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1. Introduction and summary. The use of a statistic of the algebraic form of
Pearson’s chi-squared as a measure of goodness of fit for frequencies from a
fully specified mth order stationary Markov chain was first discussed and con-
trasted with the appropriate likelihood ratio criterion by Bartlett [2]. Since the
distribution of the former statistic is not that of a tabular x*-variate, it and allied
statistics, are sometimes described as “psi-squared” statistics. Patankar [14]
derived the approximate asymptotic distribution (as the total number of transi-
tions — ) of

(1) Ui = 2 [(n — mo)*/mil,

where the #; are the marginal frequencies (1-tuples) in a large sequence from a
simple stationary Markov chain and the m; are their expected values in a new
sequence of the same length. The proof is based on the fact that for a large se-
quence of observations the marginal frequencies are asymptotically multivariate
normal and then (1) is distributed as a linear function of independent x’-vari-
ates. Since the latter can be approximated by a single Type III variate ([5],
[15]) the approximate asymptotic distribution of (1) is completely specified by
its first two moments.

Let n, be the frequency of the {-tuple u = (w;, us, -« -, %) in a sequence of
length n + ¢t — 1 from an mth order stationary Markov chain; and let m. be
its expected value in a new sequence of the same length. To test whether the
chain has a specified transition probability matrix, in analogy with (1) one may
construct the statistic

(2) Vi = 2l — m)?/mi]

and test the goodness of fit for n, . In (2) the summation extends over those
values of u for which m, does not vanish.

Using methods different from those used here, Good [9] gave the asymptotic
distribution of ¥} for the special case of a random sequence of digits, and showed
that for an equiprobable random sequence (Markovity of order — 1) having a
prime number of categories, ¥; is asymptotically a linear combination of inde-

Received June 29, 1959; revised July 14, 1960.

1 This work was carried out while the author was at the University of Western Australia,
Nedlands, Australia. It was revised at the University of California, Berkeley with the par-
tial support of the Office of Naval Research (Nonr-222-43). This paper in whole or in part
may be reproduced for any purpose of the United States Government.

?On leave from Karnatak University, Dharwar, India.

49

G:]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% .z

The Annals of Mathematical Statistics. RIKGIS ®

www.jstor.org
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pendent x*-variates. This was generalized to the case of an arbitrary number of
categories and to an arbitrary random sequence (Markovity of order 0) by
Billingsley [4]. Good [11] conjectured that a similar result might be true for
Markovity of any order. Following Good [10], Goodman [12] has shown that this
conjecture is not true, and has proceeded to study a modification that is true.
For further work in this direction and additional references see [13].

Since it is clear that the distribution of (2) does not have a simple form, we
might assume that it follows the Type III form approximately. This approxi-
mation is suggested by the fact that (n.) is asymptotically normal and hence
the quadratic form (2) in (n.) is distributed asymptotically as a linear function
of x’-variates with one degree of freedom [5]. Since (2) is nonnegative, the coef-
ficients of the corresponding linear function of x’-variates are also nonnegative.
In the case when m = 1 or 0, the exact values of these coefficients are also known
[4], [9]. The problem of approximating the distribution of a linear function of
x’-variates has been discussed by Welch [15] and Box [5]. They observe that this
Type III approximation is fairly good over a wide range of values of degrees
of freedom of the different x* and their coefficients, especially when these coef-
ficients are positive. The advantage of this approximation is that it enables us
to test the goodness of fit by referring to standard x*-tables. In Section 2 of this
paper, we derive this approximate distribution of (2) by obtaining its first two
moments for any m and ¢ = m.

