STATISTICAL METHODS IN MARKOV CHAINS!

By PaTRICK BILLINGSLEY
The University of Chicago

Summary. This paper is an expository survey of the mathematical aspects of
statistical inference as it applies to finite Markov chains, the problem being to
draw inferences about the transition probabilities from one long, unbroken ob-
servation {z;, 23, -+ -, z,} on the chain. The topics covered include Whittle’s
formula, chi-square and maximum-likelihood methods, estimation of parameters,
and multiple Markov chains. At the end of the paper it is briefly indicated
how these methods can be applied to a process with an arbitrary state space or a
continuous time parameter.

Section 2 contains a simple proof of Whittle’s formula; Section 3 provides an
elementary and self-contained development of the limit theory required for the
application of chi-square methods to finite chains. In the remainder of the paper,
the results are accompanied by references to the literature, rather than by com-
plete proofs.

As is usual in a review paper, the emphasis reflects the author’s interests.
Other general accounts of statistical inference on Markov processes will be found
in Grenander [53], Bartlett [9] and [10], Fortet [35], and in my monograph [18].

I would like to thank Paul Meier for a number of very helpful discussions on
the topics treated in this paper, particularly those of Section 3.

1. Introduction. Let {z;, z;, ---} be a stochastic process or sequence of
random variables taking values in some finite set. The variable z, is to be thought
of as the state at time n of some system the evolution of which is governed by
a set of probability laws. The finite set of values which the random variables
assume, called the state space of the process, may be taken for notational con-
venience to consist of the first s positive integers.

The process {z,} is a Markov chain of order ¢ if the conditional probability

Pz, = @0 || Tm = am, m < n}

is independent of the values of a, for m < n — t. (A tth order Markov process
should be carefully distinguished from a {-dependent process, the defining prop-
erty of the latter being that (z;, 22, -+, Zm) and (Zn, Tn41, - -, Tnyr) are
independent if » — m > ¢. The terminology in the statistical literature is some-
times confusing.) A Markov chain of order 1 is also called a simple Markov
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STATISTICAL METHODS IN MARKOV CHAINS 13

chain. Throughout what follows it will be assumed that the Markov chain has
stationary transition probabilities, that is,

(1.1) P, = g || 2ot =1, -+, Z0r = a = Pay,--c 80041

is independent of n. If ¢ = 1, these quantities form an s X s stochastic matrix
(pij), the transition matrix of the process.

If the transition probabilities are unknown, or else are specified functions of
an unknown parameter, there arises the problem of making inferences about
them from empirical data. It is therefore supposed that n + 1 successive states
have been observed in an unbroken sequence; thus one has at hand a realization
(or sample) {z;, x2, -+ , Znya} of the first n + 1 random variables. (The use of
n + 1 instead of n simplifies later formulas.) The succeeding sections will deal
with the large-sample theory of drawing inferences in this situation. The theory
is based on chi-square methods, or the Neyman-Pearson criterion; any objections
which can be made of these methods in the independent case apply a fortorior:
in the present case (see Cochran [23]).

Since any probabilistic question about {th order Markov chains is reducible
by a standard device to a corresponding question about simple Markov chains,
and since the same is essentially true of statistical questions (see Section 6),
only simple chains will be considered in the next four sections. The following
definitions and facts concerning such chains will be needed; see Feller [33] for a
systematic account. The chain is said to be irreducible if for any pair 7 and j of
states, pi’ > 0 for some n, where

pg‘) = Pl{Zmin = ‘7” Tm = 1}
are the nth order transition probabilities. If the chain is irreducible then there
is a unique set of (positive) stationary probabilities, given by the solution of

the system
{Ei pipi; = 1
Zi p: = 1.

If P{z, = 9} = p; holds for n = 1, then it holds for all n, so that the chain is
stationary. The chain is said to be ergodic if it is irreducible and if its period
(the greatest common divisor of the set of integers n such that p{;’ > 0) is 1. In
the ergodic case there exist positive constants y and p, p < 1, such that

(1.2) Ipi — pil <"

holds for all 7, j and n. An elementary proof of this last fact will be found on
p- 173 of Doob [32]. In most of what follows it will be assumed that the chain is
stationary and ergodic.

2. Whittle’s Formula. Let {z;, %3, - - - , Z,41} be a sample from a first order
Markov process with transition probabilities p;; and initial probabilities p; .
If {a1, a2, - -+, Gnya} is a sequence of n + 1 states, then the probability that
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Ty, Xy, , Tagq 18 this sequence is just Pa,Pajas * * * Papanys - FOr ¢, 5 = 1, -+ s,
let fi; be the number of m, with 1 < m < n, for which a¢, = 7 and amy1 = J.
The s X s matrix F = {f;;} will be called the transition count of the sequence.
Since

(2.1) ParPasas * * ° Dansnyr — palH"i pﬁ'i ’

the transition count together with the initial state forms a sufficient statistic.
The distribution of this statistic, which will now be derived, plays in the analysis
of samples from Markov chains a role analogous to that played by the multi-
nomial distribution in the analysis of independent samples.

Since the probability of obtaining any particular sequence which begins with
a; and has transition count F is given by (2.1), it is necessary only to count the
number of such sequences, in order to find the distribution of the sufficient
statistic. If f. = D>_;fi; and f.; = > ifii, then {fi.} and {f.;} are the frequency
counts of {a;, ---, a.} and {az, - -+, @41} respectively, from which it follows
that

Jio = foi = 8iay — Siappy
2ifii= 2ife = 2ifi=mn
It is clear from the first of these relations that F and the initial state completely
determine the terminal state; similarly, F and the terminal state determine the
initial state. (However, F alone does not determine both the initial and final
states: {1, 2, 1} and {2, 1, 2} have identical transition counts, for example.) The

following answer to the combinatorial problem posed above is due to Whittle.
TuEoREM 2.1: Let F be an s X s matrix of nonnegative integers such

that D:;fi; = n and such that fi. — f.i = 8 — 8, i =1, - -+, 8, for some pair
u, v. If N3 (F) is the number of sequences (a., az, - , Gn41) having transition

count F and satisfying a1 = u and a,+1 = v, then

(2.2) Ny = Lefel g

[T it
where F¥, is the (v, u)th cofactor of the matriz F* = | £i;} with components
f&- — fii/fe. A fi.>0
(23) =1 T
81‘]' lf f,'. = 0

The proof goes by induction. The result being easy to establish if n = 1 (in
which case both sides of (2.2) are 1), assume it holds if n is replaced by n — 1.
If F(u, w) is F with its (u, w)th entry diminished by 1, then clearly

NP(F) = 2N (F(u, w)),

where the summation extends over those w for which f,, > 0. Hence it suffices
to show that the right-hand side of (2.2) satisfies this same relation, or that

(24) Fru = Dufunf u'Fru(u, w).
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Since F*(u, w) and F* agree outside the wth column, F:,,,(u, w) = Fy, . From
this fact together with the definition (2.3), it follows that (2.4) is equivalent to
Z,,, f:,,,F:,,, = 0, where thesummation now extendsoverall w. Since Zw f:wF:,,, =
0., det F*, (2.4) follows immediately for the case in which u 5 » and it is neces-
sary only to show that det F* = 0 if u = v. Suppose for notational convenience
that f;. = f.;is positive for ¢ < r and zero for 7 > r. Then F has the form

4 o
F‘[o 0]’

where A is an r X r matrix. By the definition (2.3),

« 4" o
ey 1)
where the rows of A* sum to 0. Thus det F* = det 4* = 0. (If u # v, it may
happen that F* is nonsingular.)

