A MIXED MODEL FOR THE COMPLETE THREE-WAY LAYOUT
WITH TWO RANDOM-EFFECTS FACTORS!

By J. P. Imuor?
Unaversity of California, Berkeley

1. Summary. In the present paper the Mixed Model developed by Scheffé [10]
for the complete two-way layout is extended to the complete three-way layout
with two random-effects factors. The model involves three basic covariance
matrices of unknown parameters in addition to the error variance and fixed
effects. Assuming normality, tests of the usual statistical hypotheses, except that
of no fixed main effects, are derived from the analysis of variance table. Those of
no interaction between the fixed-effects and a random-effects factor are applica-
ble only under a simplifying assumption. A reduced form of the model is derived
which involves sets of independent identically distributed random vectors.
These are used to obtain unbiased estimators of the basic covariance matrices
and to construct a 7?2 test of the hypothesis of no fixed main effects. This test in-
volves nonoptimum estimators of the effects, but this is shown to result in general
only in a small loss of power. Individual and simultaneous confidence intervals
for the fixed main effects are obtained in terms of these nonoptimum estimators.

2. Introduction. In analysis of variance problems involving both fixed-effects
(or Model I) and random-effects (or Model ) factors, various Mixed Models
have been proposed in recent years. Of those, certain arise as particular cases of
very general models for which knowledge about distribution theory is at present
only fragmentary [3], [12], [13], while another approach consists in setting up a
“normal theory’” model with sufficient assumptions so that, in particular, exact
tests of the standard hypotheses can be derived. This has been done by Scheffé
[10] in the case of the complete two-way layout. His model and the method of
analysis derived from it can easily be extended to complete layouts of order
higher than two, as long as there is only one random-effects factor. On the other
hand, the analysis becomes considerably more intricate when the number of
such factors is increased. We develop it for the case of three factors, two of which
are Model II.

Matrices of the type

(2.1) S = ((Siil)), 8 = b + 355/((1 - b), a = b,
will frequently occur. Here ((sw)) denotes the matrix having elements s;,
i =1, ---, nrefers to the row, ¢’ = 1, -+ , n to the column and &, is the
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Kronecker 8. The canonical reduction of S can be performed by using an orthog-
onal matrix having elements n* in the first row. In Section 8 it will be ad-
vantageous to use for this reduction a matrix with elements having as few
different numerical values as possible.

Lemma 1. The symmetric matriz P of size n, with elements pir = n™? if either
it =1or¢ =1and piw = 6i0 — (n — 1)_l(n_*+ Difi> landz > 1,18
orthogonal. In particular, one has

(2’2) ‘ Z'i>1 pii’pii" = 51"15" - n‘l; Z"""=1 Pii' = 0’ i = 2’ B 1)

The following further conventions are made regarding the notation used:
Vectors are column vectors. Matrices will always be square. The transpose of 4
is written 4’, and tr4 is the trace of 4. We write A = ((A4.)) for a matrix 4
partitioned into submatrices A . Also, ((diag. 4;, ---, 4;)) is the matrix
A= ((4w)), 1,1 =1, , I, where 4, = 8;04;. If X is a random vector,
EX is its expectation and Ex its covariance matrix. The vector X is N (8, 2x)
means X is normal with expectation 8 and covariance matrix Zx . The symbol
U is reserved exclusively for the identity matrix. Finally, a dot substituted for a
subscript indicates that the average has been taken over all permissible values of
the subscript.

3. The model. Basic formulas. Consider a complete three-way layout design
involving the factors 4, B and C. 4 is a fixed-effects factor appearing in the
experiment at levels ¢ = 1, , I. B and C are random-effects factors. The
levels of B and C at which the experlment is carried out are selected at random
and independently as regards B and C from two conceptual infinite populations
which we represent as two abstract spaces V and W. The selected levels are
labeledv; (j =1, ,J)and wy, (K = 1, , K) respectively. For each of the
IJK comblnatlons of .levels (2,75, k), L replications are performed. The observed
responses are labeled yij:. When no further indication is given, subscripts
i, J, k, | range over the values 1 to 7, 1to J, 1 to K and 1 to L respectively.
It is always assumed that I, J, K > 1 and L 2 1. The case L = 1 is formally
included, but certain of the results are then obviously meaningless. In later
sections, additional restrictions are imposed on I, J and K.

An example may be obtained by extending the illustration given in [10] as
follows: Think of an experiment in which K batches of material are used by each
of J workers on each of I different makes of machines, the output of the jth
worker with the kth batch on the sth machine being determined separately over
L experimental periods, to yield the observed outputs yij: . Here the workers
and batches selected for the experiment are considered to be chosen randomly
from the idealized infinite populations of workers and batches that might have
been used in the experiment, and the replications are supposed to be carried out
in such a way that they do not interact with the other factors, in particular not
with the factor “worker”.
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We assume that the response (in our example, the output) v has the struc-
ture

(3.1) Yigr = m(3, vj, we) + €,

where the e;j;; are “errors” and the m(<, v;, wy) are “true cell means.” The ran-
dom selection of v; in V and, independently, of w; in W justifies, in our view, the
fundamental assumption that m(z, v;, wi) is distributed for all j and k like a
basic random variable m (%, v, w) and that m(%, v;, wy) is independent of m(7’,
vj», wyr) when both j = j/ and k # k’. There is nothing however to justify
assuming independence when j = j/ or £ = k’. One can think of the two infinite
populations from which the levels of factors B and C are drawn as corresponding
to two probability distributions ®y and ®w on V and W, so that (V, @) and
(W, ®w) are probability spaces and the distribution of the random variable
m(<, v, w) is that of the real-valued function m(z, v, w) on the product space
(V X W, ® X ®w).One can then define the random variables

m(i,v, -) = jm(i, v, w) dew(w),
(3.2)
m(i, -, w) = f m(i, v,w) dOy(v).

The first of these would have, in our example, the interpretation of true mean of
a randomly selected worker labeled » when he uses machine ¢, averaged over the
population of batches. A similar interpretation can be given for m(z, -, w). The
second moment structure of the model depends essentially on three basic co-
variance matrices having elements

i = Cov {m(s, v, w), m(<', v, w)},
(3.3) vie = Cov {m(s, v, ), m(?, v, -)},
i = Cov {m(, -, w), m(¢', -, w)},
and on the linear combinations
(3.4) Piit = Giir — Vi — Tt .

Assume ¢;; < o, all 7. The relation p;; = 0 obtained in Section 6 implies then
finiteness of the »,;’s and 7;’s also.

