SEQUENTIAL TOLERANCE REGIONS!

By Sam C. SAUNDERS

Boeing Scientific Research Laboratories

Summary. Consider a measurable space with a linear ordering on the space
and the family of all probability measures which assign measure zero to each
equivalence class induced by the ordering. For such a space and family of prob-
ability distributions sequential tolerance regions are defined. The procedure as-
signs for each finite sample a Borel set with boundaries determined by the order
observations. The sampling terminates when the region remains unchanged for a
certain number of observations. The coverage of the region thus sequentially
determined is distribution free with respect to that family of distributions. Some
relationships are derived between the distribution of the coverage and the
generating function of the random sample size, which permit the determination
of one in terms of the other. This paper includes as a special case the previous
results of Jifina on the distribution of coverage for his sequential procedure.
Also, formulae are obtained for the expected sample sizes of the Jifina proce-
dure which were previously unknown. The results of Wilks for fixed sample
tolerance limits are obtained as a limiting case and comparisons are made with
sequential procedures in terms of coverage and expected sample size. For ex-
ample it is shown that for one-sided tolerance limits no sequential procedure is as
good as Wilks fixed sample procedure in the sense that if the expected sample
sizes are the same the coverage of the Wilks procedure is stochastically greater
than the coverage of the sequential procedure.

A discussion of past results. Let X be a random variable (r.v.) on an induced
probability space (¥, &, P) and let V = (X, X5, -+, X.) be a vector of n
independent replications of X; denote the induced probability space on which
V is a r.v. by (¥*, A*, P*). If D is a function mapping X* into o, then the r.v.
D(V) has been called a distribution-free tolerance region whenever the distribu-
tion of the random coverage @, defined @ = P[D(V)], does not depend upon
the measure P, under the condition that P belongs to some class of probability
measures.

Such tolerance regions as outlined above were first introduced by S. S. Wilks
[1] in the following special case: If ¥ is the real line, % the Borel subsets of X
and L(V), U(V) are two statistics from %* into ¥ such that U(V) =z L(V)
almost surely (a.s.), then U(V) and L(V) are, respectively, upper and lower
B-tolerance limits of probability level « for «, 8 € (0, 1), if the coverage, letting
D(V) be the open random interval (L(V), U(V)), @ = P[D(V)] is such that
PYQ >8]=1— a
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Under the condition that P assigns measure zero to all one point sets, Wilks
has shown that if U(V) = X(41—n , L(V) = X, for s, r positive integers such
that n 4 1 > r 4+ s > 1 where X (;, denotes the jth order statistic of V (order-
ing from the bottom) forj = 1, --- , m, then U(V) and L(V) are defined a.s.
and

PQ =Bl=In+1—r—s71+5)

where

t

I(im + 1,n 4+ 1) = (m + n + 1! Z"(1 — 2)"dz for te (0,1)
mn! 0

denotes the incomplete beta function which is independent of P.

The work on tolerance limits or regions has been generalized to a great ex-
tent by A. Wald, H. Scheffé, J. W. Tukey, R. Wormleighton, D. A. S. Fraser,
Irwin Guttman, and J. H. B. Kemperman ([2], [3], [4], [5], [6], [7], (8], [9], [10]).
These investigations dealt with the construction of tolerance regions for multi-
variate r.v.’s defined on spaces with several distinct generalized orderings;
however, all results were for a fixed sample size.

The first attempt at introducing sequential distribution-free tolerance limits
was made by M. Jifina [11] who proposed the following procedure for finding
tolerance limits L and U under the same conditions which Wilks used. Let
r, 8, k be positive integers. During the first stage take r + s observations and

set L® = X4y, U® = X4p . During the jth stage, j = 2, 3, -+ -, continue
sampling as long as )
(*) L(i—l) < Xi+i < U(j—-l)

and 7 < k where ¢ is the number of observations drawn during the preceding
j — 1 stages. If (%) holds for ¢ = k, terminate the procedure and set L = L%,
U=U" 1 X <L or X > U andi £k, set L? = X, and
U? = X (14i41—0 and continue sampling for the (5 + 1)th stage. He has shown
that this procedure terminates a.s. and that if @ = P[(L, U)] then

Pwl@ > B8] = (1 — B)* exp{(r + s)§l B'/1}

where Py is the probability measure in the probability space on which the
r.v.’s L and U are defined.

1. Introduction. Suppose we have a sequence of independent observations of
a r.v. such that any two of these observations may be compared and the worst
(in some sense) determined without knowing the magnitude of either, e.g. they
may be placed on a balance and the lighter one discovered without determining
their weights. We continue to rank these observations until a particular pre-
determined arrangement of the ordered observations has occurred, e.g., the
Jifina case where the worst and the best have been unchanged for a number of
rankings. The total number of observations ranked when such an event occurs
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is random. The proportion of the population which will be caught in the region
so determined is random. We ask ourselves, apart from the mathematical diffi-
culties one may encounter, what are the distributions of these r.v.’s and how
may we optimize within such a class of sequential procedures?

To this end we merely formalize the relevant aspects of the ordered observa-
tions of a real r.v. with continuous distribution and the related concept of a
distribution-free tolerance region and its coverage.

2. The basic sample space. Let P be a probability measure on a measurable
space (¥, ). Following the usual notational convention we shall let X be the
r.v. on %, i.e., it is the identity function on %, and we shall use it to describe
events as follows: If 7 is a proposition involving relations and/or functions for
which A = {z ¢ %:7(x)} ¢ A then we shall denote 4 by [x(X)], loosely speaking
we say [w(X)] is the set of points in ¥ such that the relation = is true.

