SOME PROPERTIES OF REGULAR MARKOV CHAINS
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Summary. In a regular Markov chain with one absorbing state, for sequences
starting from a given state and continuing until the absorbing state js reached,
the distribution and moment formulae of the total number of transitions is de-
rived in Section 2, and also its probability generating function (p.g.f.). The joint
p.gf. of the transition frequencies is given in Section 3, from which the p.g.f. of
one or more transition frequencies is deduced. In Section 4 some moment formu-
lae associated with these transition frequencies are derived. Section 5 is con-
cerned with inference for such Markov chains, when there are a large number of
sequences starting from the same given state.

1. Introduction. Consider a time-homogeneous Markov chain with a finite
number s + 1 of states By, E,, --- , E, . Let

(1) P = {pii} (4,7 =0,1,---,5)

be the matrix of transition probabilities, where p;; = Pr(E;| E;). We define
regularity and positive regularity of a chain as in [2]. The necessary and suffi-
cient condition that the chain is regular is that the only latent root A¢ = 1 of
modulus unity of P is simple. For a positively regular Markov chajn P is irre-
ducible, but for a regular, but not positively regular, chain it can be expressed
in the form

(2) P-(39).

where Q isa (r + 1) X (r + 1) submatrix of transition probabilities between
Ey,Ey,---,E. (s=r+4+ 1> 0)and is irreducible (cf., Bartlett [2]). For con-
venience, the states Eo , E, , - - - , E, will be called absorbing states; E,,;, -+ - , E,
transient states. It is readily seen that the simple latent root A¢ = 1 of P is also
a latent root of Q, so that the latent roots \; of S must all have moduli less than
unity. Further, R # O, since otherwise the latent root Ao will be of multiplicity
greater than one and the chain will not be regular.

Sequences from a regular Markov chain may be classified into three categories
as follows: (i) those starting and stopping with an absorbing state, (ii) those
starting with a transient state and stopping with an absorbing state and (iii)
those starting and stopping with a transient state.
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60 B. R. BHAT

Of these we shall consider here only those belonging to category (ii). But a
sequence of this category may be split up into two sections, the first consisting
of those transitions until one of the absorbing states is reached, and the second
consisting of the remaining transitions. This latter section is a sequence starting
and stopping with an absorbing state and belongs to category (i). Since these
two sections can be studied independently we shall restrict our study to that of
the former section. For such a study, without loss of generality, we may assume
that there is only one absorbing state E, . Thus, in this paper, by a sequence from
a regular Markov chain we mean one starting with a given transient state and
continuing until the absorbing state is reached. Evidently for such a sequence
the total number of transitions is a random variable. For this interesting case we
shall derive the distributions and moment formulae of transition frequencies,
and also give some related results.

Properties of finite Markov chains have been studied by many authors; among
them we may mention Romanovsky [10], Fréchet [7], Feller [6] and Bartlett [2].
The distributions of transition frequencies in sequences of fixed size from a finite
Markov chain have been studied by Whittle [11] and Goodman [8]; Anderson
and Goodman [1] have derived the variance-covariance matrix of the frequencies.
It will be seen from this paper that similar distribution and moment formulae
are available when the total number of transitions is a random variable.

It is well known that sequences from a positively regular Markov chain may
be considered to be made up of a series of independent sequences, starting with a
random initial state and stopping as soon as a given state is reached [6]. Thus,
the present study gives an insight into the properties of sequences from a posi-
tively regular Markov chain. It will also be useful in solving first emptiness
problems connected with dams and queues [9].

2. Distribution of the total number of transitions. If a sequence starts with
one of the transient states E, (a = 0), let it be absorbed at E, after the nth tran-
sition. The distribution of n is derived by Feller ([6], Section 16.4) and Bartlett
([2], p. 68), but it is given here for completeness.

