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1. Summary and introduction. If z is a random variable with mean zero and
variance ¢’, then, according to Chebyshev’s inequality, P{|z| = 1} < ¢". The
corresponding one-sided inequality P{z = 1} < ¢°/(¢* + 1) is also known (see
e.g. [2, p.. 198]). Both inequalities are sharp.

A generalization of Chebyshev’s inequality was obtained by Olkin and Pratt
[1] for P{| 2| = 1 or --- or | 2% | = 1}, where Ex; = 0, Ex} = o,

Ex;x,-=o-2p(i;£j),i,j= 17!k)

we give here the corresponding generalization of the one-sided inequality, and
we consider also the case where only means and variances are known. To obtain
an upper bound for P{z ¢ T} = P{x; = 1 or --- or z; = 1}, we consider a non-
negative function, f(z) = f(x1, -+, zx), such that f(z) = 1 for z ¢ T. Then
Ef(z) 2 [(zer) f(z) dP 2 P{z & T}. Since the bound is to be a function of the
covariance matrix, 2, f(z) must be of the form (z — a)A(z — a)’, where
a= (a, ,am), A = (a;):k X k. A “best” bound is one which minimizes
Ef(z) = tr A(Z + d'a), subject to f(z) = 0, f(x) = 1on 7.

2. Derivation of the bound. If D, , = diag (1 — ay, -+, 1 — &),
z2=(z —a)Di2, and A* = Dy ,AD,,,B = A*",
then the bound can be written as
(1) Ef(z) = tr A(Z + d’a) = tr B7'Di%(Z + a’a) D7, .

Since f(a) = 0 and f(z) = 1 for ze T, a 2T and the conditions f(z) = 0,
f(z) = 1 on T become 2z4*2' = 0, 2z4*2’ = 1 for z ¢ T. By the results of [1], the
bound is minimized by a positive definite matrix A for which the corresponding
B has ones on the main diagonal. Thus the problem is to minimize the bound of
(1) subject to a; < 1 (a g T) and B = (b;;) positive definite with all b;; = 1.
Let © be the class of positive definite matrices, A = (8;;) with §; = 1,
8;; = 8(¢ # j). By writing A in the form A = (1 — 8)I + de¢’e, where

e = (1,---,1), one can show that for any orthogonal matrix I with first row
e/'k,

2) TAIY = diag (1 + (b — 1)5, 1—28, ---,1 — 8),
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so that A is positive definite if and only if (k — 1)™ < § < 1. If 2/¢° ¢ D, then
we suspect because of symmetry that the minimizing B ¢ ®, and that a = «e.
An example of sharpness would then justify this choice.

Assuming that ¢ = ae and that B = (1 — b)I + be’e ¢ D, (2) can be used to
write the bound (1) in the form

H(a b) = tr (TBT)(T=1 ;F a'Te'el”)
3 (=

_ klo® 4 o + b(’t — o))
(I — a1 = b1 + (k — 1)b]’
where t = (kK — 1)(1 — p) — 1. The solution of dH/da = 0 is
a = —d*(1 + bt)/(1 — b).
The equation dH (e, b)/db = 0 can be written as -

(4) BH(1 — o) + 2b(1 — ot) — (o’ + ) = 0,
and has roots
(5) b= —1 & A+t 1 (Q+0k=1—0)

A =t 17 Uk — DA — o))
We assume that 1 — ¢’ > 0 and use (3) to see that
1+iép=(1—-p1+ (k—1)] >0,
so that the roots are real. Because B must be positive definite, the lower sign is
not an acceptable solution, and the upper sign is possible if and only if
k = o*(k — 1)(1 + t). We assume this to be the case, and we denote by by the
root with the positive sign, and by By the corresponding matrix. Evaluation of
H(ao, b) using (4) yields
(6) H(ao,d) = (ko*(1 + b8))/([1 + (k — 1)B][L + " — b(1 — o*)])
= (ko’t)/([k — 2 + to’ + o’(k — 1)] — 2b(k — 1)(1 — o%)).
Upon substitution for by, this becomes H(ao, bo) = ko't/(u — 2+/»), where
u ==t +tk—2— (k—1)"] + 2(k — 1), and
v=(14+8)k—-1—-t)(k—1)1Q — o).
After rationalizing the denominator and substituting for f, we obtain the
theorem.
TrEOREM: Let  be a random vector with Ex; = 0, Exi = ¢°, Exx; = ¢ *0(i # 7).
If (i) 1 — o™t > 0, (ii) k = o*(k — 1)(1 + ¢), then
P=P{z; =z 1lor---ora = 1} < H(aw, bo)

(7) _k VI F =Dl F =k — 1)1 = p)] + k—1)/T=p }
{k+ o1+ (k — 1)p]}2

otherwise P £ 1
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For the special case p = 1, the inequality reduces to the univariate one-sided
inequality, and, for p = —1/(k — 1), the bound is (k — 1), which reduces to
the univariate two-sided inequality for k¥ = 2. It should be noted that the bound
H(ao, b)) < 1 is equivalent to {o*(k — 1)((1 — p)[l + (k — 1)p])} —
k(1 + o — *(k — 1)(1 — p))}* = 0.