Whittle’s original proof of this theorem [78] involved integration methods.
Subsequent proofs were given by Dawson and Good [30] and by Goodman [49],
who derived the result from known theorems (due to van Aarden-Ehrenfest and
de Bruijn [1] and to Smith and Tutte [76]) on the number of unicursal paths
in an oriented linear graph. The proof given above is a corrected version of the
one on p. 195 of my paper [17]. It is possible to reverse the steps of the proofs in
[30] and [49] and deduce the graph-theoretic result from (2.2). (It should be
pointed out that Dawson and Good considered not the transition count F, but
the circularized transition count, which is obtained from F by adding an extra
tally in the (v, w)th cell if @41 = v and a; = u.)

From (2.1) and (2.2) it now follows that the probability that

{z1, 22, -+, Tay1} has F as its transition count and that z; = u (and hence,
Top = v) IS just

i fil .
(2.5) po P AL T r

1L 7!
which is Whittle’s formula. Note that for the validity of (2.5) it is not necessary
to assume that the initial probabilities are stationary, or even that the transition
matrix (p:;) has any particular ergodic structure. Whittle’s formula can be
made the starting point of a number of investigations; I will indicate two of them.
Suppose that the process {z,} is actually independent with P{z, = 3} = p,.
Then (2.5) reduces to

o .
P F giffl' 1L »f-.
15 Jije

Now the probability that {x:, ---, z.41} has {f.;} as its frequency count and
that ©; = u, T,y = v, 1s

p“(n — 1) ! I_‘If]vf" Hj p‘J('i)
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by the multinomial formula. Therefore the conditional probability of the transi-
tion count F, given the frequency count {f.;} and thefact that 2, = u, 2,1 = v, is

”«F:u Hi Sl Hj £l
(2.6) 2R ) Pt

a formula due to Dawson and Good [30] and to Goodman [49]. Note that (2.6)
is independent of the p; . Now the second factor in (2.6) is just the conditional
probability of obtaining cell frequencies f;; in an ordinary contingency table,
given that the marginal frequencies are fi. and f.; . Further, it follows from the
weak law of lagre numbers for independent trials that the first factor in (2.6)
goes in probability to a constant (namely, p;” times the (v, u)th cofactor of the
matrix (8;; — p;)). Since (2.6), as well as (2.6) with the first factor removed,
yields 1 when summed over F, it is intuitively clear that this constant must be 1.
Let S be any statistic which would test the hypothesis of independence in the
contingency table {f.;} if it really were a contingency table instead of a transition
count. If the first factor in (2.6) goes to 1 in probability then it is also intuitively
clear that the asymptotic distribution of 8 is the same in the present case, that
is, if {fi;} is the transition count of an independent sequence, as it would be in
the standard contingency case. These facts are proved rigorously in Dawson
and Good [30] and in Goodman [49]. For example, the chi-square statistic

(fii = fi f.i/n)*

(27) % it
has asymptotically the chi-square distribution with (s — 1)* degrees of freedom.
Thus (2.7) can be used to test the hypothesis that {x,} is independent (and
stationary) within® the hypothesis that {z.} is a first-order Markov process.
This fact has been proved also by Hoel [55] and Good [44] and will be a corollary
of the more general results of Section 4 below.

A second application of Whittle’s formula is to run theory. Suppose once more
that {z.} is a Markov process but that s = 2. In this case the transition count

Bll f 12]
21 f 22
is determined by fi., fi, and f; (dropping for the moment the distinction be-
tween fi. and f.;). But fi. is essentially the number 7 of runs of 1’s in the sample.
Thus (7, fi, f2) is essentially a sufficient statistic and its distribution is a special
case of Whittle’s formula. This fact has been used by Goodman [48] to derive
the distributions of a number of runs tests. Most of these runs tests turn out to
be tests of the Markov property. See [48] and its forerunners: David [29]; Barton
and David [11], [12] and [13]; and Moore [69] and [70].

Whittle’s formula can also be used to derive the moments and cumulants of

2 If H is a hypothesis contained in the larger hypothesis H’, I will, following Good [44],
speak of testing H within H’, rather than of testing H against alternatives in H'-H.
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various distributions; see Whittle [78], Patankar [73], Good [45], Gabriel [38],
and Krishna Iyer [60].

3. Chi-Square Methods. A more systematic way of attacking the problem of
statistical analysis of Markov chains is to carry over to the Markov case the
chi-square methods applicable in the multinomial case, the methods treated
for example in Chapter 30 of Cramér [26]. To simplify the discussion it will be
assumed at first that the chain is stationary and ergodic; later it will be indicated
how these requirements can be relaxed.

Ignoring the factor qufu in Whittle’s formula (2.5), one can say roughly that
the probability of the transition count F is

(3.1) II: [H Lo ]

(In this section f;. will be denoted by f; ; this quantity is still to be distinguished
from f.;.) Now (3.1) is formally the same as the probability of obtaining the s
frequency counts (fa, - -, fi) in s independent samples of sizes f; respectively
from multinomial populations with cell probabilities (pa, -+, pi). Let

(3.2) ;= (fi — fpa) /11
If this multinomial situation really did obtain, then the s random vectors
¢ = (%1, +++ , £i) would be independent of each other, the covariance structure

of & would be E{{:¢a} = 6;ps; — pijpa, and, if f; were large, £; would be ap-
proximately normally distributed. Now in the Markov case, the f; will be large
with high probability, provided n is large. Hence it is reasonable to conjecture
the following result.

THEOREM 3.1: In the stationary, ergodic case, the distribution of the s’-dimen-
stonal random vector § = (&:;) converges as n — o to the normal distribution® with
covariance matriz (\:jx1), where

(3.3) Nijit = 0a(85upi; — Piibar).