Let 6 be a balance on X. By a balance we mean a triplet of binary relations on
¥, say 0 = (<, ~, >), where ~ is an equivalence relation associated with
the irreflexive relations <, > such that for each z, y € ¥ exactly one of z < y
or z > y or x ~ y must hold. The relations in the balance § = (<, ~, >)
induce partial orderings on the set of subsets of X and we write, e.g., for

S, Tc¥%

that 8 < T iff (read if and only if) s ¢ S, ¢t ¢ T imply s < t.

We say a set Z is dense in X iff z, y ¢ X and z < y imply # < 2 < y for some
zeZ.
(A) We assume there exists a countable set Z which is dense in ¥ with respect
to 6.

It follows that if S < T and S U T = %, then, whether or not S or 7' is
empty,
(2.1) S=sup[X <2] or S= inf [X < 2],

2¢eZS zeZT

and we have also if 8’ = 8 — sup [X < 2] is not empty, then
zeZS

(2.2) S'=[X~y] forsome yeT.

Now in order to assure the measurability of the sets under discussion let us
define the class $ of sets as follows:

§={Scx:8S<%X—8§}.

(B) We assume the minimal s-algebra of § is ¥.

As a point of comparison our assumptions (A) and (B) imply the assumptions
(i) and (ii) of Kemperman [10] in his paper on generalized tolerance regions.

Assumptions (A) and (B) have been made stronger than Kemperman’s so as
to avoid such measurability considerations as arose in his paper. This is done
by utilizing the concept of a Lusin space which originated with Blackwell [12].
The definition is as follows: a pair (2, ®) is a Lusin space iff (a) ® is separable,
i.e., there is a sequence {B,} of elements of & such that ® is the minimal o-
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algebra of {B.}, and (b) the range of every real-valued ®-measurable function
on Q is an analytic set, i.e., a set which is the continuous image of the set of
irrational numbers.

We have

TrarEorEM 2.1: Under assumptions (A) and (B), (%, A) is a Lusin space and
the atoms of A are the sets of equivalence classes induced by 6 on %.

Proor: Let X¥* denote the set of equivalence classes induced on ¥ by

0= (<,~,>)

and set {E.}n— = {[X <X 2]:z £ Z}; hence from (B) it follows by definition that
9 is separable. That the atoms of U are the points of X* follows from the defini-
tion of the atoms of a separable s-algebra. To complete the proof we remark
that in the natural topology 3, with typical element [y < X < z] we have (¥*, 3)
metrizable. This follows from the Urysohn Metrization Theorem (see, e.g., p.
125, Kelley, General Topology). Now a metric space is analytic if it is the con-
tinuous image of the set of irrational numbers (see Blackwell [12]). We define a
function ¢ on ¥ as follows:

9(z) = Elen(x)/f'»"

where e, is the characteristic function of E,. Now ¢ is 1 — 1 in the sense that
g(z) = g(y) implies 2 ~ y and g is order reversing in the sense that g(z) < g(y)
implies x > y. Now g¢ is clearly continuous. Express 7 € (0, 1) uniquely in its
dyadic expansion r = Dy a./2". Now set h(r) = 2.7 @,/3". Then h maps
(0, 1) onto g[¥] in a continuous manner, and so ¥* is the continuous image of
the function g—'h. But since the open unit interval is the continuous image of
the irrational numbers the result is proved.

Now we remark that the atoms of a Lusin space need not be points and they
are not in this case. We remark further that a Lusin space ensures a regularity
which along with other advantages permits the identification of Borel and
Baire functions and ensures the existence of conditional expectations.

The function defined on X by F(x) = P[X < z]is the distribution of X and
F maps ¥ into the unit interval.

TuroreM 2.2: Now U = F(X) is a r.v. with the uniform distribution on (0, 1)
iff P[X ~ x] = O for each x € X.

Proor: If for some x £ ¥ we have P[X ~ z] > 0 then F is not onto (0, 1)
and U cannot be uniform. Let » £ (0, 1) and set

S =[F(X) = 4], T = [F(X) > u].

Then making use of the properties (2.1) and (2.2) the proof follows.

A balance 0 was said by Kemperman to be continuous with respect to the meas-
ure P iff P[X ~ z] = 0 for each z ¢ X.

Let ® be the class of probability measures on ¥ which are continuous with
respect to the balance 6 and hereafter let P denote generically an element of @.

We have a r.v. X defined on the probability space (¥, A, P) where P ¢ ®.
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Let W denote the set of positive integers. We write Xw = (X;, +++, X,, ++- )
for the r.v. on the probability space (X%, Aw, Pw) where ¥ is the countable
cartesian product of ¥ with itself, Aw is the o-field of subsets of X generated
by all measurable cylinders in X% and Py is the product measure on %A gen-
erated by P. From Blackwell’s paper [12] we have the following:

TueorEM 2.3: (Xw, Aw, Pw) as defined above is a Lusin space.

For x, ¢ X% we label z;,. as the jth ordered element determined by 6 from
x1 = (%1, +*, Tu), Where Tj,n < Tjprnforj =1, .-+, n — 1. Thus a balance
allows the determination of the r.v. X , which is the jth order observation of n
with respect to 8 from the random vector X7 .

