ko + o + JKos + IKoy — N\ || Kosy + o2 + JKoo — N |
D, = | K(oz + o3 + o) + 00 — N — Koa\Kop |
= | Kow + IKay 4+ oo — N|"™"| Kooy + o0 — N [P0
Dy =] —\\0 [PED = | g =\ IR,

Therefore the values of the N = IJK characteristic roots are

of + Koo + IKot + JKoo = A\, say with multiplicity 1

o + Ko + JKoa = o, say with multiplicity (/ — 1)

o: + Koz + 1Koy . = A3, say with multiplicity (J — 1)

or + Kom = A\, say with multiplicity (I — 1)(J — 1)
or _ = \s, say with multiplicity I.J(K — 1).

These N’s are the same as the ones defined by (3.3). The orthogonality of D,
the property that the first row of D is N ™'’ and the fact that EX,; = u imply
that

(5.4) EZum = V/Nu
EZx = 0, for (4,7, k) # (1,1, 1).

After the dissertation [3] was defended but before this paper was prepared,
Dr. Howard Levene called the author’s attention to the work of Nelder [11]
whose method for obtaining the latent roots of a special case of matrices of the
form (4.1) can be generalized to find our eigenvalues. However, it is felt that
the algorithm, using Lemma 4.1 is more convenient, especially when higher
multiple classifications are treated.

Let ¢ = EZ, the vector given in (5.4). We have shown that the vector vari-
able X defined by (3.1) which is distributed as N(ps, ¥) where £ = (@\®)
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and @, ® are defined by (5.3) when N = 0, may be transformed by an orthog-
onal matrix to yield a variable Z which has the following density:

= [A |_% —4(z~1)' A= 1G]] | A |—% 1 (81 2 83 84 Sp l
5 = — (2424224224
(5.5) 2m)nr2 ¢ (2m)1rxl2 oxp 2\M + A2 + s + A4 + s f ’

where Ay, - -+, \s are given by (3.3) and
8 = (2111 — \/Nﬂ)z

Se = Z 2311

J
(5.6) 5= 2 2

i=
I J

84 = Z Z 2%;'1
=2 j=2
I J K

S5 = Z Z Z Z%jk
i=1 j=1 k=2

The reader should note that s; is not a statistic, since it contains u. This par-
ticular expression for s; is used because of the symmetry it gives to (5.5), which
we shall refer to as the Model II standard form of the probability density for
the case of a balanced two way classification with K observations per cell.
Note that (3.2) implies that

(5.7) M=+ N A,

a fact which will be used later.
For completeness the Tang canonical form [13] of the joint density of (3.1)
when the Model I assumptions are made will now be given. Then
X NID (s, o°)
where
wii = u+ei + e + eif .

Tang showed that there exists an orthogonal N X N matrix D whose first row
is N8’ for which Z = DX has the density,

1 1
m exp [—Qﬁ{(zm - \/N#)2

I J
(5.8) + E__; (2an — ai)® + Z_-,; (211 — a3 )’
’ I J I J K
+ 22 (zin — aif) + 2 E 2 z%jk}]
=2 j=2 i=1 j=1 k=2

where the ai(aj, aii’) are linear combinations of the ef (e, ei/) such that
ai(a;, ai) are zero if and only if all ef (¢7, ef;’) are zero. It should be noted
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that in Model I one transforms to change the means while in Model II one
does so to change the covariance matrix. It can be shown [3] that the same
orthogonal transformation, D, could be used in both models, so that we are
justified in using the same letter Z in (5.6) and (5.8). Also, Tang showed for
Model I, that Sy, - - - , S5 as given in (3.2) and (5.6) are the same, except that
(3.2) expresses the S’s in terms of original variates while (5.6) does so in terms
of transformed variates. Since the transformations are the same in both models
this shows that the sums of squares in (3.2) and (5.6) are the same in Model
II. From this one can argue that the standard distribution (5.5) can be obtained
from the analysis of variance table above since it is known that all rows are
independently distributed. This was not done because we do not yet know
what the properties of the tests based on Table 3.1 are. We propose to get the
table, tests and optimum properties of the tests from (5.5), the standard form,
which is easier to handle than the density of X, although all tests of hypotheses
based on X can be transformed to tests based on Z. It should be noted that
(5.5) is the density of Z although it is written in terms of the s’s. From (5.5)
and (5.6) it is clear that X = N7*Zyy, Sy, Ss, Si and S are independently
distributed as a normal variate and four multiples of x* with (I — 1), (J — 1),
(I =1)(J — 1) and IJ(K — 1) degrees of freedom respectively. In the sequel
we shall use this latter joint density, namely,

vi—2 $;
¥ Y e[ N = " “on ()