Assuming for the moment the truth of this theorem, it follows from
the ordinary chi-square theory that each of the statistics

(34) ;(—f’—% i=1,---,s
has asymptotically the chi-square distribution. The summation in (3.4) must
be restricted to those indices j for which p;; > 0; if the number of these is d;,
then the number of degrees of freedom in the limiting distribution is d; — 1.
(The degenerate case d; = 1is possible.) Moreover, the s statistics are asymptoti-
cally independent, so that their sum

(fis — fips)’
(35) ‘lZJ fi pij

3 All normal distributions considered here are centered at the origin.
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has asymptotically a chi-square distribution with d — s degrees of freedom, where
d = 2 .d;is the number of positive entries in the transition matrix (p;). The
statistic (3.5), first considered by Bartlett [7], provides a measure of the goodness
of fit of the sample with the assumed transition probabilities p;; .

A number of different proofs of Theorem 3.1 are possible (see Bartlett [7]
and Whittle [78]) ; for example, it can be proved via the central limit theorem for
Markov chains. The following proof, which was suggested to me by Paul Meier,
simply makes precise the heuristic arguments which preceded the statement of
the theorem. It is very simple, direct, and, from the statistical point of view,
natural. It has the further advantage that it can be made the basis of a new proof
of the central limit theorem for Markov chains. The following preliminary result
is needed.

Lemma 3.2: Assume that the chain is stationary and ergodic and let
§ = (1, -+, &) be the random vector with components

(3.6) ¢ = (fs — nps)/nd.
Then

E{¢:} =0
3D {E{ri 6 = a + 0(1/n),

where
(38) aij = 8ij pi — piD; + pi :L:,I (p — p;) + i ng:l (p(}'f) — pi).

Moreover, the weak law of large numbers holds:

(3.9) p lim f;/n = p;.

n-»>00

To prove (3.7), define the random variable ¢,(z) to be 1 or 0 according as z,,
equals 7 or not. Then f; = D m_; cn(¢). From the stationarity of the chain it
follows that E{c.(7)} = pi, so that E{¢;} = 0. Now

n n

E{¢gi} = n—I; g_:lE{ (ei(®) — pi)(en(d) — i)}
Again using the stationarity, one sees that
E{(c(z) — po)(em(d) — p1)}

Pz’ng_l) — DiP; lf m>1
= Plai = 1, 2 = j} — pip; = pdis = P if m=1
pip i — P i m <L
Therefore,
E{¢ts} = (pdij — pips) +
(310) n—1

n—1
! Z} (n — m)(pp®? — pp;) + 0 Zl (n — m)(pips? — ppy).
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The first sum on the right-hand side of this equation differs from the correspond-
ing sum in the definition of «;; by the amount

) n—1
(3.11) n‘lpe'n; (P — p;) + n"pimzl m(psP — p;).

From (1.2) it follows that the series Y wm (p{P — p,) and Do, m(pP — p;)
converge absolutely. Therefore, the difference (3.11) is of the order O(1/n).
The second sum in (3.10) is treated similarly and (3.7) is thus established. (This
sort of computation is standard; see p. 225 of Doob [32].) And now (3.9) follows
by Chebyshev’s inequality.

The weak law of large numbers (3.9), the only part of Lemma 3.2 needed
for the proof of Theorem 3.1, follows also from recurrent event theory; see p. 297
of Feller [33]. However, the computation (3.8) is needed for the central limit
theorem (Theorem 3.3 below).

Theorem 3.1 will now be proved. The process {z,} can be viewed as having
been generated in the following fashion. Consider an ¢ndependent collection of
random variables z; and wi, (¢ = 1,2, -+ ,s;m = 1,2, --- ) such that

P{xl = i} = P; and P{win = j} = Dij .

Imagine the variables w., set out in the following array:

Wi, Wiz, "** y Win, ***
Wy, Wagy **° , Wan, ***
Ws1 ) Wazy *** y Weny *°°

First, z, is sampled. If 2; = 7, then the first variable in the ith row of the array
is sampled, the result being z, by definition. If 2, = 7, then the first variable in
the jth row is sampled, unless j = <, in which case the second variable is sampled.
In any case, the result of the sampling is by definition x3 . The next variable
sampled is the first one in row 3 which has not yet been sampled. The process
continues in the obvious way. More formally, z, is defined to be w,,1, and, if

%1, %, -+, Zn have been defined, then x4 is taken to be w,,,m , where m — 1
is the number of [, 1 £ I < n, such that x; = «, . It is intuitively clear that
(3.12) Plo,=a,,1 =k =n+ 1} = DaiParaz * * * Pagonyy -

For a rigorous proof, note that by definition
fmr=a,1sksntl={m=0a,Wy m=a,2=k=n+1j,

where m;, — 1 is the number of elements among {a; , - - - , ax—} which are equal
to ai . Since the variables involved are all distinct and independent,
Play = ax,1 Sk =n+ 1} = Ploy = a} P{waym, = @} -+ P{Wapmp,; = @nsa},

and (3.12) follows.
Since the process produced according to the above prescription has, by (3.12),
the proper joint distributions, it can be used to compute the distributions of the
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Jii. Clearly (fa, ---, fi) is the frequency count of {wy, --- , wi,}. Since, by
the weak law of large numbers (3.9), f; is near np; with high probability, it is
natural to compare (fi, -, fi) with the frequency count (gi, -+, gi) of
{wa, -+, Wimpg}. From the independence of the array {w;,} and the central
limit theorem for multinomial trials, it follows that the s* random variables

(95 — Inpidpis)/ (nps)?
are asymptotically jointly normally distributed with covariance matrix given
by (3.3). Now it will follow by Section 20.6 of Cramér [26] that the s’-dimensional
random vector 7, with components
(3.13) ni; = (fis — fpu)/ (np:)?,

will have this same limiting distribution, if it is shown that for each fixed  and 7,
the difference

gii — [ﬂp.']pi‘ fii — fipij
(3.14) e S LRl

goes to 0 in probability. Since the ratio of £;; (defined by (3.2)) and #5:; goes to
1 in probability by (3.9), it will then follow (by Section 20.6 of [26] again) that
£ has this limiting distribution as well, which will complete the proof of
Theorem 3.1.

To show that (3.14) goes to 0 in probability it will be convenient to change the
notation; let e, be defined by

e = l—pij if wi,,.=j
" —Dij if 'w,',,.#j

and put S» = e1 + --- 4+ en. Then the e, are independent and identically
distributed with mean 0 and variance ¢° = p;;(1 — p;;), and the difference
(3.14) becomes

(3.15) (Stnps — Sy:)/n.
Given e > 0, choose ng so that if n = 7, , then
P{If: — [np| > né} < ¢
which is possible by (3.9). If n = n,, then
P{| Sty — Sp:l/n* >
< Pllfi — [wpdl > né} + P{  max  |Siwpg — Sul > en')

Im—[np;li<ne
< e+ 2P{ max |S.| > en'/2}
1<mgned
< e+ 2(4/n) (néd®) = (1 + 86%)¢,

where the last inequality follows from that of Kolmogorov (see p. 220 of Feller
[33]). Since ¢ was arbitrary, (3.15) goes to 0 in probability. (This sort of argu-
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ment is used in sequential problems; see Anscombe [5].) This completes the proof
of Theorem 3.1.