Now extending our descriptive notation to elements of Ay for a given n ¢ W
we set Ki) = [X; < X2 < -+- < X,] and then let

K =X, <X, < -+ < X3

for each of the n! permutations (¢) = (4, -, %) of (1,2, -+, n)

We will say that B, € Aw is a simplicial set over {1, --- , n} whenever there
exists a set ¢ which is a subset of {1, 2, - -- , n}} such that B, = U;.y K{{) a.s.
Now any simplicial set is a cylinder set and except for a set of probability zero
is the union of simplexes and as such is a set which may be defined by arrange-
ments of the ordered observations. If we let ¢(¢) denote the cardinality of the
set ¥ as defined above, then from the independence of X;, ---, X, we have
Pyw(Ba) = c(¢)/n!.

An event A ¢ Uy is said to be of structure (d) on T = {t;,---, t,} < W iff
there exists a measurable relation § symmetric in its arguments and defined on
the unit cube such that for any P e ®, 4 = [§(F(Xy,), -+, F(Xs,))] a.s. This
nomenclature is adopted from Birnbaum and Rubin [13] because of the obvious
similarity.

We have

THEOREM 2.4: If B, is some simplicial event and A, is an event of structure
(d) on {1, - - -, n}, then the two events are independent.

Proor: It is sufficient to assume that for some ¥ we have a.s..

B.,=U;., K.
Now by the disjointedness of the K7;y and the nature of 4.,
PW(Aan) = Zvl' PW[K?J') n B(F(Xl); ctt F(Xn))]
Je

= _li Z n!PW[s(F(XL")’ Tty F(Xn.n))]
Nt jey

I

L3 Puls(r(x), -, FE] = S pya,)
Njey n:
and hence we have independence.

TaEorEM 2.5: If B is a sstmplicial event on {1, - - - , n}, B* is a simplicial event
onf{n+1,---,m} and C = AA* where A is of structure (d) on {1, ---, n}
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and A* is of structure (d) on {n + 1, ---, m}, then the events B, B* and C are
independent.

Proor: This follows immediately from the preceding and from independence
of the components of X .

3. Sequential sampling plans. Let S = (S;, -+, S,, --- ) be a sequence
of disjunct measurable cylinders in ¥y such that each S, is a simplicial set
over {1, ---, n}. We call such a sequence a sequential sampling plan and the
events S, stopping sets. The stopping rule for our sequential sampling plan is:
stop sampling after the nth observation iff z,, ¢ S, . Because 8, is a cylinder set
over {1, -+, n} it is always known after n observations whether or not the
event S, has occurred. We wish to choose S so that for each P ¢ ® we have
> P(8,) = 1, i.e., sampling terminates a.s. We define the r.v. N on ¥y into
W by N(zw) = n iff 2, € So. N will be called the random sample size and its
distribution will depend upon our choice of S.

We now exhibit an obvious lemma.for later reference which concerns the
construction of a sequential sampling plan from a sequence of simplicial sets.

Lemma 3.1: If B = (By, +++, Ba, -+ ) 18 a sequence of events and B, is a
simplicial set over {1, ---, n} then S, = B.N ;= B; for n ¢ W defines o se-
quence S of disjunct simplicial sets, and if we write

Pn = Pw(8S,), gn = Pu( nlE) for neW
j=

¢ follows that

(1) Pn = Quo1 — gn for n e W where ¢o = 1,

(ll) an = llﬁIann = 0.

Let D be a function which maps W X Xw into % which for fixed n e W is a
function of 2y only. Let us write D(zs,). The coverage of D is defined by

Q(zu) = P(D(xy)).

Hence for a given sequential sampling plan S which determines a random
sample size N we have a sequential tolerance region D(X%) as a set valued r.v.
on (X¥w, Aw, Py) taking values in A and the random coverage Q(X%) is a r.v.
on the same probability space but assuming values in the unit interval.

We now begin a construction of S and D in terms of simplicial sets. Let

b= (b1, -, ba, ) be a non-decreasing sequence of positive integers such
that

1°n < b, for every n ¢ W and if b, = n for some n ¢ W then bpy; = n 4+ j
forallj e W,

2° lim, bn/n = 1.

We call b, a stopping number and b is the sequence of sampie sizes at which
inspection takes place to ascertain if a stopping event has occurred.

For z, ¢ Xw we define a subset 4;(zn) = [2jm1m < X < zj,] for 7 =1,
«++,n + 1 with the obvious definition of Ay, 4,41 . Due to the continuity of
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6 with respect to P ¢ @ it follows for each n ¢ W that 4 ,;(X%w) is a statistically
equivalent block. This nomenclature follows from:

LemMa 3.2: For fixzed n ¢ W write U; = F(X;,.) for j =1, -+, n. Then
the random coverages for each j = 1, ---, n + 1 defined by

Ci(X%) = PylAdi(X%)] = U; — Uj,

(where we set Uy = 0, Unya = 1) have the following properties:

1) 2P Ci(XW) =1, 0= Ci(X¥) =1 as for j=1,--+, n+1,

(ii) the distribution of the C';(X%)’s is completely symmetmcal

(iii) Q(XW) = >k C;;(X%), where (Ciy, - -+ , Ci,,,) 18 any arrangement of
(C1, +++, Cuy1), has the distribution Pw[Q(Xw%) = q] = I,(k, n — k + 1) for
0<g< 1

Proor: From Theorem 2.2 we know that U,’s constitute a set of ordered ob-
servations from the r.v. with uniform distribution on the open unit interval
and the properties (i), (ii) and (iii) are known consequences of this fact (see

Tukey [4]).