(5.9) (&, s, 83, 84, 8) = (.2”_)“ o I eyt

Densities (5.5) and (5.8) or (5.9) and (5.8) show clearly that under the
hypothesis of no A4 effect, Ho and H, respectively, S/ Ss and S,/Ss respectively
are distributed as a multiple of F' with the degrees of freedom indicated by the
number of standard variates in each S. These are the statistics indicated at the
end of Section 3. All F-tests used to test the non-existence of certain effects can

be obtained this way.

6. Uniformly most powerful similar test for testing non-existence of main
effects in the balanced one or two-way classification. This section will be de-
voted to showing that the F-test is the u.m.p. similar test for testing w:os = 0
against @ — w:os > 0 when one has a balanced one or two way Model II classi-
fication. Although the hypothesis to be tested is actually ol = 0, o2 0, o =0
and o > 0 we defer to the usual practice of not explicitly stating the other in-
equalities when no confusion will result. A similar statement can be made in
regard to the alternative hypothesis. In the two-way classification

Q={f|— o <p<ow;
(6.1) O<)\5§)\4§)\2§)\1=)\2+)\3—)\4<°°;
MENEN

(62) w={0|—-°°<u<°°; O<XS§)\4=X2§)\3=)\1<°°}
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where 0 = (u, A1, A2, Mg, A1, Ns). Since 2113 = A/NZ it can be seen from (5.5)
that a sufficient statistic under w, for the two-way classification is

(63) T = (X) S3 ) SS) U)
where
(6-4) U= S2 + S4

We first prove the following

THEOREM 6.1: For the standard distribution of the two-way Model 11 classifica-
tion (5.5) the statistic T defined by (6.3) is complete on w, where o s determined
" by the hypothesis o5 = 0 and is defined by (6.2).
Proor: By the definition of completeness [7] we need to show that

Eof(T)0= 0
implies f(¢) = 0, (a.e.). For 0 ¢ w, we have, using (5.9),

©65) B f(T) = ¢(0) [: fow fow [, F(8)g(t A)R(, 0) dss du dss

where
_ATs2 v3—2 vot+vy—2 v5—2
(6.6) g(t,N;) = exp{ 2]}\\7:: }83 tu ? sl
and
_ Nut 83 _ u S5 1
(6.7) h(t,0) = exp{ ~ o o 2)\5J .

Let S = 8; + NX*and T* = (X, S5, Ss, U). Changing the variable of in-
tegration in (6.5) to t* one gets for 6 ¢ w,

By = e [ [ [ e

(68) - Nuz S5 u S

ML 83 U S5 * -

exp{ N o T o 2)\5}1185 duds; dE
where
o _ Jf)  ifss > NF

(6.9) ;e = {0 otherwise
and

v3—2 potrg—2 v5—2
(6.10) g*(t*) = (s5s = N&) 2 u ? g ¢ .

By the unicity property of the quadruple Laplace transform, (6.8) is identi-
cally zero for 6 in a non-degenerate interval only if

(6.11) . Ff*)g*(t*) =0 (ae.).
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Now g*(t*) = 0 (a.e.). Thus (6.11) and (6.9) imply that f(¢) = 0 (a.e.) and
the theorem is proved.
Let V be defined by the following 1:1 transformation
U=8+ 8, S = UV
or
V = 8/(8: + 8y S =U(1 = V).

Since, as can be seen from (5.5), (X, Sy, Ss, Si, Ss) is sufficient under © then
= (T, V) is also. Using (6.12) and the density of (S., S4) given by (5.9)
we have for the density of (U, V),

v2+v‘—2 va—2 v4—2 ) u

(6.13) pe(u,v) = c(@u 2 v 2 (1 —v) 2 ¢ T "2 R 0eq.

