CONTRIBUTIONS TO THE THEORY OF RANK ORDER
STATISTICS: THE TWO-SAMPLE CENSORED CASE!
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0. Summary. Rank order theory is developed for the two-sample problem in
which censoring of the observations has occurred, i.e., not all of the random
variables are observed. The approach is similar to [2] with the striking difference
that in the present case the rank orders are not all equally likely under the null
hypothesis, and thus it becomes important to work with the likelihood ratios
of rank orders. In applying the results of this paper, there will be a strong analogy
to sequential analysis. The censoring scheme corresponds to the stopping rule
and in both cases the terminal decision should be based on the likelihood ratio.
We do not give the detailed applications of the present theory either to earlier
procedures or to the new ones introduced here.

1. Introduction. Consider two ordered sets of numbers (z;, --- , z,) to be
called the first sample, and (31, - --, y») to be called the second sample, i.e.,
zi<z;(1=2i<j=m)andy; <y; (1 £¢<j=n)and define A(a, b) =
0(1)ifa > b(a £ b). If A(x;, y;) is known for all values of ¢ and j it is possible
to combine the two sets and arrange them from smallest to largest. In that case,
if the two sets of numbers correspond to observations from two random samples
(with no ties), it is possible to apply the usual nonparametric procedures, e.g.,
Wilcoxon, Kolmogoroff-Smirnoff. In some statistical applications it may be
necessary, and can be desirable, not to observe all of the order relationships
between the two samples. Thus, if the measuring device is such that it is very
inaccurate for small values one may learn only how many random variables
occurred in each sample below some threshold and the order relationships be-
tween the observed random variables above the threshold. This same difficulty
could also occur for large values or for both large and small values. In life
testing, savings in experimental costs and time are often effected by stopping the
experiment before all of the lives are completed. In that case one has the order
relationships between the smaller random variables, between the smaller ones
and larger ones, but not between the larger ones.

The examples above will not all be amenable to the present treatment. The
censoring schemes that we will handle are those that depend on rules telling
which order statistics of the combined sample to observe and not which values
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of the random variable. In the case of the instrument incapable of measuring
small values the censoring scheme depends on the values of the random variables
and therefore is not based on order statistics. That example could, however, be
modified in the following manner. Wait until the first p per cent of the articles
are passed (screened so that it is known that they are smaller than the remaining
ones) and then measure the remainder. If p is chosen carefully there will (with
high probability) be little difficulty in making the measurements. Actually,
measurement would not be necessary since only the order relationships between
the larger observations are required. In life testing where one waits for a fixed
number of failures the censoring scheme is already the desired form.

To describe a censoring scheme more precisely we introduce the following
notation. Let z; = 0(1) if the ¢-th smallest in the combined sample of 2’s and
y’s is from the first (second) sample. Then z = (21, - - , Zmis) is a (uncensored)
rank order. If O corresponds to a unit move to the right and 1 to a unit move
up then each rank order can be represented by a path of horizontal and vertical
unit movements on the integer lattice from (0, 0) to (m, n). Censoring schemes
amenable to the present treatment can be described in terms of this lattice,
e.g., the censoring scheme which continues experimentation until one of the
lattice points whose coordinates add to N* is reached is the censoring scheme
which tells one to continue until the N* smallest random variables of the com-
bined sample have been observed.

In this paper we consider explicitly the following type of censoring scheme:
Let S be a set of lattice points such that every path from (0, 0) to (m, n) has
at least one point in common with S, and S does not include (0, 0). Start experi-
mentation by observing the smaller random variables in the combined sample
first and continue experimentation until a point in S is reached.

Thus, for censoring schemes explicitly considered we observe the “smaller”
random variables only. The precise meaning of “‘smaller” depends on the particu-
lar censoring scheme. Therefore, the observed rank order is of the form z =
(21, -+, zy+) where z; = 0(1) if the 7th smallest random variable comes from
the first (second) sample. Depending on the nature of the censoring scheme N*
can also be the observed value of a random variable. Note that in writing the
vector z it is not necessary to know the sample sizes m and n. When computing
Pr (Z = z), however, the values of m and n will always be required. The sample
sizes will appear explicitly in the various formulas and be implicit in the discus-
sion.