It is possible to show that the covariance matrix of 5, defined by (3.13), is
exactly that of its limiting distribution. In fact, if

1—pi;; f zm=17 and Zpy =7
dm('i, J) =94 Pij if z,=1 and Tmi1 & j
0 if z, ¢

then f;; — fipi; = h dm(, j). A straightforward computation shows that
if m # r, then d.(%,j) and d.(k, 1) are uncorrelated. From this fact together
with stationarity it follows that

E{(fij — fpi;) (fu — fipe)} = n E{di(3, j) du(F, D)}.
The proof is completed by showing that
E{d\(3, j) di(k, D)} = pNija,

which is again just a matter of computation.

Although Theorem 3.1 is all that is needed for the statistical analysis of Markov
chains, it is interesting to see how it leads to a simple proof of the asymptotic
normality of the random vector ¢ defined by (3.6).

TureoreM 3.3: Under the assumptions of Lemma 3.2, the distribution of the
random vector ¢ converges to the normal distribution with covariance matriz (a;;).

Now it has been shown that the distribution of the random vector 7, defined
by (3.13), approaches the normal distribution with covariance matrix A =
(M\ijx1). Moreover, the covariance matrix of 7 is exactly A for all n. Since f; and
f.; differ at most by 1, if

é; = (fi — 2ifpi)/nt
then
¢; + 0(1/nt) = (f.; — Zifpis)/nt = Zplnis.
Therefore the distribution of ¢ = (¢;) approaches a normal distribution with

some covariance matrix M, and the covariance matrix of ¢ itself has the form
M + O(1/n). But the relation

(3.16) b= 2 i(8ij — pis)ti

is easy to verify. Thus ¢, known to be asymptotically normal, is a linear trans-
formation of ¢. If this transformation were invertible, the asymptotic normality
of ¢ would follow immediately. Actually, although the transformation (3.16) is
singular, ¢ can be recovered in a linear fashion from ¢ because (3.16) is one-to-one
on that (s — 1)-dimensional subspace of R, in which { and ¢ must lie, namely,
the subspace H = {z& R, : 2_:2: = 0}. Suppose in fact that z is a (nonrandom)
element of H such that

(317) ) Ei(ﬁﬁ - p,-j)z; = 0, 1=1.--,s.
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Since the transition matrix - (p;;) is ergodic, the solutions of the system
2j = D_:2:pi;form a one-dimensional subspace of R, , that spanned (pry *+ ,Ds).
Therefore (3.17) implies that z; = ap;, where « is a scalar. If X_;z; = 0, then «
must be 0. Therefore the transformation (3.16) is nonsingular when restricted
to H, so that ¢ is a linear function of ¢. This implies, in the first place, that the
distribution of { approaches a normal distribution with some covariance matrix
N, and, in the second place, that the covariance matrix of ¢ has the form
N + O(1/n). But by Lemma 3.1, the covariance matrix of ¢ is (a;;) + O(1/n).
Therefore N = {a;;) and the proof is complete.

The central limit theorem for Markov chains is usually stated in a different
form. Let (1), - - -, ¥(s) be s numbers such that E{Y(z,)} = D pa(s) = 0.
Then the distribution of n %S, = n? S Y (xx) approaches a normal distri-
bution with mean 0 and variance

(3.18) * = Bly(m)Y + 22 E9(z) (ze).

(In this form the theorem can be proved under much more general conditions;
see p. 228 of Doob [32].) This theorem is a consequence of Theorem 3.3, since
n 18, = > ¢a(s) and since (3.18) is just another way of writing

o = i i (DV().

Note that if the vector (¥(7), ---, ¥(s)) is annihilated by the matrix (;)
then o* will be zero, so that n*S, will go to zero in probability. This, the so-
called degenerate case, can arise in circumstances of which the following example
is the prototype. Consider a six-state chain represented by the following diagram.

+31 +2

+1
+2

-4 -5
Here the points represent, the states, the arrows represent the possible transitions
and the numbers are the values of the ¥(z). The chain is ergodic, but clearly
|S.| = 5 for all n, since the sum of the ¢(7) around any circuit is 0.

Now that Theorem 3.3 has been proved, the results stated in the paragraph
following it are established. The goodness of fit statistic (3.5), which has now
been proved to have asymptotically a chi-square distribution with d — s degrees
of freedom, can be shown to be equivalent to the appropriate Neyman-Pearson
criterion, as Bartlett [7] pointed out. In fact, using the methods of Wilks [79]
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(see [18] for the details) it can be shown that

(f i — fi pu) Ji
3.19 ~2 i lg =
(3.19) A PR DL D
(Here and in what follows, the notation £ ~ % is used to indicate that the differ-
ence £ — 7 goes to 0 in probability.) Now the log-likelihood of the sample
{21, "+, Tuga} is essentially

2oiifii g pii .
Here the term lg p,, has been suppressed, since it is small compared with this
sum. If this expression is maximized subject to the constraints ).; p;; = 1 by

the method of Lagrange multipliers, it is found that the maximum occurs at
pi; = fi;/fi and that the maximum value is

2oiifiilg (fFuslf).
Thus the right-hand member of (3.16) is just the Neyman-Pearson criterion,
that is, twice the difference of the maximum of the log-likelihood and its actual
value.

Throughout this section it has been assumed that the chain is stationary and
ergodic. If the assumption of stationarity is removed, and any initial distribution
allowed, then results still hold, since the initial effects wear off as n become large.
The only difference now is that the expected values of the various random vari-
ables (3.6), etc., are asymptotically 0, rather than exactly 0.

Suppose there is just one ergodic class, say {1, 2, - - - , r}, but that there exist
transient states {r 4+ 1, - - -, s}. The transition matrix P then has the form

o[t 8]

The process very quickly leaves the transient set (the probability of being in a
transient state at time n goes to 0 exponentially fast) and once the ergodic class
is entered, it is never left. Thus the large sample theory above makes it possible
to do inference on the elements of the » X r stochastic matrix 4. Large sample
theory is not applicable to the elements of B and C, however, since the process
stays among the transient states such a short time. A systematic analysis of this
situation would be interesting.

The assumption that the chain is aperiodic can certainly be removed; all that
happens is that the formula (3.8) becomes more complicated. The easiest way to
see that the assumption of aperiodicity is inessential is to consider, if the chain
has period A, a new chain {(zp-1n, *** , Zm—1);n = 1,2, ---}. This new chain
is aperiodic, and a knowledge of its evolution is equivalent to a knowledge of
the evolution of the original chain {x,}.

The only assumption which cannot be relaxed is, of course, that of irreduci-
bility. However, if the chain has more than one ergodic class, it is still possible
to derive the limiting distributions of the various statistics considered here, con-
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ditional on a knowledge of which ergodic class the initial state lies in. This is all
that is necessary for purposes of inference.