Let X;, Xz, -+, Xnye1 be a series of observations from a stationary linear
Markov sequence (autoregressive) of first order;
(3) X.'=pX,'_1+Y; (z=2,3,,n+t—1),

where |p| < 1, and the Y; are independent identically distributed continuous
random variables with zero mean and range (— «, 4+ ). (Even though not in
universal use, the term “Markov sequence’ here refers to a Markov chain with
continuous state space. We follow Bartlett [3] in using it.) Let these n + ¢ — 1
observations be grouped into k class intervals and let n, be the frequency of
the ¢-tuple (X, , Xu,, ---, Xu,) in this sequence, where X,,, X.,, - -+, Xu,
are {(=1) consecutive observations belonging to the usth, usth, - -- | uth class
intervals respectively. For these frequencies, we derive the approximate dis-
tribution of the psi-squared test defined by (2), under some mild restrictions on
the distribution of Y and for small class intervals, assuming p to be known.
For the case t = 1, and the distribution of ¥ normal, Patankar [14] has ob-
tained its distribution. We observe that, for ¢ = 1 and Y arbitrarily distributed,
the same distribution is obtained.

In Section 4, the distribution of the y} test of goodness of fit for frequencies
of t-tuples (£ = 2) in a series of observations, grouped into a finite number of
class-intervals, from the stationary linear Markov sequence (autoregressive)
of second order,

4) R Xi=aXiu +b0X, 5+ Vs,
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is derived, under similar restrictions on the distribution of ¥. From this, the
distribution of ¢} for stationary linear Markov sequences (autoregressive) of
arbitrary order is deduced.

The distribution of (2) may also be used to calculate the power of the usual
x’-test of goodness of fit for independent observations, when the alternative is
serial dependence.

2. y2-test for Markov chains. Let X;, X», -+, X,+:—1 be a sequence from a
positively regular stationary Markov chain of order m with & possible states.
Let a typical i-tuple (¢ = m) of states (Ey,, Eu,, - -+, Eu,) be denoted by E,
and ny , its observed frequency in this sequence. We shall derive the mean m, ,
variance o- and covariance oy, of 7, in & new sequence of the same length. For
the case m = 1, ¢ = 1, these formulae are derived by Patankar [14] and for the
case m = 1, ¢t = 2, by Gani [8].

Evidently u can have &* values, which may be viewed as k' states of a modified
simple Markov chain (cf., Bartlett, [3], p. 233). Let P, be the transition prob-
ability matrix of these composite states Ey . It is completely specified by the
transition probability matrix P, of the mth order Markov chain. Thus, the
probability that the ¢-tuple u will be followed by the t-tuple vin rstepsis pi” (u; ),
the element in the uth row and vth column of P}. Symbolically,

, r—t
! Y(u;9) = Pr {uy, s, -, U ——5 01,05, -+, 0}
Since the chain is of order m this probability is equal to

r—1

Pr(u,_m+1, ety U ——— V1, o ,v_m)
(5) 'pfnl)(vl,v2,""vm;v2)v3,”':vm+l)
* pr(nl)(vt—m, ttt Um—1 ; vt—-’m+l, Ctt vm)-

The first factor of (5) is

p7("r—t+m)(ul—m+l y Tty U 301,02, 00, v'm) = pf(rz‘ht+”l)[ut—m+l(m) ;bl(m)]’ (Sa'y)7
the element in the 1t;_pn41(m)th row and the v(m)th column of P}, ‘"™ The
remaining one-step transition probabilities are elements of P,,, some of which
may vanish.

Thus we see that, if the original Markov chain is positively regular and its
transition probabilities are nonzero, the modified Markov chain will be positively
regular. Otherwise some of the stationary probabilities, P, , may vanish. From
(5), P, are given by

(6) Py = Puey = Poyim-T(b),

where v,(¢) = [bi(m), Vmy1, -+, v:) and T'(b) is the product of one-step transi-
tion probabilities in (5).
To derive my , or and oy, , we follow the procedure of Fréchet [7], Patankar
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[14] and Gani [8] for the simple Markov chain. Let X} be a random variable such
that its value is 1 if the ¢-tuple starting with the 7th observation is E, (¢ = 1, 2,
-+, n) and 0 otherwise. Evidently

o= D uXi,  Dumt=n.
Since the chain is stationary,
E(X}) = P,
Var (X3) = Pu(1 — P),
Cov (Xi, Xi) =Pr (Xi=1)-Pr(Xi=1|Xi=1) — P,
= P (u;u) — Pi.