The following notation and assumptions are used: The random variables,
Xy, oo+, Xm, Y1, -+, Y., are mutually independent. The X’s (Y’s) have a
common continuous cumulative distribution function F(z)[{G(z)]. The corre-
sponding density (assumed to exist) will be denoted by f(z)[g(z)].

2. Censoring Schemes. If all m + n = N of the random variables are observed

there are (g) possible rank orders. It is of some interest to find the total number
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of rank orders in censoring schemes of the kind to be considered, i.e., the “smal-
ler” random variables are observed. A rank order, z, is said to be “redundant”
if there exists an antecedent rank order 2’ such that the occurrence of 2’ implies
the occurrence of z. Thus if m = 2 and n = 2, then z = (0101) is redundant
since z will occur whenever 2 = (010) occurs. With any scheme where only
order is to be used, sampling can be stopped if only redundant rank orders
remain to be observed.

Lemma 2.1.

(1) The number of non-redundant rank orders for all censoring schemes involving

the observation of the smaller random variables is 2(]:) - 2.

N +2

(2) Including redundant rank orders there are (n + 1) -2 possible rank

orders. .

Proor. The number of non-redundant rank orders consists of two parts.

(a) Those rank orders consisting of a < m — 1(b < n — 1) observations
from the F(z)[G(x)] population. The number of these is

EE(1)-()

(In the summation exclude a = b = 0.)

(b) Those rank orders where the number of observations from F(z)[G(z)] is
m(n). When the number of observations from F(z) is m the rank order must
end in 0 and have less than n from G(x). Hence the total number of rank orders
of this form is
n—1 m—1
Z(m _1.—1|—b)+ Z(n 1+a)

=0 m a=0 n—1

) ()

The conclusion then follows by adding the results from parts (a) and (b). Part
(2) of the lemma is proved in a similar manner.

As soon as one considers rank orders with differing values of N* it is important
to note that the rank orders need not correspond to disjoint events. Hence, the
sum of the probabilities of all rank orders will be greater than one. A redundant
rank order and its antecedent corresporid to the same event. If 2 is a non-re-
dundant rank order and z(2;) are formed from z by observing an additional
random variable from F(z)[G(x)] then the event 2z is the union of the events z
and 2; . By repeated use of the preceding one can compute the probabilities of
all of the rank orders if all of the probabilities of rank orders with N* = N have
been computed. To illustrate, the possible rank orders are listed for the case
m = 2 and n = 3. The redundant rank orders are set equal to their antecedents.
There are 33 rank orders, 18 of which are non-redundant.
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00 = 001 = 0011 = 00111 100 = 1001 = 10011
O/ 10

\ 010 = 0101 = 01011 \ 1010 = 10101

01/ 101/
/0110 = 01101 1 \1011 = 10110

011
\0111 = 01110 111 = 1110 = 11100
11/
1100 = 11001
110

1101 = 11010

Some specific censoring schemes follow:

(a) Continue experimentation until the N* smallest random variables are
observed, 0 < N* < N. N* is not a random variable.

LemMmA 2.2. The number of possible rank orders under scheme (a), including

redundant ones, is
min(m,N*) N*
2 ),
i=Max(0,N*—n) ( ? >

so that when N* < min (n, m) the number of rank orders is 2.

(b) Continue experimentation until m* random variables from F(x) have
been observed. If n* is the number of random variables observed from G(z)
then n* and N* = m* + n* are random variables.

LemMma 2.3. The number of non-redundant rank orders, when experimentation is
continued until m* random variables from F(z) or n from G(x) are observed, is
(")

n .