The assumptions made so far are, we believe, realistic: They express what is
implied by the random selection of the levels of B and, independently, of C
from the two conceptual infinite populations V and W described above. Further
assumptions which are needed for computing E(M S)’s (expected mean squares)
and finding unbiased estimators are less satisfactory: The errors e;;i; are assumed
to be pairwise uncorrelated and to have zero means and a common variance a.
Furthermore, the e;j; are assumed to be uncorrelated with the m(¢’, v; , wi)
for all ¢, ', 7, 7', k, k' and l. In the particular case I = 1, the model coincides with
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the one described in Section 7.4 of [11] for the complete two-way layout under
Model II.

The exact distribution of test criteria, and exact confidence intervals for
various parameters are derived in later sections under an additional normality
assumption, namely that the random variables e;j. , m(¢, v, w), m(z, v, -) and
m(%, -, w) have joint normal distributions. For instance, V and W could be two
real lines, ®y and ®w be two independent normal distributions on them and the
functions m (%, v, w) be for each ¢ linear functions of » and w. On the other hand,
the case m(z, v, w) = vw shows that joint normality of the m(¢, », -) and
m(%, -, w) does not imply that of the m(%, », w). It can also be verified that
joint normality of the m(Z, v, w) does not imply that of the m(<, v, -)
and m(s, -, w).

We define main effects and interactions in a natural and conventional way by
letting

“=m(', ')')’ af:m(iy"')_m(" ':')’
aB(p) = m(-,v, ') - m(" ) ')y

(35) a‘i‘B(v) = m("" v, ) - m("" ) ) - m(’yvy ) + m(': ) ')’

ch(v, w) = m(')vy w) - M(',U, ') - m(', ‘,10) +m(" ) '),
a?BC(v’ w) ='m(7:y Y, w) - m("" v, ) i m("'y ) )
+ ces - m(., N .).

In those formulas a dot substituted for » or w means that expected value has
been taken with respect to @y or ®w , as in (3.2), while a dot in place of 7 means
the arithmetic average has been taken over the values7 = 1, --- , I. Thus p is
the general mean, of is the main effect of factor A at level ¢, a#(v) is the main
effect of factor B at level v, ete. Except for u and the af , all main effects and
interactions are obviously random and one finds at once from their definition

(3.6) Ear(v) = Ea{®(v) = Easc(v, w) = Eai"*°(v, w) = 0.

We have omitted writing a¢(w) and ai°(w) because their definitions are similar
to those for a#(v) and a$®(v). As a general rule, when considering variance com-
ponents, sums of squares, estimators, etc., “C” can be treated like “B” and
“AC” like “AB” by substituting & for j, 7:» for vy, m(4, -, w) for m(z, v, -),
etc.

Next we define variance components by using the analogy with a “finite
mode]”’ described in [10]. This leads to the natural definitions

oy = Vara(v), @ = (I —1)"3 Varai®(v),

3.7
@7 osec = Var a®c(v, w), oipe = (I — 17 E Var ai%%(v, w).
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As usual, let
(3.8) o= - 1)—12 (o)

In terms of the basic parameters (3.3) and of their linear combinations (3.4) the
variance components become

oy = ., oas = (I — 1)_12_ (vis — »..),

(3.9) - _
osc = p., Gase= (I —1)"23(pii—p

These relations are best derived from (3.15) below. .
For thelevelsv; (=1, ---,J) and w,(k = 1, --- , K) of v and w selected in

the experiment, equations (3.5) identically give
m(s, 05, ) = u + af + a2(0;) + ao(wy) + af’(v))
+ oo+ al®(v;, ).
This notation being cumbersoine, we write simply
(3.10) Mijp = p + af + af +af + aif + o’ + ai’ + aii’,
and then (3.1) becomes

(3.11) _ o Yir = Mije + et

For all j and k, the a} are identically distributed like a#(v), --- , the a‘.‘,ﬁ” are
identically distributed like a??° (v, w), and (3.5) implies that

(3.12) ot = a’f = a¥’ = alji° =0, all 7, k.

The main effects and interactions entering (3.10) are independent, except for
the three pairs in (3.13) for which one easily finds
Cov (a} ,atf) = vi. — ».., Cov (ar ,a’) = 7. — 7., .

ABC

(3.13)
Cov (a3, aii®) = pi — p.. .

Further covariances will be needed. Let

0 ) 0 .
Oiy0 = 04t — 040 — 0.4 + O.., Vit = Vigt — Vi — Vot + Voo y

(3.14) 0 0
Tie = T — Tie — T + Ty, P = pir — pi. — pir + P

One finds
‘ Cov(aif, at’) = 8jivie , Cov(as’ , at$r) = durris
Cov(al’ , af%r) = d;p0up..,  Cov(aii’, a¥i) = 8jdupiv ,
(3.15) Cov(a?, a}%) = Cov(af , aiy) = Cov(aif , aii)
= Cov(ai , ati%) = Cov(ai’ , ai3%) = 0,
all ¢, ¢, 4,75, k, K.
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The derivation of these relations is routine, based mainly on equalities like
(3.16) Cov(mij , muj) = Covim(s, -, w), m(s', -, w)} = rir, forj =y
This follows from
E[m(z, v; , wi)m(d’, vjr , wi)] = E{E[m(, vj, we)m(s’, vjr , we) | wel}
| Elm(i, -, we)m(, -, w))
when j # 7.

4. The analysis of variance table. Inmediate consequences. In order to obtain
point estimators of the variance components and test criteria for the usual sta-
tistical hypotheses, we proceed in the usual fashion, which consists in writing the
S8’s (sums of squares) that one considers in the corresponding pure Model I
complete three-way layout and computing the E(MS)’s, the numbers of d.f.
(degrees of freedom) being the ranks of the quadratic forms defining the SS’s.
Using (3.10), (3.11), (3.12) one has,

88, ="JKLY (yi... — y....)"

4.1
(1) = JKLZ (af + af? 4+ af’ + ai% + ei. —e....)°
and so forth, the well-known expressions for the SS’s yielding

S8z = IKL; (af —a® 4 ai° —a?° + e — e....)”n,
8845 = KLY, ; (aff — ai? + aff® — ai®’ + eij. — ei. — e.j..

+e...)% |
(42) 88pc = ILZ ; (a3 — a3’ — a¥S + a®® + €.jke — €.joe = Curk
J o

2
+ e....)5,
ABC ABC ABC ABC
SSAac = LE Zj ; (a,-jk — Qgj., — Qi.k + asg.. + €ijke = €4j..
r .