Similarly
Cov (X3, X}) = PpiT(u;0) — PP, (z < 7).
Thus
E(m) = my = nP,,
n—1
) Var(m,) = o2 = my — mi + 2m, Z; L ; $ P (usm),
= mu(1 — mu + 28u),
and
(8) ow = MuSuw + MpSw — My, ’
where

n —s8 8
u = Z Tpg)(u; b)-

8=

Now we can obtain the distribution of
'//3 = Zu [(n, — mu)z/mu]

from (7) and (8), since for large values of n the joint distribution of n, may be
agsumed multivariate normal [3]. Thus

&) EW) = X oi/my
and
Var(yi) = EWi) — [EGDT,
2 2 2 2 2
(10) — Ou0y + 20,.,, _ ﬂ
"'Z" Moy uzn: My
=2 Z Uf»/mum.,,

(cf., Anderson [1], p. 39).
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It may be noted that, when m, vanishes, o2 and ¢y, vanish. Thus (9) and
(10) are valid even when some m, vanish, in which case as before the summation
extends over those values of u for which m, does not vanish.

Substituting the values of ¢ from (7) we have

E@W?) = 3 u(1 — my + 28w)

(11) =k —n+ 2Zusub
n—1
=k,-—n+2zn;str(P§),
8=1

where tr(A) is the trace of the matrix A, and k; is the number of ¢-tuples for
which m, does not vanish. (Cf., Goodman [13].) But from (5)

tr (P}) = > up (upu)

= Z E Pf»’—W”) [rmir(m); m(m)]- T (u)

Ui—mi1(m) uy(t—m)

= 2 Pf(:) [Uemia(m); e—mya(m)]

U 41 (m

(12)

= tr (Pn).

Thus (11) can be evaluated if we know the trace of the powers of the transi-
tion probability matrix of the mth order Markov chain. Similarly, substituting
(7) and (8) in (10), we have

Var (¥5) = 22 (1 — my + 28u)*

+ 4 Z ('m,.m., - 2(muSu» + mbSbu) +

uzy

(mulsm) + muSu) 2)

MMy

=2{k,+n2—2n+42&m
2
b [t ) g, 4 s ]
) MMy

Since

n~—1

n—s n-—1
;Sub—z - 2 ,

s=1 N
(m.. Sup + my Snn)z}

Mu My

(13) Var () = 2{k —# + 43 S + 2

If the chain is reversible (for definition, see Burke and Rosenblatt [6]),
MuSuwo = MySou

Then (13) can be simplified to
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2{k; — W+ 4D Su + 42 SuvSou}
(14) '

= 2{k, Ay ) 4y s-’i-_—ttr(P:;.“)}.
8 n 8,t n n

On the assumption that ¢} may be approximated by a Type III variate, we

have derived its distribution. It may be noted that (14) is the variance of ¥}

when the chain is reversible, while (11) is the mean, without any such restriction.

3. First order Markov sequence (autoregressive). Let X1, X,, - -+, Xp4e—1 be
a sequence of observations from (3). In this section we shall derive the approxi-
mate asymptotic distribution of ¥ test of goodness of fit for the frequencies of
t-tuples, defined in Section 1.
Since the sequence is assumed stationary, the joint probability density func-
tion (p.d.f.) (assumed to exist and to be continuous) of X1, Xz, + -+, Xpye is
n4t—1

(15) p(T1, T2,y -+, Tngea) = p(21) 112 »(2, | 21),

where p(z) is the stationary p.d.f., and pi(z | y) is the conditional density func-
tion of X, the (r + k)th observation, given Y, the rth. Further, the probability
that X belongs to the 7th class interval is

(16) P; = J.tp(x) dx (7’= 1!'2)°"’k)7

where the integration is performed over the 7th class. But, since p(z) is con-
tinuous,

(17) P; = p(&)Ak,

where §; is some fixed point in the 7th class, A; being its length. If the interval
is of infinite length, A%; may be chosen such that (17) is satisfied for a certain
fixed point £; in the 7th class interval.