3. Sharpness. We show sharpness of (7) by exhibiting an example which
achieves equality whenever the conditions (i) and (ii) of the theorem are satis-
fied. For cases that the theorem provides only the trivial bound unity, sharpness
is shown by examples with k£ = 2.

Let z be a random vector with the following distribution: P{z = b’} = p/k,
i=1+,k Plz =0} =1 — p, where b” is the th row of B, . If

z = (1 — ar)z + aoe
satisfies the conditions of the theorem, then
(8) E(z) = —ae/(1 — a) = [1 + (k — 1)bo]pe/k,
(9) E(Z2) = (2 + ate’e)/(1 — )’ = pBi/k.
Substituting for a in (8) and solving for p, we obtain p = H(ap, by), where

H(ap, by) is given by (6). Because of the special form of Z, the matrix equation
(9) is equivalent to the two equations

(10)  [(1 — bo)® + 2bo(1 — bo) + boklp/k = (¢" + a0)/(1 — @)’
(11) [2bo(1 — bo) + biklp/k = (o’ + @1)/(1 — a)®.

Substitution of p and ap in (11) and in (10) minus (11) yields (4) with b = by
in each case. Hence (8) and (9) are satisfied when p = H (o, by), that is, when
p is given by the bound of (7). Since P{z; = 1 for some ¢} = p, and 2z, = 1 if
and only if z; = 1, it follows that = (1 — ao)z + e achieves equality in (7).

Now suppose that £ = 2, in which case conditions (i) and (ii) become
14 o’ = 0,and 2 = ¢°(1 — p), respectively.

If 1 + oo < 0, then a distribution having the prescribed moments and achiev-
ing the bound of one is P{(1, —¢c)} = P{( —¢, 1)} = pi/2, P{(¢, —c)} =
P[(—C, C)} = p2/27 P{(lr 1)} =1—p —pe 7Wherepl = 202(1 + P)/(02 - 1)7
p= (14 09)/(1 =), c=3{c"(1+ p) + ([(1 + p)* + 40])*}. The con-
dition 1 4 ¢’p < Oimplies that o > 1andc > 1. Hence 0 < p1, p2, p1 + po < 1.

If 2 < o*(1 —p) and 1 + o’p > 0, then a distribution with the moments
prescribed in the theorem and achieving the bound of one is

where

P Fe=1~ axoe S

2 _2(1—p) _ 1+ (1=p)01+))
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(¢ = ¢’/2if p = 0). The condition 2 < ¢*(1 — p) implies that ¢ > 1, which in
turn implies that p < 1. It also implies 1 4+ ¢ < ¢°(1 — p), which is equivalent
tod = p(c — 1)/2(1 — p) > 1.

If 1 4+ ¢°p = 0, then the above distribution withd = 1,¢ = o*, p = 2/(1 + o°)
is the required example.

4. An inequality involving variances only. If z; , - - - , 2; are random variables
with Ez; = 0, Ez} = o3,i =1, --- ; k, then

P{lai| = lor---or|m| = 1} £ 2iP{la;| =2 1} £ 2io}.

This inequality was proved to be sharp in [1], and the unique distribution attain-
ing equality has zero covariances.
The corresponding one-sided inequality is

(12) Ploy=lor---orz 21} < D2 s Pla; = 1) £ D103/ + o).
If the bound is <1, the unique distribution attaining equality is

P{(—U%y"'y _0'?—1;1; ’"0’?4.1,"', _072‘)} = 0’?/(1‘!‘0’?), J= 17"'yk)

P{(—ol, =03, -, =0k, —op)} = 1 = 21a3/(1 + o3).
Uniqueness follows by an argument similar to that used in [1]. We note that in
this case the covariances Exz,x; = —oj0; are not zero.

An alternative proof of (12) following the procedures of Section 1 is to choose
B = Iin (2), and to minimize tr Di%a(Z + a’a) with respect to a < 1. The
minimizing a; = —o3.
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