— e — el

SS, = ZEZ’;IE(G,'M—G,'J%.— +e.~,-..+ e — 4.

t J

— e Fel)

Consider now the computation of E(M8,). From (3.7), (3.8), (3.15) and the
assumptions below (3.4) it follows that

ES8. = JKLY, [(af)! + E(af?)! + E(af®)’ + E(ai™°)* + E(es.. —e....)"]

= (I — 1)JKL[% + J'0%s + K '¢%¢ + (JK) o%sc + (JKL)'47).



912 J. P. IMHOF

Proceeding in the same fashion for other SS’s leads to the following analysis
of variance table: ‘

SS d.f. E(MS)
A I—-1 JKLe" + KL + JLo% ¢ + Loy gc + o5
B J—-1 IKLo% + ILopc + ot
“43) 4B I-nJ-mn KLo%p + Loypc + ot
BC 7 - 1)(E& - 1) ILo¢ + ot
ABC (I-1)(J —1)(K —1) . Lokpe + ot
error IJK(L — 1) o

This coincides with the table one would obtain by applying the rulés of Bennett
and Franklin [1] for writing down E(M8)’s. The table (4.3) shows that the
variance components (3.7) admit the unbiased estimators

¢ = (IKL)™(MSs — M8sq), #3c = (IL)(MSsc — MS,),
¢35 = (KL) (M8us — MB8asc), 6ipec = L (MSisc — MS.),

while asusual o7 has the unbiased estimator 6; = M, . Here and in further sec-
tions, the caret is used to denote estimators which are unbiased, but are not in
general maximum likelihood estimators.

Natural hypotheses to consider are

2 2 2 2 2
H,: o4 = 0, Hp: op = 0, Hpe: Opec = 0, HAB! O4B = 0, HABc: G4aBC = 0.

(44)

The hypothesis H, will be considered in Section 8. For the other hypotheses
(i.e., those relative to random effects) the table of E(MS)’s suggests using the
criteria MSB/MSB(: y MSBc/MS‘; ) MSAB/MSAB(: y MSABG/MS¢ reSPQCtiVely;
In order to get some insight into the meaning of the different hypotheses con-
sidered, notice that Hp < v.. = 0 or, using (3.7), Hp < m(-, v, -) has a de-
generate distribution, m(-, », -) = ¢, a.s. (i.e., with probability one). This
corresponds exactly to the intuitive idea of no main effect due to factor B.
Similarly, one can write '

Hyc=p.. = 0 m(-, v, w) = m(-,v ) +m(-, -, w) + ¢ as.,

Hiypo v =ds, alli, 7 @m@G,v, ) =m(-,v, ) + ¢, as.,

Hupe € piv = o380, alli, i & m(i, v, w) — m(s,9, ) — m(, -, w)
= m(-, v, w) — m(-, v, +) — m(-, w) + ¢, as8.

(4.5)

Consider first testing Hp and Hyc . Letting v = ajx + e.js. gives
88s = IKLY (aj — a” + v;. — v..)’%,
J
S8Spe = ILZ Ek (v;;, - Vj. — Vg + v..)’.
J

According to (3.15) the variables {a?, v} are mutually independent and
Var vy = o3¢ + (IL)'o5 . Using the familiar results of Model I theory one
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finds that when the normality assumptions described above (3.5) are made,

MSy _ IKLoy + ILosc + o

MSBC I La'zgc + 0'3
where F ., is an F-variable with m and n d.f. Thus we reject Hj at the « level of
significance if M Ss/M Sgc is larger than the upper a-point of this distribution.
In the same faghion,

/ 2 2
MSBG _ ILO’BC + [ F
- D) (J-1)(K-1),VK(L-1)

MS, a2

In this case one can test the more realistic assumption He: oxc/o: < 6 by
rejecting it if (IL8 + 1)™" M Sze/M S, exceeds the upper a-point of the F-distri-
bution with the above numbers of d.f.

6. The hypotheses H 5 and H,zc. We investigate in this section the distribu-
tions of the ratios M S4s/MSasc and MS.pe/M S, suggested by (4.3) for testing
H .5 and H 43¢ . The normality assumptions are made throughout. Let

(5‘1) bijk = a;-‘f + a}’;ﬁc + €ijke o Cijk = bijk - bi.k - b.jk + bk,

Then : »

(5.2) 8Sas = KLY, > cij., Sasc=1LY, Zj: 2::: (cie — ¢€ij.) -
t J t

Fr1,0-1&-1

Using (3.15) gives

(5.3) Cov(bije , birjinr) = 8j[vie + S (pter + 8L '02)].

Then, noticing e.g., that of. = ¢°;» = 0 one finds

(5.4) Cov(cije, cojw) = (8;5 — I e + dwleie + (80 — IHL 702,

from which it follows that Cov(cij% — c¢ij. , ¢j.) = 0. Hence SS45 and SS.ze
are statistically independent and we only need investigate their distributions
separately. For this purpose a well-known result [2] relative to quadratic forms
in normal variables is used: If the vector X is N(0, =), the quadratic form
X’QX has the distribution of Z, }\,xf,),l , where the x* variables each with one
d.f., are independent and the coefficients A, are the nonzero latent roots of the
matrix Q. Consider first 8S45 . Acvcording to (5.1) it can be written SS4s =
KL(X'X), where X is the vector

X = (B, 3 @iy, o 3 Bit, v 3 @isy o 3 &1, - 5 Trs), Tij = Cij.
The elements of its covaﬁance matrix = are found from (5.4) to be given by
Cov(xij, xij) = (855 — J ){vis + Kot + (8w — 'YL},
Thus one can write = = ((Z;#)), where each submatrix =; of size J has the
structure (2.1) and has row sums equal to zero. Let P* = ((diag. P, --- , P)),

the I diagonal blocks P of size J being as in Lemma 1. The nonzero latent roots
of =, which equal those of P*ZP*, are then found to be the nonzero latent roots
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of the matrix of size I(J — 1), M* = ((M.»)), where the M, are diagonal
matrices having their J — 1 diagonal elements equal to m:» = »% + K "% +
(IKL)™(I8:;» — 1)o5. Letting M = ((m;s)), one verifies that | M* — AU | =
| M — AU "™ (where the identity matrix U has in each case the proper size),
and so the nonzero latent roots of M* are, each with order of multiplicity J — 1,
those of M. Now, substituting in | M — AU | the sum of the columns (all com-
ponents of which equal to —\) for column I, and then row ¢ minus row I for

rowz (¢ =1, .-+, I — 1) and developing the resulting determinant in terms of
elements of the last row one finally obtains that

