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1. Introduction. An explicit and relatively simple exponential bound is obtained
for P{|n "> iy f(Xi) — u| = efor some n = m}, where X;, X;, - - - is a finite
state ergodic Markov chain with arbitrary initial distribution, f is any real-valued
function, and u is the expected value of f(X;) computed under the unique initial
stationary measure. Bounds for the one-sided inequalities are also given. Be-
cause the assumptions are weak and permit the transition matrix to contain
zeroes, the result can be applied to multiple Markov chains (Doob [4], p. 185)
and thus to sums of the form S, = Y re1 f(Xx, Xi41, Xr42). The proof employs
methods of recurrent event theory that have been used by Chung [2], and Doblin
[3]. Asymptotic results for the one-sided inequalities have been obtained by
Koopmans [7], under the restriction that the transition matrix contains no zeroes.
Some possible applications for such bounds can be seen in Chernoff [1], Khinchin
[6], and Koopmans [7].

2. Notation and summary. Let P = (p:;) be an r X r stationary transition
matrix with » = 2 and, using the terminology in Doob [4], assume that there is
only one ergodic class of states E C B = {1,2, ---, r}. Let T C R be the (pos-
sibly empty) class of transient states and let p;, - - - , p, be the stationary distri-
bution for P. We denote the smallest positive element of P by p. Let X; X,, - - -
be the Markov chain determined by P and an arbitrary initial distribution for X; ;
so that X, = j if the process is in state j at time n. Now let f be a real-valued
function on R and let S, = Doraf(Xi), u = Dopes pif(k), and M =
maxeer f(k) — minjez (7).

The notation and assumptions which have been made will be used throughout
the paper except for the countable state space example at the end. We can now
state the following _

THEOREM. Let m be a positive integer and let ¢ > 0. Then

P{|n7'S, — u| = ¢ forsome n = m} < 24675
Ae—'Be2m

Ae—BJm

P{S, = n(p + ¢) for some n = m}

IIA

I\

P{S, < n(u — ¢) forsome n = m}
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where
A S
- pr 1 _ 6_352, - 28M2T2 .
3. Proof of the theorem. We first introduce some additional notation. For
1eElet Vi =0andfork = 1,2, --- let Vi be the time to the kth occurrence

A

of state 7. Thus Vi = 1if X, = ¢ and exactly k of X;, ---, X, are equal to i.
The V} are defined with probability one. Now fork = 1, 2, - - - we let
L . . vi R N
nh=Vi—Via, w= 2 f(X), U= 2 ui=2 fX)).
i=(Vi_p+1 k=1 7=t
It is well known that v} , vs, - - are independent and vy, Vs, - are identically
distributed. Similarly, we have ui, us , - - - are independent and u; , u3 , - - - are

identically distributed.

The basic idea behind the proof is to express the event [S, = n(u + ¢€) for
some n = m] as a subset of a larger event and for the larger event employ the
properties of the random variables U; and V; in order to obtain a bound on the
probability of its occurrence. Once this bound is obtained the other two follow
quite readily and the proof is complete. To obtain the initial result it is necessary
to prove the following lemma. The bound and the method of proof of the lemma
are similar to S. Bernstein’s inequality, Uspensky [9].

LemMa. If i e E, M £ 1/r, —4 < 0w < 0,8 = 0 then

P{ U: g _ ”6} é % e*ﬂnz (84s—1)
where 8 = p”/2°.

Proor. The state 7 € E will be arbitrary but fixed throughout the proof of the
lemma so that we will not exhibit it in v; , ux and U . We take ¢ > 0 and apply
a known inequality (Loeve [8], p. 158, (1)) to obtain

P{U, = —ud} < Ee!®FUs = e Ee'™ (Ee'™) ™.

Now let a = 1 — p" so that 0 < a < 1 and for small enough ¢ > 0 we have
ae' < 1. It is known (e.g., Feller [5], p. 378) that for k = 0, 1, --- (defining
0" = 0) P{v; > kr} < a*. Since the distribution of Xj is arbitrary it is clear that
the same inequality applies to v, . We now bound Ee'*!

0

Ee™t = > E(e™ |vy = k)P(vy = k) £ 2 e“"*P(v, = k).
k=1 !