Let A = (Ar, -+, A, -+ +) be a sequence of subsets of W such that there ex-
ists an 9 € W and X, is empty if n < 5 and A, is a non-empty subset of {1, -,
n + 1} if n = 9, and further, such that X\, = {1, -+, n + 1} — A\, has the
property that for all n = 7, ¢(X\,) = 5. We define D in terms of A by

D(zp) = U 4;(z0) forn = 9,
Jjehn

and if additionally we have for each n ¢ W, D(zs) C D(zat"), then \ will be
called a selection sequence with deletion number 1. Now A, tells us what union of
statistically equivalent blocks forms our tolerance region after n observations
and 7 is the number of statistically equivalent blocks which are deleted, this
number remaining constant. The monotone restriction on D requires that the
tolerance region not decrease with increasing sample s1ze

It is obvious that for each n e W, z, ¢ ¥w

Q) = P(D(E) = 32 P(4x(a1)) = 32 Ci(at)

and the r.v.’s so defined have the properties specified in Lemma 3.2.

We now describe a simplicial event in terms of the tolerance region and a type
of stability, that is a simplicial event has occurred when after m observations
the tolerance region is the same as it was after n observations (m = n). More

formally,
TueoREM 3.3: Let a selection sequence N with deletion number n be given and

for fized integers n, m such that n < n < m set Bn. = [D(X¥%) = D(X¥%)].
Then B, s a stmplicial set over {1, --- , m} and

Pece = )/ ()
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Proor: Now D(xw) = D(xy) iff z; e D(xw) for each j=n + 1, .-+, m.
From the independence of the X;’s we have

T=n+1 Jjeh,

Pyl [X: e U Ay(ad)] | X3 = o) = (5 Cs(al))™™"

By the properties of conditional expectation for Lusin spaces we have from

Lemma 3.2, making the substitution z = Y C;(z3),
jed

1
Pw(Bun) = fo AL —n + 1, 1)

and integration yields the result. That B.,, is simplicial is obvious.

A couple (A, b) we will call a decision rule and this nomenclature we make
clear momentarily. For a given decision rule we can use the simplicial sets as
defined in Theorem 3.3 to obtain a sequence of such sets by taking m = b,
for each n = 7. Since we can without confusion omit the second subscript, let
us do so and write Bs, for the event as described. Let us define B,, = ¢ for n =
1, ---, 9 — 1. Now from the sequence {Bs,}7-1 we can use Lemma 3.1 to con-
struct a sequential sampling plan {S;,}.

We have

THEOREM 3.4: If from a given decision rule (N, b) the sequential sampling plan
{Ss,} s constructed in the above fashion then Pw(sup S;,) = 1.

Proor: From (ii) of Lemma 3.1 it is sufficient to show that ¢, — 0 since
Ss,, is simplicial. Now

@ = Pw'(jn1 By;) = Pw(Bs,) = 1 — Py(Bs,).

Since we know
—h

. nin
l,}fl =T 1 for any heW,
it follows from Theorem 3.3 and the definition of stopping numbers that
. i (bp = p)In!
lim Pw(Bs,) = lim N

We remark that we are assured of stopping sampling at the least n ¢ W such
that b, = n if such exists. Further: the proof of this theorem justifies the intro-
duction of assumption 2° in the definition of {b,}.

We examine more closely the structure of the sampling plan {S;,} in the fol-
lowing primary:

THEOREM 3.5: For a given decision rule (N, b) let o be the function defined by

max{j e W:b; = n —1 forn=b+1
Opn =
0 n=1--,b.
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In words: ¢, is the largest subscript of the {b;} for which b; < n if n > b and
otherwise it is zero. Let L, be the set defined a.s. by L, = [X, e D(X% ")]. Then

n—1

anﬂan—anﬂLﬂﬂBb ngn

Sbn = j=n i=n

¢ n <.

Proor: By construction in Lemma 3.1 we have only to show the equivalence
mentioned for n = 7. Let n be fixed and denote the right-hand side by A. To
prove that A = S;, we will show that

k—1

L, C n an and that Sb,, cC A.

n=op+1

We have from the definition an equivalent expression

by
B,, = N [X; ¢ D(XW)]
i=n+1
but since D(X%) < D(X%™") a.s. we have that L, C By, for all j such that
k> j> o, and hence L, € N*}, .1 By, . Now we see that L, N By, C Bs,_,
by noting that

[Xa eD(X"'l)]‘H [X: e D(XWw)]

is contained in N%5! [X; e D(X% )], which proves the result.
We now have: 3
CoROLLARY 3.6: Using the notation introduced previously we have

= P(S%,) = ¢, (: : i)/(:") for neW

with the understanding that <:> =0y n<n

Proor: By the preceding theorem we have
Do, = PW(Bb” ﬂ L,. ﬂ ﬂ Bbj)-
="

Since (L. N N7, By,) is a simplicial event on {1, ---, n} and Bs, can be ex-
pressed as an event having structure (d) on {1, - -+, n}, independence follows
by Theorem 2.4. Apply this argument a second time along with Theorem 3.3
and simplify to obtain the result.

4. The distribution and generating function for a decision rule. Let r =
(m, \, b) be a decision rule where X is a selection sequence with deletion number 7
and b is a stopping sequence. This redundancy of notation has advantages
as we shall see. Let R be the space of decision rules. Once r ¢ R is chosen, the
random sample size N, the tolerance region D(X?%), and the coverage Q(X%)
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[all are r.v.’s defined on the probability space (Xw, Aw, Pw) and all are func-
tions of r, a fact disguised by our notation] are necessarily determined.