I—1
(55) S84z = Zl e1')(%1'),.1—1 ’

where the 7 — 1 variables x{r, s have independent x* distributions with J — 1
d.f.eachand ¢, - - , e are the latent roots of the matrix of size I — 1,

(5.6) C=A+B+aU,
where
A = KL((# — v})), B = L((pk — pi)),

5.7
(6.7) =1, —1

As a general rule we shall substitute subscripts », 7’ for the subscripts 7, 2’ when-
ever the range of values is 1 to I — 1 instead of 1 to I. One has > ¢ = fr
C = (I — 1)(KLd4s + Lo%sc + o2). More can, in fact, be said about the ¢’s:
Consider the matrix of size I, H = ((KLvis+ + Lpi«)). It is a covariance matrix
(of the vector with components (JKL)}(a£® + a%7°)), hence its latent roots
g, -+, prare = 0. Thus the latent roots pt = ps + o2 of HY = H + 42U are
=0, . But performing the same column and row operations as above (5.5)
one finds that

|HY — U | = (o — u")| C = u'U |,

where C is given by (5.6). In other words I — 1 of the latent roots of H™ coincide
with those of C, while the last one equals o%. Thus
LemMMA 3. ¢ 2 02,7 =1,--- , ] — 1,and e. = KLo%5 + Lo%sc + o> .
Next consider SS4zc¢ . Define the vector

: ’
(58) X* = (Cury """ ,Cuk,Cio1,y " yCiok, *** yClik , €1y *** 5 Crux)’.

Then SSisc = KL X*¥Q*X* where Q* = ((diag. @, ---,Q)) and the IJ
diagonal blocks @ of size K are given by @ = ((8 — 1)). The method used
above to reduce the computation of the latent roots of = can be applied now to
2*Q*, where the elements of the covariance matrix =* of X* are given by (5.4).
One finds that

I-1

’
(5.9) SSupc = Zl €r X%r),(i—l)(x—l) ’
re=
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where the I — 1 variables x%», (=D (E-1) l}ave independent 5’ distributions with
(J — 1)(K — 1) df. each and €1, - - - , &1 are the latent roots of the matrix of

sizel — 1,

(5.10) D = B 44U,
where B is glven by (5.7). The analogue of Lemma 3 is here
LeEMMA 4. e,gae,r—-l I—lande—LaABc-i-a,.

Consider the test of the hypotheses H 45 ,based on the criterion M S.p/M S.sc .
Under H 45, (3.14) and (4.5) show that the matrix A of (5 7) reduces to a zero
matrix and so, comparing (5.6) and (5.10), one has ¢ = e . Hence MS45/MS4sc
has the distribution of

Z é: X%r),]—-l

Z €, X(r) —1)(K-1)

(5.11) (K - 1)

’

where all X vanables are independent. This distribution is simple only if a =
ce =g = € , and it is easily verified that this is the case if, and only if, the
matrix ((p:~)) has the structure (2.1). Then M S.5/MS4zc has the F-distribu-
tion with (I — 1) (J — 1) and (I — 1)(J — 1) (K — 1) d.f. Letting b;(v, w) =

at®®(v, w) + aBc(v, w), one has p;z = Cov [bi(v, w), by (v, w)]. This does not
help much in giving the above restriction on the p;; a simple physical signifi-
cance. However, the stronger assumption that all three covariance matrices (3.3)
have the structure (2.1) carries more intuitive meaning,.

The situation is simpler when testing H 4z¢ . Under this hypothesis, B of (5.7)
is a zero matrix so that the criterion M S, zc/M S, has under the hypothesis the
F-distribution with (I — 1)(J — 1)(K — 1) and IJK(L — 1) d.f. Concerning
the power of the test, one might remark as follows: Specifying a value for oaBe
and o7 does not specify a unique alternative but a subclass, say €(c4sc, 07), of
alternatives. Among those, one might intuitlvely feel that the hardest ones to
distinguish from the hypothesis Hpc: piv = o'gc for all 4, ¢ are the ones for
WhJCh ((pw)) has the structure (2.1). When such is the case, @ = -0 =
e_1 = Lossc + o , 50 that (Lo’ se + 02) "M Sapc/M S, has the F-distribution and
the power is immediately computable. Another reason why the power against those
particular alternatives can be expected to be a lower bound (or at least nearly so)
of power values for all alternatives in €(o%sc , o2) is that the cumulants of (5 9),
obtainable from formula (2.3) of [2], are minimum when 6= - = .
The cumulants being positive, the same is true for the moments. Now SSzc is
> 0, its mean is fixed for fixed ¢%5¢ and o» , and one therefore expects its dis-
tribution to have least mass in the tail when the moments are smallest. The
same should then also be true for the distribution of MS4sc/MS,, which
indeed (at least for small enough values of the level of significance) means that
the power is lowest when ((p;»)) has the structure (2.1).

6. Reduced form of the model. Sufficient statistics. By means of an orthog-
onal transformation, we obtain in this section certain sets of uncorrelated
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identically distributed vectors. Assuming normality, they yield sufficient sta-
tistics for the parameters of the model. Introduce the vector of observations,

ordered as follows
(6.1) Y = (yuu, -+, Yur, Yua, *** 5 Yuew, ",

Yurw , Yami, * 0, YukL 5 00, Yrore)'s
When normality is assumed, its probability density is
(62)  p(Y) = const. | Zy | exp {—3(Y — EY)'Z7(Y — EY))},
where, putting 8; = p + a,

EY= (/31; cee ’61,32’ “ee ,Bz, cee ,ﬂ[, “en ,.BI)',
each 8; being repeated JKL times. The elements of Zy are given by
oiv + Sidipos ifj =4,k =k,

(6.3) Cov ( )= o =d, kA F
. oV 3] .y"l Ry ) =

T it =7k = K,

0 5 7k = K.

Write 2y = A + ¢2U and partition A into A = ((Asw)).
The submatrices A;; of size JKL are then given by

an' Gu' Gz'i' I Hu’ 0 0 5 k=1

{G"' Fy G .: 0 H. 0 k=2

:G' G. F. : 0 0 H : k=K =t
o (G G o T w . 00 - H w k=K

(64) A« Hy 0 -+ 0 @ Fur Gur - G } k=1 ‘

{ 0 H;» 0 i Gy Fu G : k=2

! . ! . : j=2

100 Hi | G G Fw | k=K

where each of the submatrices Fiy, Giv, Hi» of size L has all its elements
equal to ¢is , viwr , Tir Tespectively and where we have written only the upper
left 2KL X 2KL corner of A;; , from which the structure of the whole matrix is

clear.