When Ej is the only absorbing state, (2) can be written as

(3) p=(}2)

where R is a column vector. Let f,(n) be the probability that a sequence starting
from E, will be at E, for the first time after the nth transition. Then fo(n) is the
ath element of the column vector

(4) S"R.
Since it can be verified that
2 fa(n) =1,
{fa(n)} is the required probability distribution of n.
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Now we shall derive the moments of n. Let Ay, X2, ---, \; be the ¢ distinct
latent roots of S with multiplicities m; , ms, - -+ , m, respectively. Then
t
= Z )‘ch(r)’
k=1

where the elements of the spectral matrices C;(r) are polynomials of degree not
greater than m; — 1 in r. So

13
S"'R = kZ)\;’J—le(n — 1R
=1
and
t
fa(n) = 2 M7'Cu(n — 1),
k=1

where C,.(n — 1) is a polynomial in (n — 1) of degree at most m; — 1. Let
Car(n — 1) = bax + bu(n — N + bia(n — 1) + -+ + 0@ (n — 1)
where

n? =n(n—1) - (n—r+1).

Then we see that the expectations of n and »’ are given by

E(n) = mel b:.k xk(r + 1)!

k=1 r=0 - A )'+2

and

B = £ X it + 01 fEAE N,

respectively, for sequences starting with the state E, .
If all the m; are equal to unity, the formulae for E(n) and E(n’) reduce to

0
E(n) = ; (T%‘kw E(n’) = Z (% + ))Ck)s b -

Alternatively, the p.g.f. may be used to evaluate f,(n). It is particularly useful
when R has only a few nonzero elements. The p.g.f. of n is the ath element of

G(z; n) = nZ=-1 @8R = (I-— zs)—lZR = aj&g—-_z_szls—)

where I is the unit matrix.
This ath element is also equal to

(5) Ga(z;n) = Da(2)/D(2),

where D(z) = |I — 28|, and D,(z) is the determinant D(z) with its ath column
replaced by zR.

zR,
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Further, it can easily be verified that the distribution of n is geometric with -

parameter 1 — p if all the elements of R are equal to p.
ExampLE. Let the transition probability matrix (3) be

1 0 0
P=|1-9p P 0}.
0 1—4q ¢

The latent roots of S are p and ¢, and the corresponding spectral matrices are

1 0 0 0
qg—1 0 and (¢ —1 L
q—7 P —4q

1—-1p 0
S R=9p""(g-1NA-—p) |+ |(g-1U=1p)]),
¢—p P—q

and therefore

Thus,

filn) = p"7'(1 — p),

(q - 1)(1 - p) n—1 n—1
n) = - .
fa( i lp q""]
The p.gf. of n, for sequences starting from E, is
Gi(z;n) = 2(1 — p)/(1 — zp)

as can be verified otherwise; and for sequences starting from E, , it is

2
1 —p)(1 —g)
Gao(z;m) = Z( p
S (=
_z1 —p) 21 -gq)
1—2p 1 —2q
Hence the distribution of n in this case is the convolution of two geometric
distributions with parameters p and ¢ respectively.
~ In exactly the same way, if in general the transition probability matrix is

1 0 0o .- 0 0
1 — 1 1 0 . 0 0
P = 0 1 — P2 P2 - 0 0
[ O O 1 - ps sz
the distribution of n for sequences starting from E, is found to be the convolution
of s geometric distributions with parameters p, , p., -+ , and p,.

3. Distribution of transition frequencies. In a sequence from the Markov
chain described in the previous sections, let n,; be the frequency of transitions
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from E; to E; (¢,7 = 0,1, - -+, s). These n;; may also be viewed as the number
of times the pair of states (E;, E;) occur in the sequence.
(1) Joint distribution of n,; . Let

ZuPun  F2Pre 21sP1s
S(z“) _ 221?21 222?22 ‘ z2s?23
251Ps1 Re2Ps2 ' ZssPss
and
210P10
22020
R(zy) =
%5030

Then as in (5) the joint p.g.f. of n,; is the ath element of (I — S(z:;)) 'R(zi;).
Let the ath element be

(6) Ga(2ij 5 mi;) = Da(2:5)/D(2i5),

where D(z;;) = |I — S(z:;)| and D,(z;;) is the determinant D(z,;) with its ath
column replaced by R(z;;).