(6.12)

But under w, N2 = A\; and (6.13) becomes for 6, € w

votry—2 % ve—2 vg—2

(6.14) Do, (u,v) = c(B)u 2 e Py 2 (1 —0p) 2

which shows that U and V are independent under w. Since (5.9) and (6.4)
show clearly that (X, S;, Ss) and (U, V) are always independent this means
that T and V are independent under w and we have

vo—2 vy—2

(6.15) (v |t) =p(v) =ev 2 (1 —v) %, for 0¢ w.

Now we are in a position to prove

TueOREM 6.2: The I-test, which rejects the hypothesis when V is greater than
some constant, determines a uniformly most powerful similar region for testing
waﬁ = 0 against @ — w: ae > 0.

Proor: We make use of the fact {7, p. 317] that if T is a sufficient statistic
for 8 ¢ w, and if T is complete on « then all similar tests of size a,

EO‘P(W) =oqa, fcow, W = (T’ V)

have Neyman structure [12] with respect to 7, i.e. satisfy
(6.16) fgo(t, Vpe(v | t) dv = a, (ae.) for all ¢ .
t

Subject to this we wish to maximize the power at a particular alternative
0 ¢ Q — w; that is we desire

f{ f(p(t, v)pe,(v | t) dv} ps,(t) dt = maximum.
Using (6.14) and (6.15) these conditions become

vo—2 74—2
(6.17) ] c./; o(t,v)v 2 (1 —v) 2 dv = «
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and

cf_: ‘L‘wj:f:{/:go(t,v)pol(vlt) dv}pgl(t) dt = max

respectively, where

votvs—2 wvo—2 vy—2 _uv l__l _u
u 2 0?2 (1-—2))_2—3_‘7("_2 )
(o) =
P ‘ pﬂl(u)
This will be achieved if for each value of ¢ we have

Vvotrs—2 wva—2 vy—2 14_3(1 _l_)_ %
2 \32 M/ M dy = max,

1
(6.18) cf ot,)u 2 v 2% (1—v) 2 ¢
0
where we recall ¢ = (&, s3, S5, »). But, finding for fixed ¢ (and a fortiors for
fixed u) a test ¢(¢, v) satisfying (6.17) and (6.18) is a problem whose solution
is given at once by the fundamental Neyman-Pearson lemma to be ¢(¢, v) = 1
when

Yatra—2 ra—2 a2 _1'1(1__1_)_1 va—? 242
cu 2 02(1—0)232)‘2 g 27\4>cv2(1._v)2
e 1__1_)

or e 2\h M > c(6,,8)
or & > (6, 1), k> 0.
or v> c(b,t).
The “constant”, ¢ = ¢(6;, ¢t) is determined by (6.17) or

S =

B (% v.;f v2 (1—=9)2 dv=a.

2:3) ">
Consequently c¢ is independent of both 6; and ¢,
o(t,v) =1 when v= 2 _se
’ S2+ 84

and the usual F-test is u.m.p. similar.’

Of course, Theorem 6.2 was proved only for the balanced two-way classifica-
tion, but using the standard form in the next section it can be proved in the
same way for the balanced one-way classification.

To show where the proof breaks down when applied to testing the hypothesis

5 In commenting on an earlier draft of this paper, Dr. Werner Gautschi pointed out that
in testing w: 0% + o3 = 0, the T corresponding to (6.3) namely T = X, 82 + Ss + 84, Ss)
is complete on w, but the method of Theorem 6.2 does not seem to help one show that the
test based on (S: + S3)/(S2 + S; + Si) is u.m.p. similar.
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of wioh = 0 against @ — wigs > 0 we try to prove the analogue of Theorem
6.1. The region Q is still given by (6.1), but w is now given by

w=1{l—0 <p<oo; O0<AM=MN=EN=EN=Nh+N—-—N< xo;
MENENML o
Clearly a sufficient statistic under wis T = (X, S, S;, U’), where
U = (8 + 8Ss).
Now

Eo f(T) = c(ha 4+ Xs — \4) f:o f:f:f:f(t)g(t,xzﬂa — M) h(2,0) du’ ds, ds; d

where

Nz PR RN
Ao — Aa) = - 2 2 2
g(t,As 4+ X5 — N) exp{ 5 T N = )\4)} s % s 2 (u)

and

- Nuz S _ & W
h(t,ﬁ)—exp{m 2 2 2N/

The proof of Theorem 6.1 made use of the fact that

N. 2-32 83 8;‘
eXp bl 2T3' eXp bl ‘278 = exp bl gx;

for S5 = S; + NX® This method will not work here because the \; associated
with the mean, viz. Ay = N2 4+ N3 — Ay, does not equal any other \; . However,
a lemma due to Gautschi® [17] and appearing in this issue of the
Annals can be used to show completeness under this v and thus that the F-test
of 62 = 0is u.m.p. similar.

