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1. Introduction. Recently many authors have been interested in the problem
of estimating the spectral density function of a weakly stationary process. Under
assumptions of linearity of the process and existence of derivatives of the spectral
density, U. Grenander and M. Rosenblatt [1] have investigated the asymptotic
behaviour of various estimates. E. Parzen [2] has investigated the asymptotic
behaviour of different types of errors of the estimates under assumptions of
fourth order stationarity and exponential or algebraic decrease of the covariance
sequence.

In this paper, the problem of estimating the spectral distribution as well as
the spectral density (if it exists) of a weakly stationary process is solved under
the sole assumption that the sample covariances converge almost surely and in
mean to the true covariances. The relevance of Bochner’s work on Fourier
analysis [3], in obtaining more exact expressions for the bias of estimates, is
pointed out. The existence of estimates which converge uniformly strongly to
the spectral density of the process is proved under the assumption that the
density has an absolutely convergent Fourier series. It should be added that
only questions of consistency are discussed here and, no attempt is made to
derive the asymptotic distribution of the estimates.

2. Estimates of the Spectral Distribution Function.
Definitions: We suppose that z; , 22, - - - Z» are observations at N consecutive
time points on a discrete weakly stationary stochastic process

{.’L‘;}(t =---,—-10,1,--- )’
with the well-known spectral representation (ef. [1])

(2.1) x¢=f ¢™dzZ(\);  Ez,=0; p, = p_, = Ex, 20, =f e dF()),

—T —

where Z()\) is an orthogonal stochastic set function (cf. [1]) and F(A) is a mono-
tonic right continuous function in [—m, ). It is easily seen that

(2.2) Py = Py = (TZrptny + - + Tv—mzn) /(N — | v])

is an unbiased estimate of p, . We shall consider the following estimate of the

spectral distribution:
+E(N)

(2.3) Fy\) = 1/28 X awn- (i/ik)e™,
k=—R(N)
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! — implies the usual weak convergence of distributions.
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where the term corresponding to ¥ = 0 is aox(A + =), and the a;,» are con-
stants chosen such that the following conditions are satisfied:

1) ax,y — 1 as N — o« for each fixed £k,
2) @y = Qi
3) Fy()) is a distribution function.

As is known from previous work [1], [2], it is advantageous to choose R(N) =
o(N). We shall now state, without proof, a theorem concerning the convergence
of the estimates Fy()).

TrEOREM 2.1: If {x)} is a weakly stationary process with a spectral distribution
F(X\), and the sample covariances converge almost surely to the true convariances,
then' P[Py — F) = 1. If, however, F(\) is continuous, then

P[IS,PILIF’N(A) — F(A\)|—0asN — »] = 1.

If, further, the sample covariances converge in mean to the true covariances, then
limE sup | Fx(\) — F(\) | = 0.

Now [N <27

The first part of the theorem is contained in Doob [4]; the second part follows
by an application of a theorem of Pélya to the effect that the weak convergence
of a sequence of distributions to a continuous distribution implies uniform con-
vergence; the last part follows from an easy computation.

The choice of the constants a,x : Our main object is to make a suitable choice
of the constants a;,y, and to examine the order of the bias, convergence, etc.,
of the estimates thus obtained. The method we use for this purpose is simply a
Fourier analysis. It is based almost entirely on the work of Bochner [3]. We now
state the main result of Bochner, in the form required here.

Let f(z) be a continuous periodic function with period 27 and let

K.(t) = % ,

S (z) = f :«, fle + t) R/r K,(Ri/r) dt.

TaEOREM (BOCHNER): For any continuous periodic function, f(x),
| Sz(z) — f(z) | = Olw(4r/R) + 477],
where

w(z) = max |f(z1) — f(z2) |.

|z1—22|<z
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Write
* 1 o & itotw | R (Ru)
(2-4) fN()\) = m j;w ;xte ;— K,- -T du
and
A
(25) Fy (\) = [ fx(2) dn.

Then it is possible to write Fy()\) as given in (2.3) and to show that all the
required conditions are satisfied. Thus, by Theorem 2.1, Fy is a consistent
estimator of F under very mild conditions. We now statea theorem concerning
the bias of Fy as an estimate of the spectral distribution.

THEOREM 2.2. For a weakly stationary process, {x.}, with a continuous spectral
distribution, F, we have

sup | EFx(\) — F(\) | =O[w(4r/R) + 4~ + R/Nw(R™)),

where w(z) = max |G(\) — G(\) |, z < 2m,
IA1—Az|<z

and
G(\) = F(\) — [(A + 7)/2x]po .

Since the above is an easy consequence of Bochner’s theorem, the proof is

omitted.
CoroLLARY: If F(X\) satisfies Lipschitz’s condition, i.e.

[F(M) — F() | < e[ M — A,
where ¢ is a constant, then w(z) < cx for any x > 0, and hence
sup | EFy(A\) — F(\) | = O[r/R + 47 + ((R)*/N)].

Thus, in order to obtain an asymptotically unbiased and consistent estimator
of F, we have only to choose r and R such that r — «, R — o, r/R — 0 and
R/N — 0as N — « in Fx()).