Formula (6) can also be derived as follows. Let the generating function of the
probabilities of observing the frequencies n;;, for sequences starting from E,,
such that they satisfy the relation n;. — n.; = 8 — 85 (2 = 1,2, --- ,s) (ie,
the sequence stops at B;), be Gas(2; ; ij), Where ns. = D gy Mg, i = D gy M
and §;; is the Kronecker delta. From Whittle {11], it may be written as

Gan(2i; ;’ﬂi;i) = Aap(2:5)/A(245),
where A(z;;) = |I — P(z:;)] and Ag(2:5) is the cofactor of the (b, a)th element
of the determinant A(z;;). Here P(z;;) is defined similarly to S(z;;). But from
(3),
A(zi;) = (1 — 200) [T — S(zi) | = (1 — 20)D(2i5)

and for sequences starting from E, and stopping at Fo , Aqo(2:;) = Da(2i;). Since
n vanishes for realizations stopping as soon as E is reached, the joint p.g.f. of
ni; i Da(2i;)/D(2:5), as given by (6).

It can be verified that Go(1; n;;) = 1.

To obtain the explicit expression for the joint probability distribution of the
n;; we need to expand (6) in ascending powers of z;; . It may be noted that since
S has all its latent roots less than unity, S(z;;) has its latent roots less than
unity for all valuesof 0 < 2;; <1 (4,7 = 1,2, --- ,s). Hence (I — S(z;;)) is
nonsingular for z;; in the above range.

Let the required probability m.(n;;) involve

N pw L1 P57

1=
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The numerical coefficient of this term is the same as that of
II »ij
%,j=1

in

(8) Day(2:5)/D(2:5)

where Dg; is the cofactor of the (b, a)th element of D(z;;). But the latter com-
binatorial formula has been evaluated by Whittle [11] as

s
Hnl'

(9) Tw(ny)

8

H n,~,~!

1,7=1

where T is the cofactor of the (b, a)th element of the s X s matrix
(10) [6:5 — (nii/ni)]

if n;. — n.; = 8;s — s, and zero otherwise. Thus m,(n;;) is the product of (7)
and (9), where E, is the last nonabsorbing state of the observed sequence. Since
the sum of elements in any row of (10) vanishes, by the lemma in the Appendix
(ef. also Goodman [8]), T is the same for all values of a for fixed value of b.

An alternate derivation of w,(n;;) is due to Goodman (private communica-
tion). Let ¢.(b, ni;) be the joint distribution of b and n;; (7,5 = 1,2, ---, )
for a given a and n, the total number of frequencies; an explicit expression for
¢a(b, ni;) has been given in [8]. Since n;. — n.; = 6, — 60 (2 = 1,2, -+, 8),
for a given a, b is uniquely determined by n;; (7,7 = 1, 2, ---, s) asa function
b(n:;). Thus the joint distribution of n;; (4,5 = 1,2, - - -, s) when n is random is
¢a[b(n:;), nijlpre , which is the required probability me(n.;).

(i) Distribution of neg . From the joint p.g.f. of all the n,;, we can easily get
the p.g.f. of a particular n,; , n.s(n,, say), by putting

(11) zij{=zz (2 = Ol,j = B),

= 1 otherwise,
in (6). The required p.g.f. is
Ga(2z 5 M2) = Da(2:)/D(2z),
where D,(2.) and D(z,) are the determinants D,(z;;) and D(z;;) subject to (11).

Because these are linear functions of z, , we may write

i _ Qa,z + 2 y Pa,z
(12) Ga(z:c, nz) = _——Qm + 22 P P_z y

where P, , P, , Q. , Qs do not involve 2, .
From (12) the probability distribution of n,, ps(n,), may be derived. In
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(_ D= P,)"‘ (6_22 B Pa,,) .
x z P: ! “

(13) Pa(nz) = ¢ ©
a7 n. = 0.

