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1. Summary. In a paper by Blackwell, Breiman and Thomasian [1, Theorem 3]
the following theorem is proved:

For any integer n and for any 0 < ¢ =< %, such that C — e = 0 there exists a
code for a discrete memoryless channel with length N > ¢™°° and with a bound
for the probability of error, X = 2 exp, — [ne’/(16ab)], where C is the capacity of
the channel and a and b are the numbers of elements in the input and output alphabets
respectively.

In this note we shall replace the bound 2 exp,[—ne’/(16ab)] by the expression
2 exp.{ —né/[g(c) (log ¢)*~’]}, where ¢ = min (a, b), g(¢) is a positive mono-
tonically decreasing function of ¢, g(¢) < 16 for all ¢ = 3 and approaches 2
asymptotically as ¢ — «, and § > 0 depends on ¢ and ¢ and tends to 0 as either

¢c— © ore—0. :

2. Preliminary Lemmas.
Lemma 1. Let

a,b
Piigo(i=17"'7a7j=1:"'b)’ZPif=1’Pi=ZPif’Q.i:ZPii
%I J i

and ¢ = min (a, b). Then

ab \2
(1) > Py <log PP22> < [log (1 + ¢ + ¢)]* for all ¢,
Y] 15,
ab P 2
(2) > Py (logP ZZ) < 2343 (log ¢)® for ¢ =2,
i A7)
ab P 2
(3) > Py <log ke ) <2 (logc)® for ¢ = 3,
7 P;Q;
a,b P" 2
(4) Z P (log P 5) < 4¢ 4 (loge)® for ¢ = 12.
Y [A'2)
Proor:
(1). Let

s =1{(45) 10 £ Pui/(PQj) < ¢}
8 ={(4,5) | e = Pi;/(PiQ;) < ¢}
83 = {(4,7) | Pis/(PiQ;) > ¢}

and let S = >_P;; {log [P:;/(P:Q;)}}°. Then
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@ 53 TPar(5E) + T ruo + Tras(£2),

where f(z) = (log )% convex for z = e.
Since the arguments of fin (1) are all = e, S < f(K), where

2
K=T Pt TPt T 5o 2

since K = D ;.; PiQjx;; , where all z;; are = 1. However,

>pr, %<y, Yp,<e
81 2] 82

and

and similarly >, P}/ (P:Q;) <
z = 1, the result follows

(2) and (3). Consider f(Py, -+-, P.) = > iy Pi(log P;)?, where P; = 0
and Zgﬂl P,' = 1. .

Using the method of Lagrange multpliers we easily find the unique maximum
of this functlon for the case n > ¢ (i.e.,n = 3) to be (log n)?, which is attained
for p; = n7'(¢ = 1, , n). Let, now

§= EP"<I°g1> Q:) STy ( Z)
-2 Z P; (log 3) (log P;) + ; (log P;)*-P

From the above it follows that the first and the last terms of (6) are £ (log a)®
and the second is non-positive. Hence, owing to the symmetry of S in ¢ and 7,
the assertion (3) follows.

(2) follows immediately by using the same method and considering the func-
tion z(log z)* + (1 — z)[log(1 — z)*for0 < 2 < 1.

(4). Let

st = {(50)]0 = Py/(PQy) = 1}; s = {(4,4) |1 < Piy/(PQ;) < e};
83 = {(4,7) | Psj/(P:Q;) > e}.

Letf(z) = (logz)*(z > 0); k() = zlog’z(z = 0) and gx(z) = zlog’(z/K) — x
(z = 0, K-integral).
It is easily seen by elementary methods that

(6)

maxo<. <1 gx(z) = gr(1) = (log K)* — 1 for K > V2
and

maxoc, <1 h(z) = 4e°.
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Now

4 P;\*
ZP"<1°gP Q,) 2 PiQsh <P Q,)é ZP"(“P Q,>
smucf(F5) S P =S Pus1 =T Py=1-a s,

H

since f(e) = 1 and this function is monotonically increasing on s; .
Moreover D_,, Pij{log [Pi;/(PQ:))}* = a2 s [Pis/alflP:,/(P:Q;)), and, since
fis convex on s3 , we have

<. 2 Pf
E P <Iog P, é1> < o (g) where 6 = >, I—D:é;

Thus
(7) %+§§1+[af<;—¥)—a].