Proor. Some of the rank orders end with an observation from F(x). The

number of these is
n—1 * . *
m*—14+4y (m*+n-—1
1;;( m* — 1 )—( n—1 )

In addition, there are those rank orders where n observations are obtained from
G(z) before m* are obtained from F(z). The number of these is

"~in—1414 m*4+n—1
§<n—-l >=( n >

LemMma 2.4. If observations are continued until m* of the random variables from
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the first sample are observed, i.e., the possibility of observing redundant rank orders
18 not excluded, then
Pr (N* = ¢)
0, t<m* or t>m*+n
__ * n m ® m*—1 ~yt—m* _ m—m* . n—t+m*
=qm (t _ m)(m) [ e = Bt @
m* =t < m*+ n,

and if F(x) = G(z) then

0, t<m*ort>m*+n
t—1 N —¢
Pr(N*=1t) = (m*—l)(m—m*>
v , m* <t £ m* 4+ n,
(w)

and
E(N*) =m*(N +1)/(m + 1) < N.

Proor. In the first part of the lemma the integrand is the probability of the
desired event when the m*-smallest random variable from the first sample
occurs in the interval (z, x + dz). The integration then gives the total prob-
ability. The second part of the lemma follows from the first by noting that
when F(z) = G(x) the integral is a Beta integral. The second part could also be
obtained by a direct combinatorial argument.

LemMa 2.5. When F(z) = G(x), if observations are continued until either m*
of the random variables of the first sample or the n random variables of the second
sample are obtained, i.e., redundant rank orders are not observed, then

Pr(N* =1t)
0,

) @)+ (2

Tl e

Proor. The proof is combinatorial. When F(x) = G(z) all of the rank orders
with N* = N are equally likely. The denominator gives the number of rank
orders with N* = N. The first term in the numerator gives the number of rank
orders ending with the m*-smallest random variable from the first population.
The second term in the numerator gives the number of rank orders ending with
the nth random variable from the second population.

(e) Continue experimentation until either the number of random variables
from F(z) is m* or the number from G(z) is n*, where m* and n* are fixed
integers.

t < min (m*,n) ort =2 m*+n
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(d) Continue experimentation until max_wcz<zys [Fme(z) — Gur(2)] 2=
@ms ne , Where Foo(2) and G.«(z) are the observed cumulative distribution func-
tions based on the first m* random variable from F(z) and n* random variables
from G(x), and the ams,.+ are preassigned numbers with @, . = 0. (See reference
[4].)

(e) Continue experimentation until [m* — n*] = bpe e, Where the bpe e
are preassigned numbers and b, , = 0.

(f) Continue experimentation until the sum of the ranks squared of the ob-
servations from G(z) exceeds Cms »+ and cm,, = 0.

3. Theory. In this section we give formulas for the probabilities of rank orders
arising under censoring. General resultsfor F(z) # G(z), special cases of
F(z) # G(z),and F(z) = G(x) are considered. Likelihood ratios are defined and
limiting values are computed for the probabilities of rank orders under censoring.
Theorem 3.2 gives partial orderings of the likelihood ratios of the rank orders.

In the following we explicitly consider those rank orders involving observa-
tions on the “smaller” values of the random variables from the combined sample.
When a result is given for a specific rank order or set of rank orders it is pre-
sumed that under the censoring scheme being considered these rank orders can
occur. If the rank orders cannot occur for a particular scheme then the rela-
tionship would not be of interest.

The basic formula is given by
THEOREM 3.1.Pr (Z = 2) = Pr ((Z1, -+, Zw+) = (21, -+, 2ys)) = [(mIn!)/
((m — m*)!(n — n*)D]fW(w) dw where

f W(w) dw = f e f iI: U7 (wa) g™ (wi) dw)
oWy <N <0

(1 = P(wy)]"™ 1 = Glwy)]™™,

and n* = D iz, m* = N* — n*,

Proor. The integrand together with outside constants is composed of the
product of two multinomial probabilities—the probability that one random
variable from the first (second) sample occurs in each of the intervals
(w;, w; + dx;) where z; = 0(1) and m — m*(n — n*) random variables from
the first (second) sample occur in the interval (wys,) The integration then
gives the total probability.