Q.’
It is to be noted that @, does not vanish since |I — S(z;;)| is nonsingular for all
0 = z;; =< 1. Thus, the distribution of 7, is geometric, with a modified first term;
it will be geometric for 8 = a, since P,,, vanishes in this case. These latter results
can also be proved by using the theory of recurrent events as given by Feller
([6], Chapter 13).

Since — P, is the cofactor of the («, 8)th element of D(z,), it will vanish if
transition from Ej to E., is impossible. In this case n, = 0 or 1, as can also be
verified from (12). It is interesting to note that if n, is a fixed number, its value
is zero or one.

(iii) Joint distribution of n. and n, . By putting z;; = 1 for all values of 7 and j,
except 2.5( = 2,) and z,5( = 2,) in (6) we get the joint p.g.f. of n, and n, . It may
be written as

fact

1,200

Da(z:c, zy) — Ro+ 2:8:+ 2,Ta + 2.2, U,
D(25,2,) R+2S8+2T+4+ 22U

where R, R, , etc., do not involve z, or 2, .

(14) Gu(zs, 2y; N2y my) =

4. Moment formulae. In this section we shall derive some moment formulae
associated with the n;; .
(a) From (12) we have

_ Pz(Qa;Pa,z - PzQa':c)
Bn) = =@, 3y

(15)

Since
Ga(1;m:) =1,
D(1) = Q: + p:Pz = Quiz + PaPa = Da(1)
and hence it readily follows that
Q:Paz — PoQaz = Puo{D(1) — poPi} — PaiDa(1) — p.Pa}
= D(1)(Psx — Ps).

But P,,, — P.isthecoefficient of —p, inthe expansion of M = D(1) — D,(1).
Since D, and D differ only in their ath column, M is a determinant for which the
sum of elements in any row equals zero. Further, since E(n;;) > 0 for at least
one 1, j, all the minors of order s — 1 of M do not vanish. Hence from the lemma
in the Appendix, the cofactors of elements from any one row of M are equal. To
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determine their actual value we see that
E(naa) = —paaPaa/D(l),

where P ., isthe coefficient of p,.in D(1). Hence

(16) Pa.z_'Pz=—Paa.
Substituting,
(17) E(n,) = —p.Pa/D(1).

It may be noted that (17) holds true for8 = 0, 1,2, - - -, sas can be verified from
(6) or otherwise. Hence we get

S - Paa _
(18) B(E na) = et = m(na)
from which we can see that
(19) E(nag)/E(Na.) = pag -

But, in general,
E(nap/na.) = Pap .
To evaluate Var(n,), we note that
Eln.(n, — 1)] = 2p2P.[P.Qo.. — Q.P..)/[D(1)]".
Hence from (16) and (17)

_ = P:Pu - _ [P le]
(20) Var(n.) [P {D(l) 2P‘P’”} [D(l) :I )

(b) From (19)
(21) E’(n, - pzna') =0 (a)B =12 .- 8)-

Now we derive the variance-covariance matrix of n;; — pin.. .
Differentiating (14) with respect to z, and 2, and putting z, = 2, = 1, we have
E(n.n,)
(22) Y4 ’ ! ’ ! ” AN 2
= [D(1)Da 2y — {Da:Dy + DayD: + Da(1) Dz} + 2D.D,)/[D(1)F,
where
D,(1) =R;+ S.+ T+ Us=D(1)=R+ S+ T+ U,

’ ’

Da,x =Sa+Ua, D, =S+U,

Da,u =Ta+Uav Dy =T+ U,
D .y = U,, Dy, = U,
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and
Se + U. = coefficient of 2z, in D,(z) = p,Pa,.,

(23) T. + U, = coefficient of 2, in D,(2) = p,P.,,
U.

Notice that S, T, U also satisfy relations similar to (23). Thus from (16)
we see that

coefficient of 2,2, in D,(z).