This section has dealt with the problem of testing, within the hypothesis
that {x.} is a Markov chain, the hypothesis that it has specified transition proba-
bilities. It is possible also to test one simple hypothesis against another. If (p;;)
and (g:;) are two ergodic stochastic matrices with stationary distributions (p;)
and (g:), then the logarithm of the likelihood ratio appropriate to the test is

lg (¢z/Pz) + k2=11g (Qurar i1/ Poszss) = 18 (8ar/P2y) + 2oiifiilg (gii/Dis)-

The limiting distribution of this statistic (properly normed) is normal, but it is
hard to get simple expressions for the mean and variance; see Goodman [48].

Further papers related to the topics treated in this section are Romanovskii
[74]; Bartlett [8]; Smirnov [75]; Cox [24] and [25]; Mihoc [67]; Firescu [34];
Broadbent [21]; and Cane [22]. A few results on power will be found in my mono-
graph [18].

4. Estimation of Parameters. In the preceding section it was shown that

(fs — fipii)’

(4.1) %: fi pij

is asymptotically chi-square in distribution. If all the p;; are positive, as will be
assumed throughout this section to simplify matters, then the number of degrees
of freedom is s(s — 1). This chi-square statistic is useful for testing whether the
transition probabilities of the process have specified values p;;. There arises
naturally the problem of testing whether these transition probabilities have a
specified form p,;(8), where 6 is an unknown parameter which must be estimated
from the sample. Now if the process is really governed by the transition matrix
(p:i(0)), the log-likelihood of the observation {x, - - - , Z,41} is (essentially)

(4.2) 2 i fi:1g pis(0).

If the parameter is a vector § = (6, -- -, 6,) with r real components, then the
maximum likelihood equations are

fi 9pii(6)

o - L= =1, -,
(43) 7 Dij(6) 96 0 e
If this system of equations has a solution #, then the insertion of p;;() into
(4.1) yields a statistic appropriate to the testing problem in question, namely,

> (fis — fi Pij(é))z.
7 Ji pi(6)
One expects this statistic to be approximately chi-square with s(s — 1) — r

degrees of freedom; the following theorem shows that this is true under appropri-
ate regularity conditions.

(44)



STATISTICAL METHODS IN MARKOV CHAINS 25

TurEorREM 4.1: Suppose that for each 6 in an open subset ® of r-dimensional
Euclidean space, (p:;(0)) is an s X s stochastic matriz with positive entries. Sup-
pose that each p;;(0) has continuous partial derivatives of first and second order in ©
and that the s X r matriz D with entries

(4.5) diju = 9pi;(0)/36,

has rank r throughout ©. Suppose further that {x.} is a Markov chain with transition
probabilities p;;(0) for some 8 & ©. Then there exists a random vector 6 in © such that
b ¢s, with probability going to 1, a solution of the system (4.3) and such that 6 con-
verges in probability to the true value of 0. Finally, the statistic (4.4) has asymp-
totically the chi-square distribution with s(s — 1) — r degrees of freedom.

It should be pointed out that in this theorem certain possible pathologies are
ignored. There is only one consistent solution to (4.3), but there may be others
which are not consistent; the theorem provides no means of selecting that solu-
tion which is near the true value of 6. Further, while it is true that if » is large,
then 8 is, with high probability, a local maximum of (4.2), there is no assurance
that it is an absolute maximum. These difficulties usually do not arise in actual
applications; see Kraft and LeCam [59].

The assumption that the matrix D has rank r is made to ensure that there is
no redundancy among the parameters 6; - - - 6, . Since ) _; p:;(8) = 1 for all 8,
> 0pi;(6)/06, = 0 for all ¢ and w. Thus there are s independent constraints
on the rows of D, which implies that r < & —s.

Theorem 4.1 can be proved by the methods of Section 30.3 of Cramér [26).
In fact, by virtue of Theorem 3.1, the random variables f;; may as well (from the
asymptotic point of view) have arisen from s independent samples of sizes f; from
multinomial populations (i, -+ , pis). Thus Theorem 4.1 reduces to the results
of [26]. (Cramér actually carries through the proof only for the case of one
multinomial sample, but he indicates (and uses) the more general result.) A
somewhat simpler proof of Theorem 4.1, under the additional assumption that
the p:;(8) have continuous third order partial derivatives, will be found in my
monograph [18]. This proof makes use of the methods of Section 7 below.

Just as in the case in which there are no parameters to estimate, the chi-square
statistic derived above can be transformed into a Neyman-Pearson criterion. As
was seen in Section 3, the maximum of Zij fi;1g ps;, as (p:;) ranges over all
stochastic matrices, is Y _:;fi;1g (f:;/f:). And the maximum of D _:; f:;1g pi;(6),
as 0 ranges over O, is D .:;f:;1g p:j(8), (ignoring the difficulties mentioned
above). Therefore, 2D ;; fii 1g (fi;/f:;(8)) is a Neyman-Pearson statistic for
testing, within the hypothesis that {x.} is a Markov process, the smaller hypoth-
esis that the transition probabilities are p;;(8) for some value of 6. It can be
shown (see [18]) that

2. %@l ~ 23 £ e (filf 95 (D))

if the small (null) hypothesis is true.
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As an example, suppose one wants to test whether p;; = p;is independent of ;
that is, whether the Markov chain is really an independent sequence. Let
r = s — 1, let O consist of the set of vectors 8 = (6;,---, 6,_;) with positive
components the sum of which is less than 1, put p;;(8) = 6, for j < s and put
pi(8) = 1 — D 71 6;. Then the conditions of the theorem can be verified and
the equations (4.3) can be solved explicitly. (It is of course actually easier to
maximize Y., fi;1g p; by Lagrange multipliers.) The solution is 6; = f.;/n,
as could have been anticipated. In this case the chi-square and Neyman-Pearson
statistics become

(fis — ftf:/n) fii
; ft J/n zi:fwlgfifd/n.
Each one has in the limit a chi-square distribution with s(s — 1) — (s — 1) =
(s — 1)* degrees of freedom. This chi-square statistic was derived from Whittle’s
formula in Section 1.

Tests of various other hypotheses can be derived in a routine manner from
Theorem 4.1. For instance, one can test the hypothesis that the process has
given stationary probabilities; that is, that the transition probabilities p;; satisfy

: DiPsj = Dj, Where the p; are prescribed numbers. A number of such examples
will be found in [18]. Other papers relevant in this connection are Bartlett (7],
Patankar [72], and Gani [39] and [40].