CoroLLARY 3.1. When F(x) = G(x) then

Po(z)=Pr(Z=z)=<Z:Z:>/<Z).

Proor. Make the change of variables F(w;) = G(w;) = u; in the conclusion to
Theorem 3.1. The integral then becomes

m!in! Nt T
Po(z) = (m — m*)(n — n*)! f f (1 = uxe) ,Ildui
I<ur< - <uy*<1
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_ mln! fl N*—1 N—N*
S =i — e =y ¥ T w T dw
The last is a Beta integral.

Theorem 3.1 and Corollary 3.1 may be useful for summing finite series. We
have D Pr (Z = z) = 1 when the summation is over all possible rank orders
that will terminate experimentation for a particular censoring scheme. Thus in
the case of the corollary we have ), (Z B Z*) = (Z) with the same region of
summation. Consider a special case: Stop experimentation on the N*th ob-
servation, where N* < min (m, n). Now when experimentation stops there will
have been observed ¢ random variables from the first sample. And if 7 random

t 3
variables from the first sample have been observed there can be formed (J\: )

rank orders. Thus the summation becomes

~ (N*\ (N — N* N
£(7) () -G
Of primary concern in finding good tests (decision procedures) is the likeli-
hood ratio, the probability of a rank order when F(z) # G(x) divided by the
probability of the same rank order when F(x) = G(z). Denote this ratio by
L(z, F, @) or L(z).
COROLLARY 3.2.

L(z) = L(z, F, Q) = Pr (Z = 2)/Py(z) = f W(w) dw.

N — N !

In general good rank order test procedures of the hypothesis that the samples
come from the same population against the alternative that the first sample
comes from F(z) and the second sample comes from G(z) will be based on large
values of L(z, F, @), i.e., rank orders which make L(z) large form the critical
region.

When F(z) = H(z, 0) and G(z) = H(z, 6) one can write L(z, F, G) as
L(z,H,6) or L(z, 0). H(x, 0) is a cumulative distribution function with param-
eter 6, and h(z, 0) is the density of H(x, 6). In this case locally most powerful
rank order procedures can be formed for small values of 6.

Assume that 6 is real valued and that dL(z, 6)/d6 = L’(z, 0) exists in the
neighborhood of § = 0 and denote L'(z, 0) by L’(z). Then

L(z, 0) = L(z,0) + 0L'(z) + o(6),
but L(z,0) = 1 so that
L(z,0) =1+ 0L'(2) + o(6).

Thus if the alternative is that 6 > 0 but near 0 the locally most powerful test
will put those 2’s into the critical region which make L’(z) largest.
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COROLLARY 3.3. If h(z, 6) = (2r) te @ 2/2, i.e., the alternative hypothesis is
that the samples come from normal distributions with the same variance, then

L'(z) = Zl 2, Eni + N(n — n*) (]f]\{k__ 11)
f H" (2, 0)k*(z, 0)[1 — H(z,0)]" ™ da,

where Ey; is the expected value of the ith smallest in a sample of N from a normal
distribution with the mean zero and variance one.

Proor. L'(z, 0) = (N!/(N — N*)!) [W(w) dw[(n — n*)g(wy+)/[1 — G(wy+)]
+ Z—-lz (wz - 0)]

Hence

4 = N! oo 2t . . — N—N*
L (Z) = w)”' f f [g h(wt, 0) dw,:l [1 H(wN., 0)]
—oLwy < SWNF KO

. {(n — n*)h(wy+, 0)/[1 — H(wx+,0)] + }i:l zw} = N

N — V9!