The inequality follows from the fact that w; < v; max;.z f(j) and, since u < 0,

minz f(j) < 0. Thus max.zf(j) < M =< 1/r and therefore ' =< 7t
Further
2r

> e E Py =) = Z e Py =k)+ D eEP(oy =)+ -
k=1 k=1

k=r+1

A
I
|
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Therefore Fe'** < ¢'/(1 — ae'). Taking a finite Taylor’s expansion of Ee'?, we

get,
2
Ee™ =1+ tEu, + t§ E(uy)? et ™ o<t <t
Using the same method as was used on Ee'™!, we obtain

E(w,)* ¢ = kz El(us)® ¢! | vy = k]P(v, = k)
=1

0 2
<3 (7_€> W% Py, = k)
k=1 \”
0 t
< ot 20t k=1 _ t 1+ ae
=e;k(ea) e = ae)

We now let £ = —2u8 so that ¢t < p'/8 =< % and therefore ¢’ < 2. Thus
T 27 T
ef<l1+2tandae’=(1—ples1— ?£+p—§1—2-.
4 4 2
Hence ae’ < 1 and 1 — ae' = p'/2. Using these facts we see that Ee'! < 4/p

and E(u)%" ** < 1/28. Now from Chung [2] we have Buy = uEv, < u < 0 50
that

Ee'™t < etn+(t2/4ﬁ) - e—ﬂu’

and clearly

tud —2112858 —n2B5
e = ¢ n2p <e"ﬂ.

So the proof of the lemma is complete.
We turn now to the proof of the theorem and note that [S, = n(u + ¢) for
some n = m] is contained in

{ UlX,e T]}U{U U [Sn;n(u+e),x,.=¢]}

nzm 1¢eE n2=m
8o that
P{S, = n(u+ ¢ forsome n = m} < P{U[X,¢eT]}
. n=m
+r max P{U [S, = n(x + ¢), X = i]}.
icE nzm

Now clearly

US.zn(u+ e, Xa =1 = UU, 2 Vilu + «), Vi 2 m]

s=1

so that for7 ¢ E
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0

P{ U [Sn;n(u+e>,X,.=z'1} =< ZP{U’ Vilp+e) 20,2 V';

8=l

8=1

) 1 ;
= ;P{E[U’ <u+

i 4 —ﬁ(eIZMr)z(mH—l)
s=1 p 27‘

|

)= si

M

IIA

gZP{Uﬁ—V§<u+ 5);%77%

—— wlm

IlV

g

—Be?m
— Ae .
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where for the last inequality we applied the lemma with f(k) replaced by

_ 1) = (e+¢/2)
o) ===
and used
. . 1 . _ € 1
e = mine@ =5 ZeWn=-grE-]

where ¢ < M is assumed, since the theorem istrivial for e > M. Since (4/2) > 1

we need only show that

n=m

P{ UiX.,e T]} < g BMm

in order to obtain the bound for P{S, = n(u + €) for some n = m}.

Now we note that for z¢ F

P{ UX,eT) £ Pi > m)

n=m

~—

and, recalling that P{vi > kr} < o* = (1 — p")*, we obtain
P{ UiX,e T]} < (1= p)m,

n=m

I

Now if € < M and (m/r) < 2° we see that e *™ = 16¢" ™" > 16¢7!
making the theorem trivial in this case. Thus we may assume that (m/r) > 2°

so that (m/r)(1 —27°) =1 and so

Thus for ¢z ¢ £
P{ U [Xné‘ T] < (1 _ pr)(m/r)—l < e—p"[(mlr)—ll < e—BM"’m

n=m

and we have the bound for P{S, = n(u + ¢) for some n = mj.

> 1,

The other two inequalities of the theorem now follow immediately. We de-

fine the function g(k) = —f(k) for k =
and

-, r. Then —p = erc=1 prg (k)
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7

P{.il f(X;) £ n(p — ¢) forsome n = m} =

P{z:l g(X;) =2 n(—p + ¢) forsome n = m} < AgPem,
=
For the remaining inequality we have that P{|n™'S, — u| = e for some
n = m= P{S, £ n(p — ¢ for some n = m} + P{S, = n(u + ¢ for
some n = m} < 24¢ 2™, This completes the proof of the theorem.

We close with an example of a Markov chain with a countable state space
for which there exists no constants A and B such that P{S, = n(u + ¢) for
some n = m} < Ae "™, Let the state space be R = {1,2,---} and for j ¢ B
let p1; = ¢/5° where > 75 ° = ¢ For j > 1 let p; ;.1 = 1 and ps = 0 for
k # j — 1. Then this matrix P = (p;;) admits a unique stationary distribu-
tion p1, p2, -+ (Feller [5]) with each p; > 0, and we shall assume that it is
our initial distribution. We define f on R by f(1) = 0 and f(j) = 1 forj > 1,
so that w = D v f(j)p; = 1 — p1 < 1. Just as before, we let S, = 2.1 (X))
and we shall show that if @ = 1 then lim sup (1/n) log P{S. = na} = 0. We
define a subsequence {m(k): k = 1, 2, ---} of integers by

mk) =142+ +k=Fk(k+ 1)/2.

For each k we define a sequence of m(k) states by wn.ay = (1,2, 1, 3, 2, 1, 4,
3,2,1, -+, k,k—1,---,1). Clearly (1/m(k))Smu evaluated at wnw
is equal to (m(k) — k)/m(k) which converges to 1. Also P(wnay) = piC* (1)~
so that lim sup (n”’) log P(S, = na) = lim (1/m(k)) log P(Wmw) = 0.
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