The theory of this and the preceding sections can be extended to cover the case
of two samples. Let {f:;} and {g;;} be the transition counts of two samples, inde-
pendent of each other, from Markov chains with transition matrices (p;;) and
(g:7). The estimates of p;; and of ¢;; are f;;/f; and g:;/g: , respectively, while if it
ishypothesized that p;; = ¢;; , then the common estimate is (fi; + ¢:;)/(f: + g4).
It is easily shown that the chi-square statistic for testing the hypothesis that

pi; = ¢:; (homogeneity) is
_ S+ gi [ . Ji + gii:r
I:fv f i -+ gi _f ¥ g

+gg] ,
*ZJ’: f.fii""'gu +Z fi + gii

1fi'"gi gfs+g1

5 fgs (f__g_)
zzj;fij-l-gﬁ i 0/

The asymptotic distribution has s(s — 1) degrees of freedom. This sort of prob-
lem has been treated by Darwin [28] and by me [16] and [18].

Results of this sort apply equally well, of course, if the number of samples is
three or more. It must be assumed, however, that the number of samples is fixed,
while the sample sizes go to infinity. A different theory is needed in the opposite
case, that in which the samples are of fixed length (say I), while the number 7 of
them goes to infinity. In principle, the standard multinomial theory applies in
this case. Suppose in fact that fork =1, -+ ,n, {zu, - - - , &) is a sample from
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a Markov chain with transition probabilities (pi;). (It is possible in this case to
let the transition probabilities vary from trial to trial.) The » samples together
can be regarded as one independent sample of size » from a multinomial popu-
lation with s’ categories, the category (ai,---, a;) having probability
DayDagas * * * Day_ia; - Various special problems arise, however. If one has only
partial information, for example the frequency count of {z::, - - - , Z. for each
i = 1, -- -, I, then special methods are required. Papers on the analysis of many
short samples are Miller [68], Goodman [47], Kao [56], Anderson [3], Anderson
and Goodman [4], and Madansky [65].

B. Psi-Square Statistics. The chi-square statistic (3.4) treated in Section 3 has
a direct appeal as a goodness of fit criterion, quite aside from its connection
with the Neyman-Pearson criterion. A statistic which at first sight perhaps seems
even more natural from this point of view is

(fu - npz pn)
5.1 LA AN 4 L
(5.1) ; np; Psi

Aside from the fact that this statistic has no simple interpretation in terms of
likelihood theory, it is not very useful because its limiting distribution is not
free of the parameters (p;;). If p;; = p;, that is, if the process is independent,
then (5.1) reduces to

(52) g =y Uy — nps :01')2.
7 np; Pi

a so-called psi-square statistic. Although (5.2) also lacks a likelihood interpreta-
tion, at least its limiting distribution is free of the parameters (p:). This psi-
square statistic was first used by Kendall and Smith [57], [58] as a test for serial
correlation in their random number tables, but it was incorrectly assumed by
them to have asymptotically a chi-square distribution. It is the purpose of this
section to show that the asymptotic distribution function of (5.2) is

(5.3) Ko 1(2/2) » Ky2(2),

where K;(x) is the chi-square distribution function for d degrees of freedom.

Let H, denote the hypothesis that {z,} is an independent process with specified
probabilities p; = P{x, = 4} ; let H, be the hypothesis that {z.} is an independent,
stationary process with the probabilities P{x, = 4} unspecified; finally, let H; be
the hypothesis that {z,} is a Markov process. By the results of Section 3 the
statistic for testing H; within Hj is

fJ (ft:r fa p,)2
54 1 ~S, =
(54) Zf; gf, Py 13 ; b
By Section 4, the statistic for testing H, within Hj is
2
(5.5) Zf.; Ig Jii ~Sp=Y gi:_j_"if_/ﬁz_

fifi/n 5 fifi/n
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(Here the distinction between f; and f.; has been dropped.) It is known from the
ordinary multinomial theory that the statistic for testing H; within H; is

e f g - 3 U= )
(5.6) }_‘, filg . Spe = Z i
Since the left-hand members of (5.5) and (5.6) sum to the left-hand member of
(5.4), it follows that

(5.7) Siz ~ Sz + Ses .

In fact, if the denominators in Sy, and Sy; are replaced by f; and fif;/n respec-
tively, which is legitimate (see Section 20.6 of Cramér [26]), then (5.7) becomes
an equality. Since the three hypotheses stand in the relation H; C H, C Hj, the
statistics Si2 and Se; are asymptotically independent. (This phenomenon is
familiar in analysis of variance; see [18] for a proof.) That the limiting distri-
butions of Sy, , Ses and Syz , which are respectively chi-square with s — 1, (s — 1)*
and s(s — 1) degrees of freedom, convolve properly is a reflection of this fact
together with (5.7).
Now S, defined by (5.2), is related to Si2 and Sys by

(58) S ~ Slz + Sla .

This relation is proved by noting that if the denominator in Sy is changed to
np:p; (use Section 20.6 of [26] again) then the two members of the relation be-
come algebraically identical. From (5.7) and (5.8) it follows that

SN 2812 + IS23 .

Since Sy and Se; are asymptotically independent and chi-square with s — 1 and
(s — 1)® degrees of freedom, it follows by an obvious generalization of the result
of Section 24.5 of [26], that the limiting distribution of S is given by (5.3). This
theorem was first proved for the case in which p; = 1/s and s is a prime number
by Good [43], and in the general case (by methods very different from the ones
above) by me [15]. Various extensions are to be found in Stepanov [77]; Good
[46]; Basharin [14]; Goodman [50], [51] and [52]; and in my papers [15], [16]
and [18].

If L;; is the Neyman-Pearson statistic for testing the hypothesis H; (above)
within H; , then it is obvious that

S~ 2Ly + L.
It is thus hard to see what interpretation is to be put on S.

6. Multiple Markov Chains. Let {z,} be a tth order Markov chain (as defined
in Section 1) with transition probabilities

Day-+-as:apyy = P{xn = Q¢41 H Tpt = A1y **° 3y Tp1 = at},

assumed for simplicity to be positive. If ¢ > 1, {x,} is called a multiple Markov
chain. Problems involving multiple Markov chains are easily reduced to prob-
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lems about simple ones by the following device; see p. 89 and p. 185 of Doob [32].
Consider the process {ym ; m = 1,2, - - -}, where ym = (Zm, Tmi1, *** » Tmit1)-
Then {yn} is a first-order Markov chain the state space of which consists of the
s' different ¢-tuples, the transition probabilities being

DPay---apb; lf bt’ = Gip1 77: = 1} . '7t -1
(6.1) Pay---a)(by---by) =
e 0 otherwise.
A knowledge of the first n + ¢ steps of the original process {x,} is obviously
equivalent to a knowledge of the first n 4 1 steps of the new process {ym}. For
example, let fo,...q, be the number of m, with 1 < m =< n, such that

(Zmy oy Tmgwm1) = (@1, +++ , @),

Then the roles played by the f; and the f;; in the paragraph following Theorem
3.1 are assumed here by the f,,...o, and the fo,...q,,, . Clearly the s there is to be
replaced by s’ here. Finally, the number of positive entries in the s* X s* matrix
defined by (6.1) is s**’, a number which plays the role of the d of Section 3.
It follows that the statistic

(62) Z (fal---a¢+1 - fal-~~¢¢ p“l"‘at:“t+l)2

G1::Gtyql fal...a, Day.-cap:a¢41

is asymptotically chi-square with s**' — s’ degrees of freedom. As in Section 3,

it can be shown that this statistic is asymptotically equivalent to the appropriate
Neyman-Pearson criterion.