7. Likelihood ratio test for the balanced one way classification. We shall show
that for the balanced, one-way classification the likelihood ratio (L.R.) test is
not the F-test, but for purposes of significance testing we can act as if it were.
Let us consider I populations where the jth measurement on the 7th population
is given by

(7.1) Xij=un+e + ey,
(7.2) i=1,2--,I; j=12--,J; IJ=N.

The usual Model II assumptions are made, namely, that u is a constant and
ei , e;; are normally and independently distributed with zero means and vari-

6 Dr. Gautschi independently derived the standard form which proved so useful in
this work.
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ances o, , 0. respectively. Let D be the usual orthogonal transformation that
transform X,;, suitably ordered, to Z;; which have the standard distribution

(7.3) %Jmexp{—%[fiﬁf*;j}’

where 81 = (Zu — VNw', & = 20 Zh, 8o = Xjee 2ia Zi; and
(7.4) M=\ =oq + Joi

(7.5) M=o

(7.6) | A= MNTNO

Clearly A

(7.7) A= X > 0.

To test Hoioa = 0 (or Ny = \s) it is well known that the usual F-test is equiv-
alent to r¢jecting Hy if G > C where G = S;/S; and C is a constant which de-
pends on the level of significance.

The maximum likelihood (M.L.) estimates, fio, \sa, Asa, are values which
maximize the likelihood (7.3) subject to the condition that (7.7) is satisfied
by the estimates, i.e.

(7.8) Neo = Aao .

Equating to zero the derivatives of the likelihood with respect to u, N2, N\; one
gets as solutions

(7.9) b = 2u/N
(7.10) Ao = So/I
(7.11) Aig = Ss/[I{J — 1)].

Since differentiation may give, as solutions, values which do not satisfy condi-
tion (7.8), these estimates have primes to distinguish them from the “‘correct”
M.L. estimates, which do satisfy (7.8) and are unprimed. That is, if
Ao = A,

then (7.10) and (7.11) are the correct M.L. estimates. Because Asp < Asg is
equivalent to G < (J — 1)7' it remains only to see what the estimates are
when (7.10) and (7.11) do not give the ‘“correct” M.L. estimates, i.e., when
G < (J — 1)7\. Since L, the logarithm of the likelihood may be written as a
function of A, plus a function of A; it is clear that the values of N, that maxi-
mize L, considered as a mathematical function defined for all positive A, and
N\;, rather than as a likelihood (i.e. disregarding the restriction A = A;), for
fixed \; is the same A, as is given by (7.10) and similarly for the value of \;
that maximizes L for fixed Ny . Also dL/dN S 0 or dL/9Ns S 0 according as
X 2 8o/l or Ny 2 S3/[I(J — 1)]. This means that for any fixed N\; , L decreases
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as \; moves away from A in either direction and similarly for \; and A3 when
N is fixed. Now, by (7.8), the point (Asp, Asa) in the N, , \; plane cannot lie above
the line Ay = N\ Suppose 1t were (stnctly) below this line and (Asq , As) were
above the hne, 1.e. )\29 < Asg. If Aso < A, then one can increase L by increas-
ing Asq ; if Asq = Az, L can be increased by decreasmg X2 . In both of these
cases the assumptlon that L is maximized at (Asq, As) is violated. Hence, when-
ever )\29 < )\39 , the “correct” maximum likelihood estimates are on the line,
As = N, which is the w region. Thus maximum likelihood corrects negative

estimates by making them zero. The maximum likelihood estimates are then

A le

(712) Mo = N

& & Sz + S5
(7.13) Ao = Agw = 7
From (7.3) it can be seen that the square of the likelihood ratio is

R = ‘I}QI exp {#Aa'z — ZAL%},

| s |

where 2/ = {zn — /N u, Zo1, 21, 0t , Rn; 212t -+ z15}. The subscripts are

ordered as in (5.2) and | oA | and | A, | are the maximum likelihood estimates
of | A|. Since both 2 ’A3'z and /A2 can be shown to equal N, by a procedure
glven in the next section, R* = | Ag| /| Aw|. By (7.6), this becomes

)\m)\I(J_D

i

which is unity when @ < (J — 1) = Gy, say. For G = Gy, (7.9) to (7.13)
imply that

(7.14) R =

J I I(J-D
J Sz S

2 —
(7.15) R - (J _ I)I(J—l) (S‘z + Ss)IJ,
whence
s _ .
(7.16) R = KG <G_1F 1) K=J/(J-1)7>0.