We now define three functions on (0, 1) X R: the distribution G of the cover-
age, the generating function M of the sample size and a derived function ®
which is determined from 1.

M(g,r) = E(EY),
¢(67 T) = M’l(B; 7')/(’7 - 1)!

where r = (9, A\, b) and subscripts of M denote derivatives with respect to 8.
We now exhibit the main result concerning these functions:
THEOREM 4.2: If r = (9, N\, b) s fized, then

G(ﬁ) T) = ;ﬂpbnlﬁ(bn +1 - M, 77)’

M@B,r) = ff P68

n=n

and

= (n —1 -
Q(ty 7') =N Z (17 — l)qvntbn "

n=1

However, we have these relationships holding'

aer) = 20 LS = [0 - ometn @,

M(B,r) = fo B - t)™'®(t,r) dt.

Proor: Let N be the random sample size determined by r. Now by definition
N(z,) = b, iff z, € Sy, so the stated result for M is immediate. Now

G(B,r) = PylQ(X¥) < 8] = E,IPW(S»,L[Q(X';) = 8D
and by utilizing theorems 2.4 and 2.5 we have
-G(8,7) = 2 poPwlQ(XY) < 8] Xwe Sy

"and by Lemma 3.2 the result for G follows. That ® is as claimed follows from
Corollary 3.6 and the definition and the remaining equations follow from re-
peated integration by parts.

5. A derivation of the Wilks and Jifina tolerance region procedures. We shall
call any family x of decision rules a folerance region procedure wherever one can
make G(B, r) for given 8 £ (0, 1) arbitrarily small by proper choice of r ¢ x.
This definition includes fixed sample procedures as well as sequential procedures.
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We now use our results to obtain the known results.

Procedure 1: (Wilks [1]) Let x = {(9, A\, b) ¢ R: b, = k for all n <k, for
some k ¢ W}. Now any b has only one stopping number, say k, hence this is a
fixed sample procedure where the k observations are drawn and the tolerance
region determined by using A.

If r= (9 A b) and b, = k for all 9 £ n < k, then we have G(8, r) =
Is(k + 1 — 9, ), E(N) = k. The proof is immediate since by definition we
have G(8, r) = Is(k + 1 — m, )2 7-1ps, and

M) = &, ) =1 (f,“) b

It is clear that this is a procedure since the parameter & can be taken arbitrarily
large for each fixed 7.

Procedure 2: (Jifina [11]) Let x = {(n, M\, b) ¢ R: b, = k + nforeachn ¢ W,
for some k& ¢ W}. This is a fixed increment procedure in which sampling stops
if the tolerance region obtained from the first #» observations remains fixed
during the observation of the next k.

We shall show that for any r ¢ x for which »r = (%, A, b) and b has increment
ke W such that n <k + 1 then G(8, r) = 1 — (1 — B)” exp {1 i18°/7}
and if » = 2 then we have

1 k .
E(N) = n(n — 1) j; (1 =) exp{n Zl t’/j} dt
=
and for 7 = 1 we have

E(N) = exp {Zja57}.

We now turn to the proof of the above results. In the light of the Theorem
4.1 it is sufficient that we determine the derived function & since from it we
can determine both M and G.

Let us fix r ¢ x as described above and omit its mention. By Theorem 4.2 we

have
= [n —1 —n
®(t) =12 ( _ l)qentb"
n=n \7

where by definition

0 forn £k +1
On =
n—kFk—1 forn =k + 2
and g, = 1forn =0, 1, ---, n — 1. Therefore, it follows that

®(t) = t'n 2 (n _ })qant"‘"-

n=n \7
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To determine ® it is sufficient to determine y where &(t) = t*ny(¢). There-

fore, using the definition of ¢ given above we have, since n < k + 1,

k+1 0
n — 1\, n—1 _
t) = e 4 Y
v(t) Z(n—1> ”_ZW(n_l)q -

n=n

k49 _

— Z <7l- >n—n + Z (n + k) t”+k+l_".

n=yg \N — n=n

Let ¥ = f + g where f and ¢ are, respectively, the first and second terms in
the expression above. Then, using the prime notation for derivatives,

k+
Y = 3 (" _ 1) (n — )t
asvir \n — 1
+3 (Z * '“) (n+ b+ 1 = g™

n=1

k41 (n—1—9) ©
-1 n+k\ nr—
-3 (’n )t +772(+>nt+k"

n=n+1 n n=1
Using the recursion relation ¢, = ¢n—1 — p» and the result of Corollary 3.6

we have upon simplification

(¢ —~(n + k bl — [n —1 -
g¥=§"< ;'l‘ )Qn—lt+k"_2(ﬂ_1)QV”t+kn

n=n

_[(nt k). s (n-|-1+k> nthH—y
( . )t+2 gt

k+n 0

g n+ k) n-+2k+1—n
- - b .
nE=n (77 - 1) ;ﬂ (’7 -1)?