Sa+Ua—S— U = —pxPaa,
(24) T.+U.—T—-U= —p,Pos,
Us — U= —p;p,Psy,

where P, is the coefficient of p,p, in M.
Substituting (23) and (24) in (22), we have

— DaPy Pay + Pz Pepy Pya + Py Pyp:Pea

(25) Blnam) = =505 (DT

for all values of x and y.
Case (1): @ # v, 8 # 4. In this case we have

_ pz(Paa + Pz;'y) + szzP'ya + [D(l) + P'y‘y]szaa
D(1) [D(1)]?

since Z; PyPsy = Pao + Py and Za p,Py, = D(1) + P,,, where P,,, is the
coefficient of p.p,, in M.
Similarly we can derive

_ py(P'ya + P:c;a) + pyPyPaa + [D(l) + Paa]pyP‘ya
D(1) [D(D)]?

(26) E(n.n,) =

(27) E(nyn..) =

and

_ Paat Prot Payy | PralD(1) + Paa] + Pua[ D(1) + Py
D(1) (D))

where P,,, and P,,, are defined similarly to P,;, .

Now Py, Psy, Py« and P, are determinants having all but two columns
alike. Transferring these common columns to the same place as those in P,,,
we get P..,, P.., and P,,, respectively.

Since

(28) E(na.m,) =

Pzw = - lpzwli
Pu:a = - Ipu:al:
Pz;y = + ‘Px:y‘v
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we see that
Pay + Puyy — Payy — Pya = {|Pain] + |Pasyl} + {|Pyiel + |Puil}.
= |Qui| + |Quial
= |Ras, say,

where R.., is a determinant with the sum of elements in any row equal to that
in M, that is, zero. Hence

(29) |Ra;sl = 0.
From (25)-(29) we have
(30) E{(n, — pne.)(ny — pny.)} = 0.
CasE (ii): a@ = v, B # 4. In this case U, and U vanish.
_ pzpyPaa(Pz + P,)
(31) E(n,n,) = DOF

E(nzna.) = E(n:) + Z E(nzny)y
5B

_ _szaa pzpyPaa(Pz"l'Py)
(32) =0 T DP

- szaa + szaa{Pz + D(l) + Paa}
D(1) (D)

since from (20),

E(ni) = — Pz Pea [1 2p’P’:|.

D(1) ~ D)
Further
2 Po 2P e
E(ng) = D) (1 + 5(_ﬁ>
Hence
(33) E{(nz - pzna,)(ny — p”na.)} = pzpyPaa.

D(1)
Caseiii:a =v,8 = 8. When a = v, 8 = & we obtain
E(nz - pzna.)2 = Var(nz - pzna.)

(34) - szaa(l - pz)
N D(1) :

Comparing (30), (33) and (34) we may write
Cov(nx — D= Na. 7n11 - pynﬁ.)
(35)

_ - 5a7(5ﬁﬁpz - pzpy)Paa _ .
= D(l) (a; B, 7’8 = 0’1; 73)-
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It is interesting to note that (35) is of the same form as that obtained in the
case when 7 is nonrandom [1].

b. Inference. Statistical inference for Markov chains, when the number of
transitions in any sequence is nonrandom is considered by Anderson and Good-
man [1]. In this section we shall give some analogous results for the case when
the number of transitions is a random variable.

(i) Estimation of p;; . Let the transition probabilities p;; be unknown. They
are to be estimated when there are a large number of sequences starting from the
same given state E, . Let S;, S, -+, S.. be m such sequences and n;; be the
number of transitions from E; to E;in Sy (k = 1,2, -+, m). Since n;je = 0
when p;; = 0, without loss of generality we shall assume that p;; > 0.