We shall reduce the exponent in (6.2) to a simple form by applying succes-
sively three symmetric orthogonal transformations based on the matrix defined
in Lemma 1. More precisely, the matrices P; , Pz, and P below are defined like
the matrix P of Lemma 1, with n taking on the values L, K and J respectively.

First, let
Z =Py, Pi = ((diag. Py, -, P)),
where PY of size IJKL consists of IJK diagonal blocks P; of size L. Then
2ok = LYy, B = suLB: ) =, = PIA P + de;
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The matrix PfA Pf has the same structure as A, except that e.g., Fi;» has to be
replaced by PiF;.P;, the only nonzero element of which is the 1,1-element,
which equals La;; . Therefore,

(Y — EY)'Z74(Y — EY) = (2% — EZ%)'23t0 (2% — EZ®)

(6.5) S IPIPIPIETR
s J k ID>1

where the vector Z® of dimension JJK has components z{}} = 2 which we
order as in (5.8). Writing £z = L((®i)) + a2U (U is now of size IJK and
each ®;, of size JK), one gets for &, a matrix like (6.4), but with entries
i , viv and 7;; instead of Fi» , Giv and H; respectively. Next, let

Z(z) =P;Z(l), P: = ((dla‘g Py, - )P2))y P, = ((pgt)'))r
where P} of size IJK has IJ diagonal blocks P, of size K. Then
zfﬁ = K’zf}) = (KL)*:I/,','.. y ZE?; = L*kz: p&)y;,-y. fork > 1,

(6.6)
Bz = (KL)'8:;, Bz =0 fork > 1.

Furthermore, writing =z = L((¥:)) + a2U, one finds that if ¥,; is in turn
partitioned into J* submatrices of size K, then it has the structure (2.1) with
n = J and @ and b replaced respectively by the submatrices of size K

gir + (K — 1) viir 0 0 e 0 -+ 0
0 T — Vi’ A 0 0 Tii' A 0

. LR and . . LY .
I_ O 0 ! — V! O 0 e Tii'

Finally, let
X=P:Z(2)y P3* = ((dia‘g P’: "'7P3))7 Ps = ((P:J'))y
PY = ((diag. pjy», *+*, pi#)) with ((p;»)) = P,

where P; consists of I diagonal blocks P; of size JK, P%¥ is of size K and P of
size J is as in Lemma 1. Then

T = J*zfzi = (JKL)*:I/, , Tijk = ;p,-,vzf?k for (j, k) # (1, 1),

() Era = (JKL)8:, Baiw =0 for (j, k) = (1, 1).
Writing

(6.8) Zx = L((Aw)),

one finds that A;; = P3¥,;»P; can be written

Ay 0 - 0'| (7=1)
0 By -+ 0 (7 =2),

Y R R G
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where

P 0 - O.l uir 0 - O-I
O B R T I S

O 0 --- v“.,_l .0 e u','.'.,_l
are submatrices of size K, the elements of which are defined by the relations
(6.11) ot = g + s L'0h
and

rio = of + (K — D)viw + (J — V1w,

(6.12) uw = oo + (K — Vi — 7000,

Vigy = 0';!;" — v+ (J — Driwr, Wiy = U'.s";" = Vi = Tt .
Define the matrices of size I,
(6.13) Ro= ((r«)), Uo= ((wi)), Vo= ((vir)), Wo= ((wir)).
Then v
(6.14) Roy+ Wo=Uo+ V5.
Define also a set of JK vectors, all of dimension I, as follows:

—}
R=1L (xm, ety iy vt ,xm)',

Uj = L-}(xljl y *tty Tijly tc xfjl),) j > 1’
(6.15) Vi=L owe, -, Tk, -+, Tm)’, k> 1,
Wa =L @, -y Tig,y -0 5 21ae), g k> 1.

The equations (6.8), (6.9) and (6.10) show that these JK vectors are uncorre-
lated. Their covariance matrices are respectively Ry, Us, Voand W, and, accord-

ing to (6.7),
(6.16) EU; = EV, = EWy = 0, _ Jyk > 1.

The quadratic form in Z* in the right-hand member of (6.5) can then be written,
as one easily verifies, '

(Z® — EZ®)'z7t0(2% — EZ?) = (X — EX)'Z5' (X — EX)
(6.17) = (R — ER)'R:*(R — ER) + Z; U;Us'U;
: >

+ ViV + D WalWo'Wa,
k>1 >1 k>1 '

the last three terms of which also equal
(6.18)  tr [Us' XS U;Us + Vo' 2o ViV + Wa' 2o X WaWil.
i>1 k>1 >1 k>1
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When normality is assumed it follows from this, (6.5) and the Neyman fac-
torization theorem, that a sufficient statistic for the parameters of the model is

(6.19) T = {827 B; vo ] VO ] Wo}’

where

™

$=WEKL-D"E XY Fdu, 8= (KR,

(620) Oy = (J — 1)-1‘:[1 U;U:, V= (K- 1)—‘§1V,,V,’c,

W =[(J = 1)K - DI D WaWh.
>1 k>1

Using the intermediary relations (6.6), (6.7) and applying (2.2), one finds after
some straightforward algebra that T can be expressed in terms of the observa-
tions as follows

82 = MSe, B,' = Yieen
'ﬁur = (J - 1)_1K ’Z (y,-j.. b yi~--)(yi'j~- - y,‘l...),

(6.21) 0 = J(K — 1)—1; Yok — Yirr) Yirore — Yaror),
'wii' = (J - 1)—1(K - 1)_lzj: zk: (yijk~ — Yijeo — Yik: + y,)

(yorim — Yirjoo — Yirke + Yirenr)s
where we write 8 = (81, -+, B1), Uo = (), Vo = ((9s)), Wo = ((#ss)).

7. Unbiased point estimators of the parameters. The results of the previous
section enable us to find unbiased point estimators of the basic parameters of the
model, namely u, a;, o5 , giir , visr , Tiwr , & < ¢ = 1, --+, I. We shall also prove
that if J, K > I and normality is assumed, those estimators are minimum
variance unbiased.

Unbiased estimators for , a; , o> are at once found to be

(7.1) A=uy.., Qi = Yiveo = Youur 6t =8 = MS,.

Also, as noticed above (6.16), Zy; = Uo, j > 1. This, together with (6.16),
(6.20) and the similar relations in V and W shows that

(7.2) EOy=U,, EVy=V,, EW,=W,.