The results of Section 4 can be carried over so as to take into account the
possibility of estimating parameters upon which the ps,...q,q,,, may depend. For
example, if » < ¢, then the parameters may be so defined as to correspond to the
hypothesis that {z.} is a Markov chain of order r. In this case the pa,...a;:a,4,; D
(6.2) are to be replaced by

ﬁar"aﬁa:n = fat-r+l“'“t+l/fat—r+l“'¢t .

If this is done, the resulting statistic, appropriate for testing the null hypothesis
that {z.} is an rth order Markov chain within the hypothesis that it is of ¢th
order, is asymptotically chi-square with (s — §*) — (s — §") degrees of
freedom, provided the null hypothesis is true. Papers on this subject are Bartlett
[7]; Good [44]; Dawson and Good [30]; Goodman [49]; and my papers [16]
and [18].

Generalized versions of the psi-square statistic (5.2) can be treated by applying
the method of Section 5 to the process {yn} defined above. It turns out, for ex-
ample, that if {z.} is an independent process with P{z,, = ¢} = p., then the
asymptotic distribution function of

(fal"'at — NPa, " * 'p¢¢)2
a---ag NPay * * * Pa,
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is given by
t—1

k*l K,t—k—-l(s_l)z(x/k) * K,_l(x/t),
where the first  stands for iterated convolution. If ¢ = 2, this result reduces to
that of Section 5. If {z,} is a first-order Markov chain then the distribution
function of

(63) Z ‘(fal"'ﬂt - f"l Para, * pa‘"lat)z
ar---ay Jar Paras * * * Pas_sa,

approaches
t—2

k*l K,t—k—1¢_p2(x/k) % K. ((x/t — 1).

If ¢ = 2, only the final factor remains and this result becomes that of Section 3.
If, however, the f,, in (6.3) is replaced by np., , the statistic is no longer asymp-
totically distribution-free. In this connection, see the references given at the end
of the preceding section.

7. Extension to General State Spaces. The problem of analyzing a sample from
a first-order Markov chain was approached in Section 2 through Whittle’s
formula and in Sections 3 and 4 by extending the multinomial chi-square methods.
There is a third possibility. Suppose the transition probabilities are functions of
6, as in Section 4, so that the log-likelihood function is

(7.1) L(6) = 2 :ifii1g pis(8).

If the regularity conditions of Theorem 4.1 are satisfied, there exists a consistent
solution § = (6, -- -, 8,) of the maximum-likelihood equations

(7.2) Zf,, 5 e p:i(8) =0, w=1,--r

It can be shown that if 6 is the true value of the parameter then the random
vector n}(6 — ) is asymptotically normal. In fact, if z = (21, -+ , 2.) is the
“score”’, that is, if

(73) an lg pw(a) u=1,--r

then it can be shown that z/n’ converges in distribution to that normal distri-
bution with covariance matrix ¢ = (o4,), where
(0)]

= % 000 | S 1e o) | 2

=E{[ 8700 | 2t |}
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Moreover,
(7.4) z/nt ~ on(6 — 0),

and, since o is nonsingular, as follows from the assumption that the matrix D
defined by (4.5) has rank r, the vector n’(é — ) is itself normal in the limit,
with covariance matrix ¢ . Finally, it can be shown that

(7.5) 2[L(8) — L(6)] ~ n 2w oun(Bu — 6.) (8 — 6,),

from which it follows that the Neyman-Pearson statistic on the left has asymp-
totically a chi-square distribution with r degrees of freedom. If the p.;(6) are
chosen in such a way that (p.;(8)) ranges over all stochastic matrices as 6 ranges
over 0, then this statistic reduces to

(7.6) 22 i fiilg (Fisl/fpis(0)).

Since (7.6) can be converted into the chi-square form, one has a new derivation
of the result of Section 3. This method can be used to obtain all the statistics
of the preceding sections.

This approach has the advantage that it admits of an extension to the case in
which the state space of the process {x,} is no longer finite. This extension, car-
ried through in detail in my monograph (18], will be briefly sketched here. Sup-
pose that {z,} is a Markov process taking values in some general space X. The
structure of the process is then specified by transition measures

p(s: A) = P{xn-i-l e A “ Tn = E},

where for each £ ¢ X, p(§, -) is a probability measure on an appropriate Borel
field of subsets of X. Now suppose that these transition measures have densities
with respect to another measure )\, and that these densities depend on an un-
known parameter § = (6;, ---, 6,):

p(&, 4) = [ (& 23 ONan).

If X is finite and if M is taken to be counting measure, each point of X having
A-measure 1, then the densities f(£, n; 8) reduce to the transition probabilities
p:;(0) of the preceding sections. The cases of greatest interest other than the
finite one are those in which X is countable, X being counting measure again,
and in which X is Euclidean, A being Lebesgue measure. It is important, how-
ever, to admit more general spaces, as will be seen in Section 8.

In this general situation, the log-likelihood (7.1) is to be replaced by

L(6) = glgf(xk » Tett 5 0),

the maximume-likelihood system (7.2) becomes

n

i}
2 o lg fan, Taga;0) =0, u=1---,r,
=1 00,
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while the ‘“score” (7.3) becomes

n

(7.7) 2y = Zilgf(xk,xkﬂ;o).

k=1 aau
It can be shown under suitable regularity conditions that there is a consistent
solution 8 of the maximum-likelihood system, that z/n* is asymptotically normal,
and that (7.4) holds, where ¢, the covariance matrix of the limiting distribution
of z/n}, is given by

Oup = E{[E(;—u lg f(x1, 2,5 0)] [610,, lg f(21, x2; 0)]}.

If it is assumed that ¢ is nonsingular, then (7.5) holds as well.

What are the regularity conditions which lead to these results? In the first
place, it must be assumed that the densities f(£, n; ), as functions of 6, satisfy
smoothness conditions like those of Section 33.3 of Cramér [26]. In the second
place, it is necessary to impose some set of conditions on the process {z.} which
will ensure that the random variables z./n! defined by (7.7) are asymptotically
normal. Now while the summands in (7.7) are functions of the successive states
of a Markov process, and while there exist central limit theorems for sums of
such functions, there is no single theorem of this sort which covers all cases of
interest. Fortunately, however, the summands in (7.7) are not just any func-
tions of the states of the process; it can be shown that their partial sums form
(for each u) a martingale. Lévy ([63] and pp. 237 ff. of [64]) has proved inter-
esting central limit theorems for martingales; a suitable modification of his
results yields the asymptotic normality of (7.7) for the case in which the sum-
mands have moments of some order greater than 2. See [18] for the details.