For values of R below one and values of G above (J — 1)™", the L.R. test and
the G or F test will now be shown to be equivalent. Since low values of \ are
significant, to show the equivalence of the two tests for this range of G it is
only necessary to show that R is a decreasing function of @ or that

d 1 \V]_1+6-JG
) il (o) |- o7
is negative. Clearly, (7.17) is negative when 1 + @ — JG < 0 which is equiva-
lent to @ > (J — 1) = Gy. Also if @ = Gy in (7.16), R = 1. We have al-
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ready seen that B = 1 when G < Gy . Now, let ay = Pr{G@ > Gy}, which is
the probability that B < 1. Hence 1 — & = Pr{R = 1}. Thus the atomic posi-
tive probability mass at R = 1 means that there are no L.R. tests of 3 = 0,
for the balanced, one-way classification, with level of significance greater than
ap but less than 1. However, when an L.R. significance test does exist it is the
F-test. Since F = I(J — 1)G/(I — 1), G > G, is equivalent to F > F,, where
Fy = I/(I — 1). For all significance levels up to and including the 25 per cent
level [9] the percentage points of F with (I — 1) and I(J — 1) degrees of free-
dom for finite values of I and J greater than 1 are greater than Fy while the 50
percentage points are less than Fy for all these values of I and J. Inasmuch as
it is unlikely that one wishes to use a significance level between 25 and 50 per
cent, for all practical purposes, the F-test and L.R. test are equivalent in the
case of the balanced-one-way classification.

Although the F-tests of no population effect are the same under Models I
and II, this quirk of the L.R. test does not exist in Model I. It is known that
then the L.R. test is precisely the F-test. In Model I, the L.R. and the F-sta-
tistic are strictly decreasing functions of one another and there is no positive
probability mass at R = 1.

It is of interest to note that there is a modified L.R. test which is equivalent
to the F-test for the Model 11, balanced, one-way classification. One can reason
that if in (7.10) and (7.11) Aza < A, then the estimate of o2 as given by (7.4)
and (7.5) is negative. Then one way to modify or ‘“correct” the estimates so
that the estimate of o2 is zero, is to use as estimates (although they are no longer
M.L.),

.S
(7.18) Ao = Agoe = I_—(J 1y

If these are put in (7.14), and if K is a positive constant

) K 1J

which is a strictly decreasing function of . Hence, if the estimates given by
(7.18) are used when Az > \io, this modified L.R. test is equivalent to the
F-test. Little can be said for this procedure, since the information in S, is not
used and when the estimate of o5 is negative one can argue almost as easily,
by ignoring the information in S;, that the corrected estimates should be

(7‘20) 3\2(20 = /)‘\390 = S?/I-‘
If these are used in (7.14),

(7.21) R = (l—?KI—/@)U

where K is again a positive constant. This is a strictly increasing function of ¢
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and the modified test using it is certainly not equivalent to an F-test with large
values significant.

8. Likelihood ratio test for the balanced two-way classification. This section
will be devoted to showing by means of a counter-example that when testing
wioh = 0 in the two-way classification, not only is the L.R. test not the F-test,
but (unlike the balanced one-way classification) is not even equivalent to it for
small levels of significance. The L.R. test is a function of S,, S; and S;, while
the F-test is a function of only S, and S;. From (5.5) the logarithm of the
likelihood for 6 € 2, Q@ given by (6.1), is

(8.1) Lo= —Niogor — 1 1og|A|+Zsjs-'l
’ 2 2 i1 A;

where | A | = MNAAPALNE. The s; are defined by (5.6) and the N’s by (3.3).
Recall that for all 6 ¢ @