Solving, the last three equations of (6.12) for the unknown parameters o;; ,
vir » T and substituting in the resulting equalities their estimators s’, @ ,
bir and Wy for oo , Ui , vsr and wiy , one obtains the unbiased estimators

Gir = (JK)_I[(JK e K)’lf)w + Jh; + KD,’;I] - 3,’{/L—182,

(7.3) . ) . .
Vi = K (@i — Wiwr), T = J  (Dir — Diar).
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Performing some algebra one verifies also that the estimators (4.4) of the com-
ponents of variance coincide with the estimators one would obtain by sub-
stituting ¢¢ , #s» and 7, for osw , v;» and 74 in the relations (3.9). This remark
is needed to conclude that the estimators (4.4) also possess the optimum
property to be considered now.

Assume that normality holds and J, K > I. Then, the estimators (4.4),
(7.1) and (7.3) are minimum variance unbiased. To see this, the multivariate
extension of a completeness lemma of Gautschi [4] is needed.

Lemma 5. Let © be a parameter vector and Y be a random vector in Euclidian
space E, , similarly let ©, and Y, be vectors in E,., . Assume that Y and Y, have
probability densities (with respect to Lebesgue measure) of the form

p(¥,0) = g(0)h(Y) exp {0'Y},
pi(Y1,6:,0) = f(61,0) exp {Y1R(0)Y: + 013},

where R(0) is a matriz of size ny . Let the domain D of © contain a nondegenerate
interval in E, and the domain of ©, be E., . Then, the family of product measures on
E. s, generated by the family of probability densities

3= {p(Y,0)pi(Y1,6:,0):(6,6:) ¢ D X E,}

18 strongly complete, in the sense of Lehmann and Scheffé [7].

‘The proof of this can be made along exactly the same lines as in the univariate
case [4]. Consider now the probability density of the statistic 7' defined by (6.19).
The vectors (6.15) being independent, s, 8, U, , Vo and W, are also independent.
Now IJK(L — 1)§* is ooxisxw , B is N(8, J'K'R,) and when J, K > I,
0., 7, W, have respectively the W([J — 1]7'U,,J — 1), W(K — 1] 'V, ,K—1)
and W([J — 1)(K — 1)]7'W,, (J — 1)(K — 1)) distributions, where W (Z, n)
denotes the Wishart distribution of the matrix Z{' Y,-Y: for n independent identi-
cally distributed vectors ¥;, ---, ¥, , each N(0, Z). Let —20 be a vector in
which the components of the matrices (J — 1)U;', (K — 1)Vi,
(J — 1)(K — 1)W;" and o,” are strung out, ¥ be a vector in which the com-
ponents of the matrices Uy, Vo, Wy and §* are correspondingly strung out,
R(©) = —1JKR;', 0y = JKB'Ry" and Y, = . By writing it out fully, one can
then verify that the density pr of T’ becomes

(7°4) Pr = P(Y; e)p1(Y1,91,9),

where the two factors are of the type considered in Lemma 5. The family of
probability measures generated by the densities (7.4) is, therefore, strongly
complete and the unbiased estimators (4.4), (7.1) and (7.3), which are func-
tions of 7', are minimum variance unbiased ([6], Theorem 5.1).

When normality is assumed, the variances of the estimators 42 and &; can be
estimated unbiasedly. One verifies at once that Var 42 has the unbiased estimator
264/ (v, + 2), where v, = IJK(L — 1). One can show that an unbiased estima-



LAYOUT WITH TWO RANDOM-EFFECTS FACTORS 921

tor of the variance of &; is
63, = J'(J — )R+ KY(K — 1) 82

(7.5) Y 1 —1m2
- (JK)"(J - 1) (K -1)"T;,

where
R? = ; (yij" = Yieeo. =™ Y.j.. + y"")z,

Sf = ; (yi-k~ - yi... — Y.k + y--“)zr
T = Z,:Zk Yisee = Yijer = Yike = Yoiie + Yiooo + Yoo + Yok — y....)%

8. A test for the hypothesis H, . In a practical situation to which the model
equation (3.1) and our basic assumptions, including the normality assumption,
can be applied, the statistical hypothesis of most interest is likely to be that of
no fixed main effects, namely Hs: oy = -+ = a; = 0. In the model involving
only two factors, Scheffé [10] shows that a T* statistic can be constructed for
testing H 4 . The extension of his procedure to the present model would require
that the JK vectors (yuje., -+, Yriw.), g =1, -, J, bk =1, -+, K be inde-
pendent. As (6.3) shows this does not hold true unless v;y = 7,0 = 0, all ¢, ¢,
an additional assumption which cannot be justified with the present model. The
likelihood ratio principle is here of no help either, as already remarked by Wilks
([14], p. 259) in a simpler situation. This is due to the fact that the covariance
matrix defined by (6.3) is not diagonal and that H, does not completely specify
Ey;p: . One can avoid this indeterminacy by following a suggestion of Hsu [5],
namely by introducing the differences

(81) drjk = Yrijke — Yr1jk- r = 1, Tty I — l, allj, k.
Using a notation analogous to that of Section 6, let
(8.2) T = T — T, r=1,-, I —1, all 7, k.

We define vectors R*, U , Vi , Wk (j, k > 1) by relations similar to (6.15)
but with z7;; substituted for z, , e.g.,

(8.3) R* = L7 (aty, -+, afu, -+, afan).

These JK vectors are thus of dimension 7 — 1 only; like the vectors (6.15),
they are independent. Their covariance matrices are respectively

(8.4) R: = ((7':-')) = ((rrr' — T — T + rII)), r, r = ly cee, I — 1,

and Ug, Vo, Wi whose elements u, , U5, and w}. are similarly defined in
terms of the w;y , v; and w;» of (6.12). Let also

(8.5) B = (B — Br, -+, Br1 — Br), B* = (JK)'R*,
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so that Ef* = g* and define as in (6.20) the matrices

0F = (J - D)L UTUY, V= (K-1)7X1ivy,.
(8.6) >1 w1
= -DNK -1 WL .
>1 B>1

Formulas (6.14) and (7.2) now become
(8.7) Ry + W5 = Us + Vi,
(8.8) EOf = U¥, EVE=V§, EWt=W;.