. {Z‘.{Z, (l (_Nl)'(]ef_)l )' f‘” wHi_’(’w, O)h(w, 0)[1 _ H(w, 0)]N—i dw

+ ((;,‘*—1)' [ HY (w, 0)k*(w, 0)[1 — H(w, 0)]" ™" dw}
The portion of the statistic depending on the Ey; is the same as one proposed
by Fisher and Yates for the uncensored case. The integral in the second part of
the statistic has not been tabulated. When N* = N the statistic in the corollary
becomes the Fisher-Yates statistic.
CoroLLARY 3.4. If H(z, 0) = 1 — [1 — J(2)]'*’, where 6 > —1 and J(z)
18 a distribution function having density j(x), i.e., the Lehman alternative, then

L L560) = (14 o) /[ﬂ (A +i+6 Z z_)]

(N — N*%! P |
where A = m — m* + (1 + 60)(n — n*), and

II. d(ln L(z, 6)]/d8 ls=o = n* — (n — n*) i A4+ H™

- ’;-; EN*—j [“zz]_*_l (A + ’L) ].

Proor.
N! - (1Y . L1206 1
L(z,6) = (N = N¥i (1+96) f / {I,Il Jw)l = J(w)] dw,-j

—OLW < SWNP LD
S ) e I L)
This can be integrated exactly by starting with wxy« .
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This is similar to Corollary 7.a.1 and Equation 7.¢.2 of [2].

CoroLLARY 3.5. If H(z, 8) = (1 — 6)J(z) + 6J°(z), where 0 < 0 < 1 and
J(z) is a distribution function with density j(x), then (N + DL (z) = 2D Y42
—n*(N + 1) + (n — n*)N*,

Proor.
L'(2,60) = W/W(w) dw
{E 22 (w) =11 (n = n*)J (wye) = J*(wae)] |
1 -6+ 20J(w) 1 — (1 — 0)J(wye) — 672wy~
and

L'(Z) = (]V—iVIN—*)i f . [ [ﬁ dwi:l [1 _ Tf)N']N_N.

I<wi<+ <wy*<1

N'
. [Z 2:(2w; — 1) + (n — n*)wm].
=1

The necessary integrals are of the Beta form.

When N* = N this reduces to a result of Lehmann [1]. Statistics of this form
have been introduced earlier by Sobel [3].

Now assume that f(x) and g(z) have a monotone likelihood ratio, ie.,if x < y
then

f(2) g(z)
) g(y)

with strict inequality for a set of positive Lebesgue measure in the (z, y) space-
Two other forms of the same condition are, for z < y,

f(@)9(y) = f(y)g(=),
f(x)/9(z) = f(y)/9(y).

The monotone likelihood alternatives include many of the common situations,
e.g., f() a normal density with mean zero and variance one and g(z) a normal
density with positive mean and variance one, or f(z) = ¢ ° for z > 0 and zero
otherwise and g(z) = (1 + 6) "¢ (”‘f) for x > 0 and zero otherwise, where
6> 0.

TaEOREM 3.2. Assume Xy, --+, Xm, Y1, -+, Y. are mutually independent
random variables. The X’s have the density f(x) and the Y’s have the density g(z),
where f(x)g(y) = f(y)g(x) for x < y with strict inequality on a set of positive
Lebesgue measure in the (z, y) space.

a. If z and 2’ are identical except that z; = 2/, = O and z; = 2/, = 1
1 ¢ <j = N* then Pr (2) > Pr (2’) and L(z) > L(2').

b. If z and 2’ are identical except that zy» = 0 and 2’y+ = 1, and hence m'* =
m* — 1 and n'* = n* 4 1, then L(2) > L(Z).

20,
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c. If z and 2’ are identical except that N'* = N* 4+ 1 and 2’y«1a = 0(1), then
L(z") > L(z) (L(z) > L(?')).

Proor.

a. This is a simple analogue of Theorem 6.1 [2].

b. Let D = L(z) — L(2’). Then

D=(WL—W_N—*_) f . -f[ﬁfl”"(w;)g"(w;) dw;]

e <oyt
(1 = Flww)]™™ 11 = Gwy)]"™ - q(wye),
where
q(wy+) = {f(wys)[l — G(wws)] — g(wws)[l — F(wns)]}.