For Gaussian processes the following theorem can be easily proved.

TueoreM 2.3. For a Gaussian process with a square tntegrable spectral density

we have
E sup | Fx(A\) — F(\) | = O[(log R/(N)}) + w(4r/R) + 47'].

3. Convergence of the Spectral Density. In this section we shall discuss the
choice of r and R so that the estimate ﬁ:()\) given in (2.4) converges (almost
surely) uniformly to the spectral density of the process. Our choice will be such
that » and R are not only functions of N but of the observations themselves.
It should be noted that, even if r and R depend on the observations, Theorem
2.1 remains valid provided that r and R diverge to infinity with probability one.
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We require the following
Lemma 3.1. For any weakly stationary process x;, if 2.1 /N is convergent
with probability one as N — «, then, for ¢ > 0,

Plsup sup [p| < o] =1,
N 0gkgNl—e

where P ts as in (2.2).

Proor:
o] = ('S e | )/ N = k) LV = B a) (5D,
so that - 1 -
G0 s |4l S 1/~ ¥ T 4t < (3 /(L 27)

for N = 2. Since by assumption (X3 #7)/N converges, the expression on the
right side of 3.1 is bounded with probability one. This completes the proof.
Our estimate of the spectral density function is

N

i ¢ (A )
Z Zee
t=1

v(\) =1/2xN f_ :” ’ R/r K, (Ru/r) du,

which can also be rewritten as
+R

(32) PO = 1/20 5 & (rm/R)(L = |m |/N)pne™,
where
o (t) = fe“z K, (z) dz.

We now prove the following

TueoreMm 3.1. -Let {x,} be a weakly stationary process, with spectral density
function f(\) and covariance sequence {pi}, which has the property that > <% | px | is
convergent. Suppose, further, that the sample variance and covariances converge
almost surely, and in the L; mean, to the true variance and covariances respectively.
Then there exist R(N, z1, 22 - - xy) and r(N, x1, 22, - - - Zx) such that

sup [f¥(\) = Ff(A) [ =0
almost surely as N — o,
Proor: '
+R -
TN\ = 1/28 26" (rm/B) (1 = ([ m [/N)) (3m — pm)e™

(3.3) r
+ 1/27r_ZR: ¢ (rm/R)(1 = (| m|/N))pme™ = 81+ S, say.
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For S; we have

+B E
sup | Si| < 1/21r_ZRIﬁm— pm| S l/wzo:lﬁm— pm |
(34)

Nl—e

[ 1
< 1/xR"™" ‘1; [(|pm — pm|)/m' ™)

fR<[N",e>0,6>0. Since for each m, | pm — pm | — 0 with probability
one, and by Lemma 3.1, 221" "7 [( | pm — pm | )/m' ™% is bounded, we get by
Toeplitz’s lemma [5] the following:

(v1=e]
(3.5) Pllim 22 [(|#n — pm|)/m**’1/m" = 0] = 1.
N+ 1
We choose R such that R — «, with probability one, R < [N* ™, and
[N1=¢€] 145 —1/(1+48)
(3:6) R=o[ 3 (sl

Then
P[Sl)‘lplsll—>0 as N — =] =1,

Turning to S, , we have
+o0
BN KO =50) = [ U+ ) = FOIR/r K, (Re/r) db,

where

N .
(3.8) fx(\) = 1/2x _ZN: (1= ([m|/N))pne™

is the N'th Fejer mean of f(\). Since D % | o | is convergent, f(\) is bounded
and continuous. Since f(\) is symmetric in A, f(x) = f(—=). Hence, by Fejer’s
theorem,

(3.9) lim sup | fx(A) — f(A) | = 0.
Nsw [N <7
From (3.7) we have

—+o0
sup [ 00 —fO) [ S sup [5x4+ —fO+ 1) |
(3.10) ;
-(R/r)K.(Rt/r) dt + Slipl [: N +1t) —fO)I(R/r)K.(Rt/r) dt|.

Since [ (R/r)K,(Ri/r) dt = 1, the first term on the right of (3.10) goes to
zero as N — . If we choose r such that r — « and (r/R) = 0as N — o, it
is easily seen from Bochner’s theorem, that the second term also goes to zero
with probability one.
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We remark that, if we choose 7R = o(N) and r = o(R), the theorems of U.
Grenander and M. Rosenblatt [1] on the consistency of the spectral estimates
for linear processes become applicable.

/ Finally, let us consider the behaviour of the periodogram of a stationary
Gaussian process. It is well-known that the periodogram does not converge to
any random variable as the sample size increases to infinity. However, the fol-
lowing theorem holds.

TaroreM 3.2. For a stationary Gaussian process with a spectral density f(\)
satisfying Lipschitz’s condition,

N N

4 | | 2 wecost) | | 2 @esint
. t=1 . t=1 _ -
Pllimsup o o foaTog ¥ T ISP o N Toglog N TV | =1

The proof follows from the analyses of W. Feller [6] and G. Maruyama [7].
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