The elements @y, , 7 and % of the matrices (8.6) can be computed from the
observations by using relations analogous to (6.21) but with d,; substituted
for y,; . Alternatively

*
'12"'='ﬂ"1—’ar[—12"/+?2[1, 7',7"=1,”‘,I—1,

with similar relations in » and w.
If the covariance matrix Ry were known, one would test the hypothesis H 4 by
using the criterion

(8.9) T} = R¥(R3)™'R*

which has the noncentral x* distribution with 7 — 1 d.f. and noncentrality
parameter

(8.10) 8 = JKB¥(R?)™'8*,

which reduces to zero under H, .

When R{ is unknown, one might think of using instead of 7T} the criterion
T: = R¥(Ry)™R*, where R is the unbiased estimate of R based on the suffi-
cient statistic T of (6. 19), ie., by (8.7), (88), Ry = Ut + V§ — Ws. Al-
though R%, OF , Vs, Ws a,re mutually independent, the former with multi-
variate normal and the latter three with Wishart distributions, it does not seem
possible to obtain the distribution of 7. The case I = 2 easily shows that it
does, under H, , depend on nuisance parameters, and unlike a T* statistic, is
not nonnegative. However, when both J and K tend to infinity, one verifies
that the limiting distribution of T, under H, is the x;—; distribution. Hence for
large values of both J and K, a satisfactory test of H, at the a level of signifi-
cance consists in rejecting the hypothesis if 7', exceeds the upper a-point of the
xi-1 distribution. As is well known, one does not need to compute (R5)™ in
order to evaluate T, but can use a formula similar to (8.21) below.

Consider now the case where J and K are not large enough to justify the use
of the x* approximation. Assume, however, that J, K = I (in Section 7, where
we had vectors of dimension I, we assumed J, K > I. Here the vectors have
dimension I — 1, so we need only J, K = I). The fact that several unknown
covariance matrices are involved in our model suggests trying to apply a device
similar to the one proposed by Scheffé [8] for solving the Behrens-Fisher prob-
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lem: Instead of using the estimate R5 of Ry in the definition of T, one would
like to use one which has a Wishart distribution. This would require finding
independent identically distributed vectors S;, -- -, S, , each a linear combina-
tion of the vectors of observations (dijx, «++, drap),j =1, -+, J, k =1,
..+, K, and each having mean zero and covariance matrix Ry . One would wish
to do so for n as close as possible to JK — 1, which is as much as one can achieve
when said vectors of observations are independent identically distributed. But
Sy, -+, 8. would then also have to be linear combinations of the vectors
R* UY, Vi and W3, 7, k > 1. Now because of the minus sign in Ry =
Us + Vi — W§, it is clear that no such linear combination except R* itself
has covariance matrix Ry .

It appears that the only way to construct a test criterion which has under H 4
a distribution free of nuisance parameters consists in looking not at the mini-
mum variance unbiased estimate R* of (JK )*B*, but at another unbiased
estimate of it, namely

(8.11) (JK)?'S = R* + [(J — 1)(K — 1)1’*;1?;1 wk.

Although this will result in a loss of power of the test obtained below as com-
pared with the “ideal” test described above, this is the price one has to pay for
allowing three unknown covariance matrices in the model. The vector (JK)*S
has the N((JK)*8*, Rt + W¢) distribution. Let

(8.12) H= (M- 1)“‘2“32 (Unm+ Va)(Un + Va)',

where M = min (J, K), then independence of the vectors R*, U, Vi , Wi
together with (8.7) shows at once that a T? criterion for testing H, is

(8.13) T = JK-S'H™'S.

More precisely, § = (M — 1)7*(I — 1)™(M — I + 1)T” has under H, the
F-distribution with I — 1 and M — I + 1 d.f. Under alternatives it has the
corresponding noncentral F-distribution (defined in [10], formula (82)) with
noncentrality parameter

(8.14) o = JKB™(RY + W)

The test consists in rejecting H, if § > F,, the upper o-point of the F-dis-
tribution with the above numbers of d.f., « being the level of significance. The
“ideal’”’ test we were imagining above would have a distribution with non-
centrality parameter 8] given by (8.10). Going back to formulas (6.12) we see
that if the differences of;y — »i» — 7 are small compared to Ky + Jri,
then &* should not be appreciably smaller than 87 and so the loss in power due to
the larger variance of (JK)!S should not be too considerable. Some better
insight into this will be obtained in connection with (8.23). However, if
M — I + 1 is small, say it equals only 2 or 3, then the drastic curtailing in the
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number of d.f. “for error”’ as compared with the “ideal” number JK — I + 1
will make the test a rather poor one.

We express now the criterion 77 in terms of the observations yij:. Using
(6.6), (6.7) and the values of p; in Lemma 1 with the appropriate values for n
yields

(8.15) 2 = Liyip. — (B — 1) (Kyij.. — yin)] fork > 1, all 4, 7.
Similarly one has
(8.16) mim = 28 — (JF — 1)N(TRE — 28) for (G, k) = (1,1),  all.
The above two formulas and (6.7) easily yield
zm = (JKL)Y;...,
zar = (JD)yer — (K — D)K. — yia)), E>1,
1 = (KL yij. — (JP = D)7 (Pyi. — 9], i> L
vi = Llyig. — (' = D)7 (Pyir. —yin.)
— (K = DKy — yin)
+ (' = 1)K - 1)K ...
— (M1 — Kya. +ya)l, 5 k>1L

(8.17)

The equations (8.17) also imply

DI EPNC D

from which one finds by (8.15)
(8.18) EZ ZTijk = (JKL)k(y,’u. - Yia.. — Yia1. + y,:...).
i>1k>1 :

Let, for convenience, in (8.11), (8.12),

S,—_— (sl’ ey 8, "',sl—l)I,

(8.19) M
H= (M- 1)—1G: G = ((g~)), g = ngzfrmfr'my

where f,n is the rth component of the vector Uk 4+ Vi . Using (8.1), (8.2),
(8.3), (8.17), (8.18) shows that one can write, forr = 1, -+, I — 1 and m = 2,
o.M

) b

8 = dp. + [(J = 1)(K — DI Hdu — dn. — dr1 + 1),
(820) fim = K dpme 4+ Jdpom — K} (I — 1) d. — dn.)
- A& - DK b — dra).

I
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To compute T” it is not necessary to invert the matrix G: One can use instead of
(8.13) the relation

(821) T = JK(M — 1) [' ((gor + T se) |y

. G .
There is in general no shortcut available for the computation of 7?%: One has to
compute separately the s, and f,» from (8.20), then use (8.19) to compute T°
from (8.21). If, however, / = K = M, one verifies that

M
G = MZ1 (dem- + Qrom — 2dr..) (dyrme + oo — 2d,0..),

so that the computational work required is considerably reduced.