Now by using the recursion relation for the binomial coefficient one has that

S (I aern - o0+ Low

n=1n

hence

g _ (n + ’c) 4Lt + g(t) — ¢7(8) — tg(t)
n n K

and substitution shows that

r() _§* (:) 7 4 f;g'(t) + g(8) — (1) — £'9(2).

n n=n
Again using the recursion relation for the binomial coefficient one sees that

S (1) e =s0 + L0,

n=1
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hence we have that v/(t) = ty/(t) + (1 — t*)ny(t). Regarding this last ex-
pression as a differential equation and integrating over (0, t), we have, since

v(0) =1,
y(t) = exp {1251 ¥/3)
and hence
o(t) = nt° exp (9251 '/}
Integrating 7f§ (1 — )™ "y(¢) d¢t by parts will show that

8
n [ (= 0"y de =1~ (1 6)(8),
0

and hence we can now use theorem 4.2 to obtain
GB,r) =1 = (1 —B)"exp {2 %=1 67/3}

and
1
E(N) = n(np— 1) f (1 = O™ (t) dt forn = 2,
0

which gives us one result.
As a consequence of theorem 4.2 E(N) = Gi(1,r) for n = 1. We now must
check only this case, and hence G(8, r) = M (B, r) = 1 — exp {y(B, k)} where

k 8
y(B k) = —In (1 — B) — X B7/j = fo (1 — )™ dt.

j=1

Therefore

. (8, k) . B 1—-p8
E(N) = lim Y B E) )
-1 exp {y(B, k)} 11— L
exp{—j;B/J}

which is the result claimed.
We notice here that for every o, 8 € (0, 1) and every n ¢ W we can choose k
so that G(B, r) < a by simply taking k large enough that
k

> 6/j 2 1In(1 = a) — In(1 ~ B).

=

That this is always possible can be seen from the fact that
lim 37587 = —In (1 = B).

6. Comparison of sequential procedures. In what we have considered so far we
have determined the random sample size by a sequence of events which obtain
or not from the sequence of observations. Since it follows from the above that
r ¢ R determines a random sample size N, and

G(B,7) = PwlQ(XY") = Bl = Ex,PQ(X3) S B|N, = n].
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It follows that for any independent r.v. N with the same distribution in W as
N, the randomized decision rule r* = (n, \, N) would have the same distribution
of coverage and generating function.

This extension of decision rules allows us to encompass a wider class for com-
parison.

If r, ' are decision rules we say they are comparable iff E(N,) = E(Ny).
Now for comparable rules we see that r is better than r’ at 8 ¢ 0,1)iff G(B,r) <
G(B, r'). We modify our nomenclature in the natural way when the inequality
holds uniformly for all 8 in some interval and a rule is said to be best when it is
better than all the rules in some set of rules. (In the following sections primes
affixed to the characters ®, G and M do not refer to derivatives.)

TugoreM 6.1: Let r, ' be decision rules with associated functions ® and ¥,
respectively, such that both have number 1. If there exists Bo & (0,1) such that® < ®
on (0, Bo) and & < & on (Bo, 1), i.e., Bo is the unique zero of @ — ®1n (0, 1),
then and only then is @' < G on (0, 1).

Proor: By the results of Theorem 4.2 we have by letting h = & — & that
h > 0on (0, Bo) and —h > 0 on (B, 1) and hence for each 8 & 0, 1)

B 1
66) — @) = [ (1= 0"t = - [ (1= 07hO) a,

with the last equation following, since fo (1 — ¢)™"h(¢) dt = 0. From the ex-
pression above necessary and sufficient conditions follow.

We also mention the immediate:

COROLLARY 6.1.1: If ®, @& are defined as above and are such that ¥ >don
(B:,1) and & < @ on (0, B1) where B < Bz, ie.,® — @ has more than one zero
on (0, 1), then we know that @ < G on (0, B1) and on B2, 1).

We now have a criterion for comparison of error functions in the terms of the
associated functions ® and we have immediately:

COROLLARY 6.1.2: If n = 1 and My(1, r) < Mi(1, r') then there exists one
Bo £ (0, 1) such that G < G’ on (Bo, 1) and if n = 2 and Ma(1, r) < My(1, ")
then there exists a Bo such that G < G on (Bo, 1).

We shall say of two procedures x; and xe that x: 48 better than xz at 8 € (0, 1)
iff 7, € x1, s € X2 are comparable implies G(8, 1) < G(B, r2). Further we shall
say xi is uniformly better than x on (0, 1) iff comparability of 71 & x1 and 72 € X2
implies the inequality holds for all g in the unit interval.

Ji¥ina claimsin [11] that for number n = 1, Wilks’ procedure is uniformly better
than his own on (0, 1) but any number 7 = 2 his procedure is better than Wilks’
for B sufficiently close to unity. However, he assumes firstly, that the procedures
are comparable by disregarding the difference between v, the ASN for his decision
rule, and [y] (the greatest integer less than v), the ASN for the Wilks’ decision
rule, and secondly, makes no mention of the consideration that the neighborhood
of 1 in which his decision rule is better might well depend upon 7.

We know that exp {17}, which is the expected sample size for 9 = 1
for the Ji¥ina procedure, is not integral for any k ¢ W and hence the two pro-
cedures are not comparable for = 1. From the complexity of the expression
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for the ASN for n = 2 given in the procedure 2 it is not apparent that for any
value of 7 one would find the procedures comparable.

However, lack of attention to these details does not vitiate Jifina’s theorem.
In fact, by modifying the argument slightly so as to assure comparability and
with slight adaptation, Jifina’s proof applies to any other procedure.

Let v > n and 5 € W be given as an ASN and deletion number, respectively.
Now define N by letting m = [y] and setting

m with probability s
N = .
m + 1 with probability 1 — s

where v — m = 1 — s. Such a rule we call a randomized Wilks decision rule
r = (g, \, N). Let N’ be any other random sample size which assumes value n
with probability p, such that D e, np, = 7.

We quote in our terminology:

TureoreM 6.2 (Jifina): For n = 1 a randomized Wilks procedure vs uniformly
better on (0, 1) than any other comparable procedure for every expected sample size.