To show D > 0 it is sufficient to show q(ww+) > 0. Start with f(x)g(y) —
f(y)g(xz) = 0, if £ < y. Multiply this inequality by dy and integrate from z to
« obtaining [7 f(2)g9(y) dy — [zg(x)f(y) dy > O for some value of z. Now
replace x by wy+ and the last becomes g(wx+) > 0.

c. Let 2” be identical to 2’ except 2”y+y1. Then Pr (Z =2) = Pr (Z = 2') +
Pr (Z = 2"), and '

L(z) = Pr(Z = 2)/Py(2) = Pr (Z = 2')Py(2") /Po(2)

Py(2')
Po(Z)

Py(2")

+ Pr (Z = 2")Po(2") /Py (2") Po(2) = L(2') PG)

+ L(2")

Now from Part b one has L(2’) > (L(2”) and thus
L(z) < L(2")[Po(2") + Po(2")]/Po(2) = L(z')

since Po(2") + Po(2”) = Po(z). This completes the proof.

When m = n = 2 we obtain diagram B with the aid of Theorem 3.2. An
arrow leading from one rank order to the other means that the likelihood ratio
of the first is greater than the second. Attached to the arrows are letters indicat-
ing the portion of Theorem 3.2 used. Antecedent and redundant rank orders are
set equal.

Note that b of Theorem 3.2 is not needed in diagrams like diagram B since
typically (m and n > 3): L(0100) > L(0101) follows from a double application
of ¢. viz., L(0100) > L(010) > L(0101).

The distributions used in Corollaries 3.3, 3.4, and 3.5 have monotone likeli-
hood ratios. Thus the locally most powerful rank order tests based on those
corollaries yield simple orderings of the rank orders which are compatible with
the partial orderings of Theorem 3.2. Theorem 3.2 and the resulting diagrams
will be found useful in constructing good decision procedures when the monotone
likelihood ratio assumption is acceptable and the sample sizes are relatively
small [2].
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0 = 001 = 0011
cl la
0 010 = 0101
[ C
01 a
[
011 = 0110
a
100 = 1001
J c
10 o
/N
1 101 = 1010
[ a
1 = 10 = 1100

4. Additional problems. Before applying the results of this paper several
general as well as specific problems need discussion. Even the restricted class of
censoring schemes discussed explicitly is large, and the class of censoring schemes
amenable to treatment is very large. Hence, reasons for concentrating on specific
schemes should be developed. Some possibilities are: a. Use censoring schemes
that are now used, i.e., fix N* as is done in some life testing problems. b. Use
some optimality criterion, such as minimizing the expected number of observa-
tions for a fixed level of significance and power (for some alternative). ¢. Reason
by analogy and work with procedures that continue sampling so long as
a < L(Z) < b and make the appropriate decision if this condition fails (a and
b chosen constants). The large sample distribution theory should be developed.
(The locally most powerful rank procedures are in a sense large sample
procedures.) Intercomparisons of the “efficiencies” of the procedures being
discussed here should be made with other procedures—parametric and non-
parametric. Efficiency must include power considerations and cost of experimen-
tation.

For each censoring scheme the distribution of the number of observations
required should be investigated under the null and alternative hypotheses.
At the least the first two moments should be found. Some of these distributions
should be tabulated and the large sample theory developed. Tables of the integral
in Theorem 3.1 are desirable. When tables exist of the uncensored rank orders
this is an easy task (see paragraph following Lemma 2.1). The exact and large
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sample distribution of the statistic in Corollary 3.3 should be found for several
censoring schemes. In particular, values of the integral need computation. For
Corollaries 3.4 and 3.5 it would also be desirable to obtain the exact and large
sample distributions. Presumably the results for large samples will not only
show limiting normal distributions but give information regarding efficiency.
Diagrams resulting from Theorem 3.2 should be prepared for several combina-
tions of sample sizes. When a complete diagram is given it is then possible to
select out the portions relevant to a particular censoring scheme. These diagrams
should yield uniformly most powerful rank order procedures when the sample
sizes and levels of significance are relatively small.
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