There is in principle no difficulty in evaluating the power of the test against a
specific alternative. All that is needed is the value of the noncentrality parameter
8" of (8.14). On the other hand, specifying an alternative requires specifying the
value of Ry 4+ Wg = Us + Vi . Thisin general would have to be estimated
from the data by using the estimates (8.6). Unless / = K = M, in which case
O + Vs = (M — 1)7'G, it might require a prohibitive amount of additional
computations. One might then be satisfied to determine the power of the test
against a “simplified” alternative, namely one obtained by assuming that the
three basic covariance matrices (3.3) all have the structure (2.1). From (6.11),
(6.12) and the relations analogous to (8.4), the r, '-element of Uy + Vi is
found to be, under this simplifying assumption,

Yo = (1 + 8 ) (L7024 0 — 71),

where Yo = 2p5i + Kl'u + JT,'; Y1 = 2pw + Kv,';r + J'rw ) 1% 7, Using (39)
this becomes

Yrro = (1 + ) (Kous + Joke + 2045c + L70%).
The matrix (((v*)™)) = ((v#)) ™" can easily be computed and one finds
2t =X e)?
Kon ¥ Joho F 2ins ¥ L7002
which in terms of @ , - - -, a; becomes simply
(8.22) 8 = JK(Ko%ss + Johc + 20%5c + L-laﬁ)-‘; ol

# = JK T 36 8M ) = UK

When .o} is specified, this value of &° can be very quickly estimated by using
(4.4) with

8 = JKL(MSas + MSac — MS)™' X af .

It is interesting to compare (8.22) with the analogous formula that one ob-
tains when computing the value of the ‘ideal” noncentrality parameter 8; of
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(8.10) under our simplifying assumption. One finds that

(8.23) 8 = (1+ a)&,
with , ’
(8.24) A = (Kdis + Johe + ohse + L7'03) "ohnc.

The conclusion we had arrived at in the discussion below (8.14) can now be put
into the following terms: If A is small compared to 1, the loss of power intro-
duced in the test by the undesirable last term of (8 11) should not be appreci-
able This conclusion is encouraging. In practice, o sc is often dominated by one
of o4p, o4c, which according to (8.24) should make A satisfactorily small.
Estimating separately numerator and denominator, one obtains an estimate of
A, namely

A = (MSus + MSusc — MSusc) (MSusc — MS,),
which is of course not unbiased.

9. Confidence intervals for the fixed main effects. We consider briefly in this
section various confidence statements that can be made concerning the param-
eters a1, -+, a;. Corresponding to the fact that no Hotelling T test of H,
could be constructed on the basis of the estimates &; of the a.’s is the fact here
that no confidence interval for a; can be obtained i Jn the ordinary manner by
using the ratio &;/¢s; . In fact, (7.5) shows that 3, is not even a positive in-
definite quadratic form.

By analogy with (8.11), let m; = [(J — 1)(K — 1)L]” 2,>12,,>1x,ﬂ, , where
Zii is as in (6.15). Then

Var (m; — m.) = Wi — Wi — Wi + W = 04; — vi; — 7+ (I — 1)L,

The unbiased estimate (JK ) = (JK )*d, + m; — m. of (JK )*a, has variance
2% + Kvl: + Jris + 2(1 — l)FlL o%, as is easily verified. An unbiased
estimate of this is @iy — 2a;. 4+ a.. where a;y is the 7, ¢’-element of the matrix
(M — 1)7'2X2(Un + Vau)-(Un + Va)" and where as in Section 8 M =
min (J, K). Furthermore, a;; — 2a;. + a.. is independent of &; . An exact confi-
dence interval for the parameter «; can therefore be based on the ¢-distribution
with M — 1 d.f. of the ratio

(9.1) [(JEK) (& — ai) + ms — m)/[(ai: — 2a:. + a.)}].

In terms of the observations one has é&; = y,... , then from (8.18) m; =
[JK(J — 1)_1(K D7 ym. —ya. — Y + 'y1 ), and finally from (8.17)
aw = (M — 1) > M reimeirm Where

eim = Kim. + Pim — KT = D P yi. — yar.)
- J*(K* - 1)_1(y,‘... — y,;.1.).'
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When J = K = M, then ai; — 2ai. + a.. = (M — 1) 2% s(im — €.m)’ Te-
duces to

M
@i — 20i. + a.. = M(M — 1) Y Yim- + Yirm
m=1

— i = Yomer = Yoome + 2¢....)°%

For a single difference a; — i one can proceed in a similar manner and base
an exact confidence interval on the ¢-distribution with M — 1 d.f. of the ratio

(9.2) [(JK)*(y1 — Yirero — a; + aw) + mi — mo]/[(@i — 2050 + avi)]

The denominator can be computed from a:; — 2a: + assr = (M- 1)) ¥,
(€im — €sm)’ which reduces when J = K = M to

(275 - zaii' + Ay = M(M - 1)_12 (yam + Yiem. — 2:1/1 = Yirm-.

—Yirom. + 2yir...).

Confidence statements based on (9.1) or (9.2) should be used only if a single
statement is made and the particular o; or a; — a; considered has not been sug-
gested by the data. If several confidence statements are desired, Scheffé’s method
[9] of multiple comparison can be applied when J, K = I in a way similar to
that described in [10], but again based on the nonoptimum unbiased estimate
(8.11): We estimate a contrast 6 = . h,a,( Dihi = O) with § =
E;Zih[ﬁ* + (JK)7*m¥), where ¥ = 8. — B = d,.. and m; = me = mi,
r=1, , I — 1. The variance of fiso(8) = (JK) ' Do 2w h,h,:(r,,/ + wM ')
and. ha,s the unbiased estimate ¢ (0) (JE)' 2, 2o hohraty , where afh =
@rer — @r; — @1 + arr . Then, the probability is 1 — « that the totality of con-

_trasts 6 = Y hsa; simultaneously satisfy

(9.3) b — Ss(6) <0 <8+ Sa(h),

where the constant S can be computed from F,, the upper a-point of the F-
distribution with I — 1 and M — I + 1 d.f., through the relation

=M -1)IT-1)(M—-I1+1)"F..

The conclusion arrived at in Section 8 that the use of the nonoptimum estimate
(8.11) in the T* criterion does not in general affect the power of the test too ad-
versely implies here that the confidence intervals (9.3) and those based on
(9.1), (9.2) are not considerably lengthened by the necessary introduction
of the undesirable m; in the estimates of the a; .
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