TureoreM 6.3 (Jifina): For 0 = 2 and a randomized Wilks decision rule r =
(1, N\, N) and any other comparable decision rule r' = (9, \, N') there exists a
unique Bo € (0, 1) depending on (r, r') such that r is uniformly better on (0, Bo)
and ' uniformly better in (Bo, 1).

We shall not concern ourselves with the original proof of these theorems since
it is lengthy and an alternate proof will be given later.

This last result leads us to:

TuEOREM 6.4: There does not exist a decision rule with number n = 2 which s
uniformly better on (0, 1) than all comparable decision rules with number 1.

Proor: Suppose that we have such a rule with associated function ' and ASN
equal to y. Then by Theorem 6.1 if ® is the associated function of any other
comparable rule and h = & — &, then h must possess exactly one zero at, say,
Be(0,1),and h > 0 on (0, 8) and —h > 0 on (B, 1). But by Theorem 4.2
we know

(*) [G-va-orawa=y-v=o,
and we also have
(%) f 1=0""ht)dt=1—-1=0.

Therefore, letting g(t) = (1 — t)"°h(t) we have from (*) f8g = [t —g and
from (*) and (#x) [0tg(¢) dt = [5 —tg(t) dt. But

foﬂtg(t)dt <Bfoag = Bf; —g < /: —tg(t) dt,

which is a contradiction and proves the result claimed.



SEQUENTIAL TOLERANCE REGIONS 213

For his procedure Jifina has constructed tables of the value of the parameter
k needed to attain a value of the error function less than 0.1, .05, .01 for values
of B equal to .8, .9, .95. Of course the question is, how does the point 8, as de-
fined in theorem 6.3 behave as we alter k?

This can be partially answered as follows.

TrEOREM 6.5: Let N be any random sample size and N’ a random sample size
with the same expectation which has positive probability at no more than two in-
tegers which are adjacent. Now define r, = (2, \, N + n), e = 2,N,N +n)
as translated rules where the number of both is n = 2. Then for any B € (0, 1) there
exists m € W such that n > m tmplies G(B, r.) > G(B, ™).

Proor: Let h,(t) = G, r.) — G4, r:.); using theorem 4.2 we have

ha(t) = £"[G(L, 7o) — G(E, 7o) —|— n(M(t ro) — M(t, o))l

But it follows by theorem 6.2 that M (¢, ro) > M(t, 7o) for all ¢ & (0, 1) hence
for any 8 ¢ (0 1) we can, by taking n sufficiently large, force h. to be positive
and hence r,, is uniformly better than r, in (0, 8).

Since one is usually concerned with values of 8 near 1, one might be led to
think from theorem 6.3 that in practical tolerance estimation situations with =
2 one could advantageously use a sequential procedure. Unfortunately, how-
ever, we are also interested in having o« small which forces the ASN to be large.
To help clarify this situation we examine G(B, -).

We know that for any r ¢ R with number 7, we have

G(ﬁ: 7‘) = nz_:ﬂ pn[ﬂ(n + 1 -9, ’7)’

where

I(n+1— 1) = :Z:, (Z) g (L;-)k

by a well known identity, clearly G(8, ) is only a linear combination of points
on the graph of Is(:, ). We now examine this function.

Set f(z) = B2 1=0v" (:), where y = (1 — 8)/B8. We wish to find for 8
fixed, the values of 2 > 0, where (1) f is convex and (2) f is concave. Clearly
(1) iff f(z)8" > 0, (2) iff f”(x)8 < 0. Now upon taking derivatives we
have for all n e W

n—1 7—1 Ick+1 X
7 (z)-8° = (In )’ ,; ( ) v 4+2mp Z 2_31 Si iz’
n—1 kk+1
+k§ ;Skz(z—— 1) z°

where the S; are Sterling numbers.
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Evaluation in the following special cases yields: if
n=1f"(z)-87= (Inp)°
n=2 = (InB)*(1 + vA)"

2 2
n =3 = (lnﬁ)2[1 + vz +12-(x2—x>]+21n6[~/ + % (20— 1)]+72.

We remark that for » = 1 f is a convex function for all z > 0 and hence that
the Wilks’ procedure is uniformly best on (0, 1) which is of course in agreement
with theorem 6.2. We also have:

THEOREM 6.6: If r = (2, \, N) 4s such thatPW[N = n] =0forn < [xg] + 1
where s = —2/In 8 — B/(1 — B) and v’ is the comparable rule with positive
probability at no more than two adjacent integers and both have numbers 5 = 2,
then r' is uniformly better than r on (0, B).

Proor: Using the equation above for = 2 we have

" —z -2 B _
f"(x) >0 iff ar:>1'3 I_B—x,g.
Hence 7’ is better than r at 8 and by the results of theorem 6.3 it must be uni-
formly better on (0, 8).

The theorem above also throws light on the results of theorem 6.3 as to why
r’ is not uniformly better on (0,1).

As an aid in computation we prove:

COROLLARY 6.6.1: With f and xs defined as above for n = 2 we have

1) flxs) = 26711+ (B — 1)*/8 — (B — 1)°/8 4+ o(1 — 8)Y],
) zm=Q0-87"—@0-8)/6—(1-8)"/12+ o(1 - 8)".
Proor: (1) We write f(zs) = 2¢°h(8) where h = g ‘¢’ and
9(8) = —BIn [8/(1 — B)].