The probability that X,,, belongs to the jth class, given that X, belongs to
ith, is

(18) pi? = (1/P3) [i [ip(2)pr(Besr | 2) dTesrdie (r = 1,2, --+).
For sufficiently small class intervals, (18) is approximately equal to

(1/P)p(&:)p-(&5 | &) ALAE; = po(&5 | ) AE;
(19)
= [ pr(etr | &) dTetr s

for all values of 7 and j. Since #; and £; are fixed points, from (19) we observe
that the “transition probabilities” p{}’ are independent of the values of z,
and z; in the jth and 7th class intervals respectively. Thus from Theorem 4,
Corollary 3 of Burke and Rosenblatt [6], the observations retain their Marko-
vian property, even though in general this property is lost by grouping. Hence,
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we may consider X;, X,, -+, Xn4e1 as a sequence of observations from a
simple Markov chain with rth transition probabilities given by (18). From the
results of the previous section we may at once write down the mean and vari-
ance of y as (11) and (13) respectively. We note that (11) and (14) can be
calculated if we know tr(Pi).

From (3)

Xt+r = PrXt + Pr_lYt+1 + -+ PYt+r—-1 + Yt+r .
The conditional distribution of X,,, for X, = z, is
PI'[XH., < Ttgr l Xg = xt]

=Prlp" Vi + - + Yigr < Zoyr — 0’2
= Fr(xt+r - Prxt),

where F, is the distribution function of p™ 'Y ,4; + - -+ + Y.4,, which is inde-
pendent of ¢ and x,. Because F, is absolutely continuous, its derivative with
respect to T4, ,

fr(xt+r - Prxt) ’

exists at any point Xy, = Z:4,, and f, does not depend on ¢ and z; . Therefore
the probability that X,., lies in a small interval of length éz, around the point
X:yr = x:, under the condition that X, = z; is given by

p,(xt I xt)&v; = f,(x; - p'x,)th .
Hence,

tr(PY) = D_ip.(&: | £:) AL
(20) = 2ife(k — 0’8 AL
>~ (2 f(x — p'x) dz;

and because f; is a density function, (20) equals (1 — p")™". (20) can be iuter-
preted as the probability that X, = X,, for any given X,, and is the continu-
ous analogue of the trace of the rth power of transition probability matrix.

Because all the expected frequencies may be assumed non-zero, from (20),
we have

n—r

(21) Ex/xf=k‘—n+2§_:l

n—r
n

(1—p)7

If
[i [i0(@)pr(Zesr | @) dTegr dze = [ [ p(20) Dr(Zegr | T) dTeyr d,

(reversibility condition), from (14) we have

(22) Var(¢f)=2{k‘—n2+zn—8 1 +4§n;sn_t 1 t}

n 1—p n 1—pt
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The reversibility condition is satisfied if the joint p.d.f. of X; and X,,, is sym-
metric in X, and X,,,, as in the normal case. It may be noted that (21) and
(22) are the same as those derived by Patankar [14] for the special case when
the X’s are normal variates and the class intervals equal. Thus his results are
true even when the X’s follow a general class of continuous distributions.