Now 6 < min (a,b) = c,andon s3: e < (08/a) < (¢/a). Therefore, from the
monotonicity of f on s, it follows that

f(a/0) = f(6/a) = f(c/a) = f(a/c).
From the definition of gx(z) and (7) we obtain
2.+ 2 =1+ goa).

Hence

S 4+ 3 < (loge) for ¢>e™V? (ie., ¢ = 12)
a; &3

From here the assertion follows.
LemMA 2: Let 0 < 6 = 1 and t > 0, then, for z = §,

<1 — tlog x + [367"(¢ log 2)7,

where the equality occurs if and only if x = § = 1.
Proor. The result follows directly from the obvious inequality

e < ¥ + (3", orally < R,
(8) V< 14y + EHY forally < R

where y < R and R is any non-negative number, by substituting y = —i log z.
The equality in (8) holds if and only if y = R = 0.

3. Proof of the main result. Consider a discrete memoryless channel with
input alphabet having a (>1) elements and the output alphabet having b (> 1)
elements. Let P(-) be a probability distribution on the elements ¢ of the input
alphabet (¢ = 1, ---, a), and let P(- |7) be a distribution of the elements j
of the output alphabet (j = 1, -+, b) for every ¢ of the input alphabet.



580 SAMUEL KOTZ

As in [1] we start with the r.v. J(P) defined by
- P,j P(4,4) if P(4,5) >0
Pr{J(P, ) = log P Qm} if P(¢,5) = 0,
where P(i, j) = P(j|i)P(s) and Q(j) = ZeP(z’, 7)-

It is well known (e.g., [1]) that the capacity C of a channel is defined by
C = supp EJ(P), where the supremum taken over all possible input distribu-
tions, is actually attained for some P = B. We choose in the definition of the
r.v. J the input distribution to be P, so that C = EJ.

The moment generating function of J is given by

(9) E(e™") = 2 P(i,4) [%%%J_t

Lett>0and I, = J1 + -+ + J., where Jg(K = 1, - -+ , n) are independent,
identically distributed random variables with the distribution of J.
From Chebyshev’s inequality it follows that, for any ¢ > 0,

(10) Pr{l, < n(C — o)} < [ E()]™
Let 0 < & < 1 and ¢t < 1. Denoting by Y.’ the sum in the right hand side of
(9) over all 4, j for which P(¢, )/[P(¢)Q(j)] < 8, we obtain

’ A P(i,]) 1—¢ — 1—
%: P(%J) (m) ;5 P(2)Q() &

Denoting by 2.” the sum in the right hand side of (9) over all ¢, j for which
P(3,7)/IP(i)Q(j)] > & and using Lemma 2, we have

grr (Z) < o [ -ooe 25

2. PO j
+gr (1 Pfﬁ’&ia)]

Let h(c) = 2.343 for ¢ = 2, h(c) = mi [(10__’5(1_1:—?’—) 2]f0r3$c<11

and h(c) = min {llog (1 + e + ¢)/log cI', [4e + (log ¢)’]/(log ¢)?} for
c = 12,
Since 8 < 1, we obtain, using Lemma 1 and the definition of C,

E@@¥) <1 —tC + h(c)35 ') (log c)® + 8",

where ¢ = min (a, b).
Let 8" = ¢f* (log¢)’, ¢ > 0 and such that ¢f’(log ¢)* < 1 We have

(11) E(") <1 —1tC + 5 {h(c) lgt*(log €)™ =9 4 94} (logc)®.

We minimize the expression in curly brackets of (11) with respect to g. The
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unique minimum is obtained for

(12) Gmin = [R(e)]'Tt/(1 — )]'7"(¢ log ¢)7*.
It can be easily checked that gmia £'(log ¢)® <1 forall ¢ = 2, and for all ¢
such that ¢ < min (3, [A(c)K (¢) (log ¢)*™™"), where
K(t) =2/ — /49" + /(1 = O],

which we shall require soon.
Thus, since 2(¢) > 1, we obtain from (11) and (12)

(13) E@™) £ 1 — tC + 3’h(c)K(t)(log c)*".