The sets of conditions sketched in the preceding paragraph cover many
Markov processes (with stationary transition measures) which are of interest,
in addition to those with finite state spaces. Suppose, for example, that {z.} is an
autoregressive process,

(7.8) Tn = kzo akyn—k )

where {y:} is an independent sequence of identically, normally distributed random
variables, the mean and the variance of the y; , as well as a, where |a| < 1,
being unknown parameters. This process satisfies the conditions outlined above,
so that the theory of this section contains the essentials of the Mann-Wald theory
[66]. (The Mann-Wald theory is the intersection of time-series analysis and likeli-
hood theory for Markov processes, in the following sense. In time series analysis,
that is, in correlation and spectral theory, only wide-sense properties of the process
are made use of. This reduces to likelihood theory only if the second-order
moments completely determine the structure of the process; that is, if the process
is Gaussian. But the most general stationary, Gaussian Markov process is given

by (7.8).)
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In the theory outlined above, the state space X is arbitrary, but the parameter
6 is assumed to have only finitely many components. If the state space is finite
then finitely many parameters suffice to describe any hypothesis on the process.
In the general case, however, infinitely many parameters may be necessary; the
complete structure of a Markov process on the space of integers is specified by
the infinite matrix (p.;), for example. This difficulty cannot be got around by
lumping the states into finitely many classes, since this in general destroys the
Markov property. (For the problem of inference on grouped chains, see Black-
well and Koopmans [20] and Gilbert [41].) While the infinite matrix (p.;) has
been treated by Derman [31] (his proofs can be simplified by using the methods
of Section 3), no general attack on the problem of infinitely many parameters
is known to me.

For a very general approach to likelihood theory, see LeCam [62].

8. Processes Continuous in Time. Suppose {z;; ¢ = 0} is a time-continuous

process, the random variables z, taking their values in a finite set
X =1{12,---g}.
If
Pl =jllaw, u = 7} = Plar = jllad, t>0,

then {z:} is a Markov process and its probability structure is specified by the
transition probabilities

pii(t) = Pl = jllz, = 1}, t> 0,

which are assumed to be independent of 7. Models in many fields of application
have this structure. If the p;;(¢) depend on an unknown parameter 6, there
arises the problem of drawing statistical inferences about 6 from a sample
{z. ;0 = 7 = t} from the process.

If

lim p;(t) = &i;,
t->0
then it can be shown that the limits

g = 133,‘ (1 — pu(®))/t

¢i; = lim pii(8)/t (7 #J)
exist; see Doob [32]. The quantities ¢; and ¢;; have the following important proba-
bilistic significance. Under a suitable regularity condition on {x;}, namely that it
is separable [32], the process starts out in some state zo = 7, chosen according to
an initial distribution p; ; it stays in the initial state ¢ for a length of time p, ,
where p; is a random variable which is exponentially distributed with parameter
gi(P{p = o} = ¢ "”); at time p, the process jumps instantaneously to a different
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state j, chosen according to the distribution ¢;;/q; (j # ¢), where it stays a random
length of time p, which is exponentially distributed with parameter ¢; ; at time
o1 + p2 the process jumps to a new state k chosen according to the distribution
gir/q; (k ¥ j); and so on, Let 21, 25, - - - be the succession of distinct states the
process passes through and let p;, p2, -+ be the lengths of time the process
stays in these states. If »(¢) is the number of jumps which have occurred up to
time ¢, that is, if

(8.1) ¥(t) = max{n:p + --- + pu <0},

then clearly z; = 2,4 . The important point is that the process of pairs
{(2n, pa);m = 1,2, ---}, which may be called the ¢mbedded process, is a time-
discrete Markov process with state space X X (0, « ) and transition measures

(8.2) Plzass = J, pnis 2 allza = 4, po = B} = (qii/g:)e” ™%

see Doob [32]. Particular processes are usually described by specifying the ¢; and
the ¢;; , rather than the p,;(t).

Thus the evolution of the time-continuous Markov process {x} is determined
by that of the time-discrete imbedded process {(z., pa)}. If the quantities ¢; and
g:; depend on an unknown parameter 6 and if one has at hand a sample
{(21, 1), **+, (2n, pn)} from the imbedded process, then it is possible to draw
inferences about 6 by applying the methods of the preceding section to the
transition measures (8.2), which also depend on 8. However, if it is supposed
that one has a sample {z, ; 0 < 7 = t} from the original process, rather than
one from the imbedded process, the situation is slightly different. In this case the
sample {z, ; 0 < 7 =<t} is essentially equivalent to a sample

{21, p), -+, (2un, Pun)}

from the imbedded process, where »(t) is the random variable defined by (8.1).
(These two samples give the same information if one neglects the knowledge of
what state the process is in during the time interval from p; + -+ 4+ py» to ¢;
the error committed is negligible if ¢ is large.) Therefore a sequential version of
the theory of Section 7 will enable one to perform statistical inference on time-
continuous processes with finite state space. Such a theory is developed in my
monograph [18].

Even if the state space X of the process {z} is finite, as has been assumed above,
the state space X X (0, =) of the imbedded process is, while not pathological
in any sense, neither discrete nor Euclidean. In order to reduce the problems
of this section to those of the preceding one, it is therefore essential there not to
make restrictive assumptions about the state space. In view of the generality of
Section 7, one can treat, by the method of this section, time continuous processes
with infinite state spaces X; see [18]. It must be assumed, however, that {z/} is
a process of the completely discontinuous type, that is, that the sample paths
are step functions; this excludes diffusion processes.

Several authors have pointed out that diffusion processes involve, from the
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point of view of statistics, an excessive amount of idealization. Suppose that z, is
a Brownian motion with E{z,} = 0 and E{z}} = 6t. Then, no matter how small
t is, the measures on the space of paths {z, ; 0 < 7 = #} corresponding to differ-
ent values of § are mutually singular. It is therefore, in principle, possible to
determine 6 exactly from an observation of arbitrarily short duration, which is
nonsense from the practical point of view. It should be pointed out that processes
of the completely discontinuous type, while they certainly involve idealization,
at least do not have this unfortunate singularity property.

Previous work on time-continuous chains has been done by Lange [61]; Fortet
[36] and [37]; Hayward [54]; Bene$ [19]; and by Albert [2]. Papers on the esti-
mation of the parameters of a birth-and-death process are: Anscombe [6], Moran
[71] and Darwin [27]. Birth-and-death processes differ from the ones treated in the
present paper in that they are either transient or absorbing. A systematic in-
vestigation of inference in such cases would be valuable.
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