(8-2) )\1 = )\2 + )\3 - )\4
and
(8.3) M2\ NN =N\ N=N >0

Rather than maximize Ly subject to (8.2) we shall use a more general side
condition, use of which will be made below, namely to maximize Ly subject to
> 3bA: = 0 and 2 % ¢\ = 0 by making use of Lagrange multipliers 8/2 and
v/2. Let

b ]
M=Io+ 23 b + 22 i
2 2

Equating to zero the derivative of M with respect to 8, v, i, N\i, (2 = 1, 2,
--+, 5) one obtains

(84) i = Zwu/v/N

(8.5) ——v,-+—85‘—"+6b,-5\,-+'yc;5\.-= 0, i=1,2--,5
5 . ' 5 R

(86) Zl: bi)\i = 0, Zl: chi =0

where the carats indicate that these are the maximizing values. Adding the five
equations in (8.5) and making use of (8.6) we obtain
5 S 13
L e=2w=N,
s B W |
and the exponent in (5.5) is —N/2 when the maximizing values of the param-

eters are used. Thus the well-known result [18] when there is no condition on
the N’s is also true if the N’s are linearly dependent.
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Underﬂ,b1 = b4 = 1,b2 = b3 = —1,b5 = O,C,‘ =0, (1/= 1,2, ,5) and
(8.4)-(8.6) become

(87) ﬁQ = lel/'\/]v
Ag —B8=0
(88) v — Sk + 8 =0
' vdm — Sk +8 =10
v — S — B8 =0

(8-9) 3\59 = Sa/”a .

If the solutions of (8.2) and (8.8) satisfy (8.3), they are also M.L. estimates.
If not then one would have to get the “correct”’” M.L. estimates by some pro-
cedure similar to the one used in the previous section. This will be unnecessary
because we shall show that even when these solutions satisfy (8.3) the L.R.
statistic is not a function of F alone. Hereafter we confine ourselves to the part
of the z space where (8.3) is satisfied by the stationary values. Eliminating the
Lagrange multiplier, and performing some simplifications one may write (8.2)
and (8.8) as

’}\lﬂ = 3\29 + 3\39 - }\49

Sohea = v; + Aok
Sahzo = vs + Aok

—1 4 4-1
S45\4n = V4 — >\49)\19

(8.10)

Similarly, the logarithm of the likelihood under w:cs = 0 or Ay = Az, N2 = A4
is given by (8.1) subject to
by =b =1, by = by = —1, b =0
c =1, ¢ = —1, g =c¢ =¢ = 0.
Using this last condition (8.4)—(8.6) can be simplified to
fw = Zw/NN
Nsw = Ss/I
Ao = (82 + 8)/I(J — 1)
Ao = Ss/IJ(K — 1).

As in the estimate under @ we treated only the case when the stationary values
satlsfy )\3(,, = )\4w 2 )\sw > 0.

Since the exponent of the likelihood when the estimates under @ or w are

(8.11)



MODEL II ANALYSIS OF VARIANCE 955

inserted has been shown above to equal —N/2, the square of the likelihood
ratio is

i /
(8.12) R = :sz: = ZL_:

where

(8.13) Lo = (hea + Ao — Aa)Ai3 N3N
(8.14) Lo = (So/I)'[(Se + Sa)/Ivs)"?

and A\, 7 = 2, 3, 4 satisfy (8.10). We have seen that the F-test of w:os = 0
is a function of S; and S, alone and does not depend on S;. It appears that
R’ may depend on S; since its denominator, L., does. However L may equal
S3 times a factor independent of 'S, in which case R® will be independent of
S; . It was shown [3], by comparing the solutions, (8.12) for two examples
differing only in values for s;, that R® does depend on S;.

In Section 10 it will be shown that both the L.R. and F-tests are invariant
tests, but the F-test is to be preferred since it has an optimum property, namely,
of being the u.m.p. similar test.

9. Uniformly most powerful invariant test in the balanced, one-way classi-
fication is the F-test. It will be shown that for the balanced, one-way classifica-
tion, when the standard variable Z has distribution (7.3) the u.m.p. invariant
test of wios = 0 against @ — w:gs > 0 (or using (7.4) and (7.5) of w:f = 1
against @ — w:6 > 1 where 6§ = N\y/)\;) is the F-test. We partition the Z vector
as follows. Let Z' = [Zay, Z , Zw]) whero Zay = Zy , Z is the column vector
whose elements are Z;,¢ = 2,3, ---, I and Zg is the column vector whose
elements are Z;; ;4 = 1,2, ---,I;j5 = 2,3, ---, J. The elements of Z and
Z may be ordered in any way. Clearly the problem remains invariant under
the following groups of transformations, euch of which is a normal subgroup
of the product group of the previous ones:

(9.1) 4% = Zo + e, Zly = By, a=23.
(9.2) Zty = DiwZia ; D, orthogonal, a =1,2,3
9.3) Ztay = cZay ; a=1,2,3; ¢#0.