K (t) tends to 1 as t — 0 and the approach is monotonic starting from ¢ = 0.5100.
Using the inequality 1 + z < ¢” we obtain from (10) and (13)

(14) Pr{l, < n(C — )} < (¢ leHMOXOIThn,

We shall now assume that ¢ = 3.

Let 0 < ¢ < 1 be given. For each integer ¢ we choose a real number m > 1
such that if ¢ < [mh(c)]™, then K(¢) < D and also {2D(log ¢)? 2Ph@losel TH =1 o
m™. (Clearlym T «andD | lasc T =.)

We set

(15) t =ty = ¢/[h(c)D(log c)* ]
so that & < (2D h(c)(log ¢)*"#*** =™~ < 1, (see Table1).
Next, we define R = C — e and d = 2D h(c)(log ¢)*” 2= ™ (clearly,
d T o withe¢). For0 < e = 3,
(16) R+ (&/d) £ C —[1 — (2d) e
From (16), (14) and (15) we obtain 4
_ né
9(c) (log ¢)*~{DR@ e 2] [ 2
where h(c)D2d/(d — 1) = g(c). (Clearly, gc) | 2asc— ».)
As in [1], we will now apply the basic theorem of Feinstein which states:

For any discrete memoryless channel and for any two positive numbers 6 and
A, with X < 1, any input P(-), and any =, there exists a code (n, N, \) such that

(See [11.)
We set

(17) Pr{I, = nlR + (¢/d)]} = exp{

n€2
= n[R + (fz/d)] and A = 2 exP{ - g(c)(log c)z—{:/[oh(c)(log c)zl)} :

Applying (17) and (18), we obtain for the case of ¢ = 3 the existence of a code
with length N > ¢™° 9 and probability of error
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2
ne i
A = 2exp, — " 0 <o<l
p { g(C)(IOg 6)2 {e/ [Dh(c)(log c)2]} } € 5"

The case ¢ = 2 requires several obvious modifications in the definitions. One of
the possibilities is to set [2D(log ¢)]™ £ m™, to = ¢/[h(c)D log cl, d = 2D h(c)
log ¢ and to redefine
h(c)D2d/(d — 1)

log ¢

g(c) =

This case was treated numerically using the Cornell Computing Center’s
Burrough 220, where also the numerical values of g(¢) for values of ¢ in the
range of 3-25 were computed. The results of these computations are presented
in Table 1.

TABLE 1
The computed values of h(c), m, D, d and g(c) for values of c in the range of 2 25.

i |
c 5 (<) : mb@I | D } d ll £(0)

1 I 1

I H I ] i
2 | 2.343 i 0.1187 | 2. 593 : 8.422 | 19.801
3 1 2000 | 0042 | 1600 | 7.632 | 7.366
4 2.000 ; 0.0232 | 1.351 ' 10.061 ; 5.999
5 | 1.810 [ 0.0168 | 1.264 Io11.387 [ 5.017
6 | 161l | 0013 | 1.219 roo12.087 I a.283
(O 1.486 I 0.0114 | 1.189 1 12.724 } 3.833
8 1.401 ; 0.0099 | 1.165 b 13.410 { 3.529
9 | 1.340 | 0.0087 | 1.148 I 14.088 i 3.312
10 ! 128 | 00077 , 1134 I 14745 |  3.148
12 1 1.088 ; 0.0073 | 1.128 | 14.263 ; 2.638
15 | 1.074 i 0.0055 ! 1.100 I 16.360 I 2.517
18 ! 1.065 | 0.0044 | 1.083 I 18.231 ! 2.440
20 | 1.060 ! 0.0039 ! 1.074 [ 19.379 ! 2.402
% | 1.052 { 0.0030 | 1.060 I 21.964 { 2.336

I am much indebted to Professors J. Wolfowitz and J Kiefer and to Dr. S.
Kantorovitz for their valuable comments.
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