4. Second order Markov sequence (autoregressive). As before, let X, X,
+++, Xnie1 be a sequence of observations from (4). Their joint p.d.f. is
n4t—1

(23) p(T1, T2y » 0y Tage1) = P(T1, T2) IIs pi(- l Tr1, Tr-2),

where p(x, y) is the stationary p.d.f. of two consecutive observations in the
sequence and pi(x | ¥, 2) is the conditional p.d.f. of X, the r 4+ k-th observation,
given the rth observation y and (r — 1)th observation z. As in Section 3, the
stationary probability that two consecutive observations belong to the ¢th and
jth class intervals respectively, may be written as

P;; = p(&, §;) ALAE;,

where £; and £; are some fixed points in the 7th and jth class intervals. As before
we assume the class intervals to be small. The probability that the 2-tuple

(X iyt , Xowr) is (¢, §7), given that (Xos, Xe) I8 (3, ), is pE5E7.

=P [: [i [v 3 @z, 1) Pria(@esra , Tear | T, Tecn)
(24) A2 A%oqr1 A2y d2e s
= Z-)r+l(£i' ) EJ" t Et’ ) Ei)AEi'AEi'

where P, is the conditional joint p.df. of (Xiyr—, Xetr) given (Xi, Xe).

Since (24) is independent of the values of X 5, Xi1, Xejr1, Xeyr in their
respective class intervals we may consider the frequencies of i-tuples, n,, as
frequencies in a sequence of length n 4 ¢ — 1 from a second order Markov chain
and the mean and variance of ¥ can be obtained from (11) and (13). As in
Section 3, we shall get the expression for tr(Pz) in terms of @ and b of equation
(4).

Let the solution of the difference equation u, = au,; + bu,—, for given
u; and U, be upr2 = Axus + Biuy . Then uyy, for given u;, us and ui e is

aury2 + b(Ar_1us + Brgui).

The conditional joint p.d.f., fru1 (say), of (X¢4r1, X¢yr) given that X, ; =
21 and X, = x;2, is the joint p.d.f. of

m = XH-r—l — Ax1 — B
and

e =X t4r — ALppr—1 — bA, 1z — bB,ate 2 ’
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for given (X1, X:2). Hence as in Section 3,

tr(P3) = 205 2oiBralEi, &5 | &, £)) ALAE;

= f:w fu—ouofr+1(’7;) ’7;) dz, dz»

where 71 and 7, are 7; and 7, after substituting

(25)

X t4r—1 = T2 = T3,
Xipr = Ty = T2

We note that f,.1 does not depend on (z,—;, #:—2) except in the expression for
m and 7. . The Jacobian J of the transformation from (71, 7:) to (z1, z2) is a
constant,

(26) |7l = (1 — b4,.)(1 — B,) — A,(a + bB,_,).

Thus (25) equals |J|™". Using (12) and substituting for tr (P3) and tr(P}*")
in (11) and (14) from (26), we get the mean and variance of y}.

In general, for linear Markov sequences of arbitrary order m, the mean and
variance of ¢;(t = m), can be obtained from the Jacobian J of the transforma-

tion from 71, M2, -+, M 1O &1, Tz, * -+ , Tm Since it can be verified that
tr(Pn™) = |J]7,

where n1, 12, - - - , 1, are defined in the same manner as g; and 9, in (25), viz.,
m = Xipr—mp adjusted for given iy, Tiz, -, Tt—m,
72 = Xiyr—msz adjusted for given Ziir—mi1, Tec1, -, Tiem,
........................................................... ,
Mm = Xiyr adjusted for given Teyr1, ¢, Tedr—mtr, Te1,y ***  Ttem ;

and 1, M2, -, e BT€ M, N2, * -+, Nm With

X t4r—m+1 = Tt—m = T1,
Xitr—miz = Toempr = 23,
Xipr = 41 = T -

It is interesting to note that the expectation and variance of ¥} for first order
Markov sequences (3) depend only on p and for second order sequences (4),
only on a and b. They are independent of the distribution of ¥ and also of the
nature of grouping. The first property can be verified to be true for all linear
Markov sequences, but does not appear to hold for Markov sequences in general.

In this paper we have assumed that the transition probabilities in Section 2,
p, @ and b in Sections 3 and 4, are completely specified. If they involve some un-
known parameters the above formulae for the mean and variance of ¥; require
modification.
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