Expand % in a power series in terms of ¢ and simplify and one obtains the result.

(2) We write h(1 — 8) = (1 — B)xs which has a power series about o =
1 — B. Expanding and simplifying yields the result.

A further result on the comparison of two decision rules in the case of the
number 7 = 2 is as follows.

THEOREM 6.7: Let r = (2, N\, N') be given where PisDh > Ofor somej + 1 < k,
let usdeﬁner (2, A\, N') by Py[N' = n] = p, = 0 with p, =p; — ¢ p,,. =
Pm + € p; =p+ ¢ pr =p, — eand p,, = p, for n elsewhere, and we suppose
that j <m Sl <kandm—j=k — 1 =s, then v is uniformly better than
r on (0, (j/k)").

ProoF: Let 2./ = D newr Where W = {n e Win = j, m, I, k}. Let jm™ =
8, k"' =0, ml ™ =~,k—m=1—j = vs where v is some rational number.
From the above follows

0<y=<1 0<86<oc<1, 1+v55=0c(l+7). (%)
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Let us denote M (-, r') by M’ and similarly for @', M, and G.
M'(B) = Xpu8" = X' pB" + B (p; — &) + (pn + 8" + (p1 + )6’
+ (e — )
M'(B) = M(B) — 8"+ 8" + 8" — 8 = M(8) — B'(1 — £)(1 — ")
E(N') =E(N) — g+ em+ e — ek =EN) + e(m —j) — ek — 1)
hence we have r, ' comparable.
G'(8) = M'(B) + (1 — B)M1(B)
M(B) — &8'(1 — (1 — ")
+ (1 = BMB) + mef™ (=5 + 77) + k(¢ — £7)].

Now upon simplification we obtain G’(8) — G(B8) = €8 'g(8) where we have
9(B) = —B(1 — B)(1 = B7) + (1 — B)m(8" — 8) + B7k(c — B°)]. We now

must examine g; setting ¢t = 8°, h(8°) = g(B8) we have
R() = =7 (1 —8)(1 — &) + (1 — £ )kf(t)

where f(t) = (1/k)[m(t — 8) + t'k(s — t)] = t"(c — t) + vo(t — §). Using
(%) above we see that f(t) = (£ — vod)(¢ — t) + (1 — ¢)(t — vob) from
which we can see that { < ygé implies f(1) < 0.

Set 2o = vod therefore h < 0 on [0, ) and we have g < 0 on (0, By) where
Bo = to and hence G’ < G on the same interval.

COROLLARY 6.7.1: If in the above theorem the number n = 1 then r' is uniformly
better than r on (0, 1).

Proor: The result follows immediately from the identity

M'(8) = M(B) — £(1 — B)(1 — )

used in the preceding argument.
These last results have been carried out for the simpler cases for numbers
7 = 1, 2, and clearly for larger » the results are more tedious.

I

Acknowledgments: The author is much indebted to Prof. Z. W. Birnbaum,
of the University of Washington, who first proposed this problem and directed
the thesis research and then allowed this paper to be published under my name.

REFERENCES

[1] S. S. WiLgs, ‘“‘Determination of sample sizes for setting tolerance limits,”” Ann. Math.
Stat., Vol. 12 (1941), pp. 91-96.

[2] A. WaLp, “An extension of Wilks’ method for setting tolerance limits,” Ann. Math.
Stat., Vol. 14 (1943), pp. 45-55.

[3] H. Scuerrt aND J. W. Tukry, ‘“Non-parametric estimation: I. Validation of order
statistics,” Ann. Math. Stat., Vol. 16 (1945), pp. 187-192.

[4] J. W. Tugey, ‘“Nonparametric estimation: II. Statistically equivalent blocks and toler-
ance regions—the continuous case,”” Ann. Math. Stat., Vol. 18 (1947), pp. 529-539.

[5] J. W. TukEey, ‘“Nonparametric estimation: III. Statistically equivalent blocks and



216 SAM C. SAUNDERS

tolerance regions—the discontinuous case,”’” Ann. Math. Stat., Vol. 19 (1948),
pp. 30-39.

[6] D. A. S. Fraser aND R. WoRrMLEIGHTON, ‘“Nonparametric estimation: IV,” Ann.
Math. Stat., Vol. 22 (1951), pp. 294-298.

[7] D. A. S. Fraser, “Sequentially determined statistically equivalent blocks,” Ann.
Math. Stat., Vol. 22 (1951), pp. 372-381.

[8] D. A. S. Fraskr, ‘“Nonparametric tolerance regions,” Ann. Math. Stat., Vol. 24 (1953),
pp. 44-55.

[9] D. A. S. Fraser AND IrRwIN GuTMAN, ““Tolerance regions,” Ann. Math. Stat., Vol. 27
(1956), pp. 162-179.

[10] J. H. B. KEMPERMAN, “Generalized tolerance limits,”” Ann. Math. Stat., Vol. 27 (1956),
pp. 180-186.

[11] MirosLav JikiNa, ‘‘Sequential estimation of distribution-free tolerance limits,”
Cehoslovack. Mat. Z. 2(717)(1952), pp. 211-232; correction 3(78)(1953), p. 283.

[12] Davip BLackwELL, “On a class of probability spaces,”” Proceedings of the Third Berke-
ley Symposium on Mathematical Statistics and Probability, Vol. II (1956), pp.
1-6.

113] Z. W. BirnBauM aND H. RuBIN, “On Distribution-Free Statistics,”” Ann. Math. Stat.,
Vol. 25 (1954), pp. 593-598.