Since n;% (k = 1,2, - - -, m) are independently and identically distributed with
finite variance, by the law of large numbers,

1 -
m ; Nije = N5

tends to E(n.j) in probability as m — . Hence the maximum likelihood esti-
mate,

(36) Dij = Mij/ M.,
where ;. = ), fi;; , tends to
E(nijx)/E(nix) = pi;
in probability (cf., Cramér [4]). This result may be compared with that for the

positively regular case [3].
Further, as m — o, since 7;. tends to

(37) E(nix) = —Pwu/D(1) >0
in probability,
(M) (Pi; — pij) = —1(m)}(7; — piyie))/ma
has the same limiting distribution as
(nij. — Pij n;..)
38 — o — Py il
(38) (m)Pra/ DOV

where Nij. = Zk Nijk y Ns.. = Zj Zk Nijk -
But the numerator of (38) is a sum of m independent linear functions, all
following the same distribution with mean zero and variance-covariance matrix

_ 8 (855 pij — PiiPirs) Pia (i, v=1,2---, 3)
D(1) ’ 57 =0,1,--+s

from (35). Hence the (m)}(ps; — pi;) have an asymptotic multivariate normal
distribution with mean zero and variance-covariance matrix

(39) —[8::(8;7'Ps; — Pis'pis ) D(1)]/Pia
(cf., Cramér [5]).
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(ii) Testing of hypotheses. If pi; is the true value of p;; , from (37) and (39),

it is clear that, foreach 7 = 1,2, -- -, s, the

(mas ) (B — p) (7=0,1,---,5%)
have an asymptotlc normal distribution with variances and covariances depend-
ing on p?; in the same way as those obtained for multinomial estimates. Using
this limiting distribution we can test hypotheses about one or more p;; or deter-
mine a confidence region for one or more p;; .

(iii) Test of the hypothesis that several sets of sequences are from the same Markov
chain. Let there be ¢ sets of m; , m,, - -+, m, sequences, each starting from the
same given state E,, from Markov chains possibly with different transition
probability matrices. If (p{;) is the transition probability matrix for the hth
set (h = 1, 2, , 1), we want to test the hypothesis that

pt(};)_pif (i,j‘—‘O,l,"',S;h=1,2,"',t).
For this we may use the likelihood ratio criteria or equivalently x*-test of good-
ness of fit, as in [1]. Let

— ()

A (h) ,czln”k ..

Dij — =W (h=1’27"')t;17]=071""78)
Znnk

and

(k)
; Nijk

ﬁij ~
; Nijk

where n{5 is the number of transitions from E; to E; in the kth sequence of hth
set. From (ii), the required criterion

: o b (5 —p)" kZ nik
]

=1 h=1,j=0 ﬁii

(’L;J = 0; 1’ “‘,S)

has a limiting x*-distribution with s*(t — 1) degrees of freedom, for large m .
It may be mentioned that in the present case, (40) will have a ¥’ -distribution
only if we have a large number of sequences in each set, unlike in the case when
the total number of transitions n is nonrandom, when m, might be equal to one.

‘My thanks are due to Dr. J. Gani for suggesting the field of inference in
Markov chains as a topic for research and for criticizing an earlier draft of the
paper. I am also indebted to Professor L. A. Goodman of the University of
Chicago for pointing out an error in an earlier draft of the paper, and to the
referee for his constructive criticisms of the paper.

APPENDIX

The following lemma is well known; it is given here for immediate reference
in the paper.
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LeEmMA. If a square matriz A = (ai;)(4, 7 = 1,2, --- , k) is known to be of
rank k — 1, and of for a vector (I, la, -+, l)
hag + bap + -+ + Law =0 (t=1,2,---,k),
then the cofactors Ad, Awn, -+, Ay are proportional to Iy, 1y, -+, Iy respec-
tively, for 1 = 1, 2, , k.
Proor. Since A is of rank E—1,
|A] =
Hence for a particular value of 7,
aadj 4+ adp + oo +apdp =0 (=12 ---,k).
Thus (A, 4j2, -+, 4jx) is a vector orthogonal to all row-vectors of A. But
(i, la, -+, 1) is also such a vector. Since the rank of A is & — 1, the two

vectors must be proportional, and the lemma follows.
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