A maximal invariant [8] under the product of all three groups is
G = (T 23/ (Thea Tha 21) = .

It may be pointed out that unlike Model I the group of orthogonal trans-
formations is unnecessary if we agree to base all decisions on the sufficient sta-
tistic (Zu, Sz, S;) of Section 7. Starting with this statistic the first and third
group of transformations (additive and multiplicative group) will lead to G as a
maximal invariant in the class of sufficient statistics.
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To show that the test which determines the critical region G > ¢ (or the
equivalent F-test which rejects w when W = »,G/v, > ¢) is the u.m.p. invariant
test one need only show it is the u.m.p. test based on G. Under w, W is distributed
as F with », and »; degrees of freedom, while, under @ — w, it is distributed as
0 times F with », and »; degrees of freedom, i.e. the probability density of G is

v 12 (22
(94) g) = ebog T (o + ) CF), 021,

where 8 = \o/A\;. By the Neyman-Pearson lemma the most powerful test of
0 = 1 based on G against a particular alternative § = 6, > 1 is given by ¢(g) =

1 when
nl1 4 g>vz+va

002 2

o (00 T >c
or

149
9.5 >

( ) 6+ g ¢

The left member of (9.5) is an increasing function of g, since its derivative
with respect to g is (8 — 1)/(6 + g)* which is positive. Hence this test is equiv-
alent to ¢(g) = 1 when g > c. Since the value of ¢ is determined by integrating
the upper tail of (9.4) for § = 1, it is not dependent on the particular alterna-
tive. Thus for the balanced one-way classification one may replace the class of
similar tests by the somewhat more reasonable class of mvarlant tests and show
that in this more reasonable class the usual F-test of o2 = 0 against o7 > 0 is

also u.m.p.

10. Invariance in the balanced two-way classification. It will now be shown
why there may not be any uniformly most powerful invariant test in the case
of the balanced two—way classification. We are interested in the test of w:os = 0
against @ — wios > 0 (or, if we let ¥1 = No/Ay, of testing w:ys = 1 against
Q — w:yYy > 1) for the standard variate Z whose distribution is given by (5.5).
The group of transformations analogous to those in the last section will be con-
sidered. As in that section we partition the Z vector thus:

7 7 7 7
=[Zw,Z0,Z®,Zw, L),

where Zqy = Zu and Z(, , for a = 2, 3, 4, 5, is the column vector of the Z’s
(in any order) appearing in the sums S, of (5.6). The problem remains invariant
under the same types of groups of transformations as in the preceding section,

namely (9.1) for & = 2, 3, 4, 5 and (9.2), (9.3)7\f0r a=1,---,5. A maximal
invariant under the product group of the three groups, is U, V, W where
(10.1) U=8/8, V=28/Ss, W=38/Ss.

Any test based on U, V, W will have power based on the maximal invariant
induced in the parameter space, namely, )

(102) ‘l’ = (¢1 ) 123 ’ 503))
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where
(10.3) Y1 = N/Ng, Yo = No/Ne, ¥s = No/Ns .

As in the balanced one-way classification (Section 9), the orthogonal group of
transformations corresponding to (9.2) is unnecessary if we agree to base all
decisions on the sufficient statistic (Zu1, Sz, Ss, Ss¢, Ss) of Section 5.

By transforming the density of (S., S;, Si, Ss) as given in (5.9) to that of
(8Ss, U, V, W) and integrating out s; we obtain [3]

r <V2 + vs + vs + Vs) a2 v5—2 vytvatrs—2

2 u?2v?w 2
(104) . ‘p¢’(u? 23 w) = ve vy Vatvatrs vot+v3+vatvs
Y12yl 2 6 2
where
10.5 8 = o(u,v,w;y) = 1
(105) D=t ntant

This shows that the density of u, v, w is indeed dependent on \ only through
the maximal invariant ¢ = (Y1, ¥z, ¥3). The Neyman-Pearson lemma gives aﬂ
the most powerful test of Ho:\ = N against Hy:\ 1 = \' (where A = (A, A},
N A, N/ =i, i =0 1land ¢t = 1 < ¢1), based on (U, V, W) the one
which rejects Hy when

w(u -|_. 1) W Yat¥stratrs
p\"l(u’ Yy w) = ‘l’g + 0 0 +1 ’
(o) PO B

‘E)Vz <£>Vs <¢°>Vz+vs+v4
(\p v \i > o

Since the distribution of ¥ and W depend on ¥s and 3 under H, there seems
to be little likelihood of obtaining a wniformly most powerful invariant test
based on a statistic involving U, V and W from (10.6). It was not obvious
from the fact that the maximal invariant was vector valued that no u.m.p.
invariant test exists, since conceivably (10.6) might involve only one of the
elements of the vector. For example if (10.6) were a function of U alone then
once again the usual F-test would be uniformly most powerful. Although our
probability ratio, (10.6) showed that there is no u.m.p. invariant test based on
the given product group of transformations, there still may be one with respect
to a larger group of transformations. For example, if in the last section we had
stopped after the second group of transformations obtaining as a maximal in-
variant Sy, S; (rather than S,/S;) a situation analogous to (10.6) would have
resulted. This may mean that another group of transformations, unknown to
the author, may leave the problems invariant in the case of the balanced two-
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way classification and the maximal invariant under the product of the four groups
is U.

Even if there are no further invariant transformations, an optimum test in
this case can be obtained by decreasing the class of invariant tests. We have seen
that a maximal invariant under @ is the vector consisting of any three independ-
ent ratios of Sy, Ss, S, Ss and that @ induced a group G under which a maximal
invariant in the parameter space is the vector composed of the corresponding
three ratios of N2, s, Ny, ns . But ¢4 = N\y/As (or its reciprocal) seems to be the
only one that is independent of nuisance parameters under w. Also Sz/.S, (or its
reciprocal) appears to be the only part of the maximal invariant under G whose
distribution is a function of ¢, only. Thus, 7t seems reasonable to restrict our class
to S2/8: . Then we obtain a u.m.p. test as in the last section. We now show

TraeoreM 10.1: Of all invariant tests of w: o2 = 0 against @ — wice > 0
in the balanded two-way classification whose power is a function of Y1 only, the usual
F-test is most powerful.

Proor: If it can be shown that S,/ S, is the only invariant statistic whose power
is a function of ¢ only, the above assertion is true. However we have already
shown a stronger result in Section 6, which includes this result, namely, the
usual F-test is the u.m.p. similar test. Similarity in this example means

Eyo(X) = o, bew (ie. ¢ = 1),
while we want our test to satisfy
Eyo(X) = const = a,say foryew (ie.yy = 1)
= f(r) YeQ —w(ie. gy > 1)
X =hn(U,V,W).

By ¢ ¢ w we mean that the components of y satisfy (6.2). There clearly is a simi-
lar test for every invariant test which is a function of y¥; only. Since the u.m.p.
similar test is based on U, an invariant statistic, Theorem 10.1 is proved. Of
course invariance added nothing in this case.

11. Balanced multi-way classifications. The procedure of Section 5 can be
used to obtain the standard form for any balanced multi-way classification.
The evaluation of | ¥ — Ng | just becomes a little more tedious as the number
of factors increases. Of special interest is the case of the multi-fold, hierarchical
or nested classification [6] model which is very useful in survey sampling theory
[1]. The three-fold classification may be represented by

: A AB ABC
Xiikm = p + €i -+ €i; + €ijix =+ €ijim

with u a constant, ef, ef, efz°, €ijkm , normally and independently distributed
with means zero and variances os, o , oabe , o and the range of subscripts as
usual. In this special case the hypothesis that any variance component, except
ot, equals zero can be tested by an F-test and the method of Section 6 can be
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used to show these tests are u.m.p. similar. Even in this special case the methods
of Section 9 cannot be used to show u.m.p. invariance unless the multi-fold
classification is one-fold, which is the same as the one-way case treated in Sec-
don 9. However, Gautschi’s [17] lemma must be used to prove that the usual
F-tests are u.m.p. similar in the non-hierarchical multi-way classifications, when
there are more than two classifications.
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