EXPONENTIAL BOUNDS ON THE PROBABILITY OF ERROR FOR A DISCRETE MEMORYLESS CHANNEL

By SAMUEL KOTZ

Cornell University and Bar-Ilan University, Ramat-Gan, Israel

1. Summary. In a paper by Blackwell, Breiman and Thomasian [1, Theorem 3] the following theorem is proved:

For any integer n and for any $0 < \epsilon \le \frac{1}{2}$, such that $C - \epsilon \ge 0$ there exists a code for a discrete memoryless channel with length $N > e^{n(C-\epsilon)}$ and with a bound for the probability of error, $\bar{\lambda} = 2 \exp_{\epsilon} - [n\epsilon^2/(16ab)]$, where C is the capacity of the channel and a and b are the numbers of elements in the input and output alphabets respectively.

In this note we shall replace the bound $2 \exp_{\epsilon}[-n\epsilon^2/(16ab)]$ by the expression $2 \exp_{\epsilon}\{-n\epsilon^2/[g(c)(\log c)^{2-\delta}]\}$, where $c = \min(a, b)$, g(c) is a positive monotonically decreasing function of c, g(c) < 16 for all $c \ge 3$ and approaches 2 asymptotically as $c \to \infty$, and $\delta > 0$ depends on ϵ and c and tends to 0 as either $c \to \infty$ or $\epsilon \to 0$.

2. Preliminary Lemmas.

LEMMA 1. Let

$$P_{ij} \ge 0 \ (i = 1, \dots, a, j = 1, \dots b), \sum_{i,j}^{a,b} P_{ij} = 1, P_i = \sum_j P_{ij}, Q_j = \sum_i P_{ij}$$

and $c = min \ (a, b)$. Then

(1)
$$\sum_{i,j}^{a,b} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_j} \right)^2 \leq \left[\log \left(1 + e + c \right) \right]^2 \text{ for all } c,$$

(2)
$$\sum_{i,j}^{a,b} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_j} \right)^2 \le 2.343 (\log c)^2 \text{ for } c = 2,$$

(3)
$$\sum_{i,j}^{a,b} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_i} \right)^2 \le 2 \left(\log c \right)^2 \quad \text{for} \quad c \ge 3,$$

(4)
$$\sum_{i,j}^{a,b} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_i} \right)^2 \le 4e^{-2} + (\log c)^2 \text{ for } c \ge 12.$$

Proof:

(1). Let

$$s_1 = \{(i, j) \mid 0 \le P_{ii}/(P_iQ_j) < e^{-1}\}$$

 $s_2 = \{(i, j) \mid e^{-1} \le P_{ij}/(P_iQ_j) \le e\}$
 $s_3 = \{(i, j) \mid P_{ij}/(P_iQ_j) > e\}$

and let $S = \sum P_{ij} \{\log [P_{ij}/(P_iQ_j)]\}^2$. Then

Received August 23, 1960.

577

(5)
$$S \leq \sum_{e_1} P_{ij} f\left(\frac{P_i Q_j}{P_{ij}}\right) + \sum_{e_2} P_{ij} f(e) + \sum_{e_3} P_{ij} f\left(\frac{P_{ij}}{P_i Q_j}\right),$$

where $f(x) = (\log x)^2$, convex for $x \ge e$.

Since the arguments of f in (1) are all $\geq e$, $S \leq f(K)$, where

$$K = \sum_{s_1} P_{ij} \frac{P_i Q_j}{P_{ij}} + \sum_{s_2} P_{ij} e + \sum_{s_3} \frac{P_{ij}^2}{P_i Q_i} \ge 1,$$

since $K = \sum_{i,j} P_i Q_j x_{ij}$, where all x_{ij} are ≥ 1 . However,

$$\sum_{s_1} P_{ij} \frac{P_i Q_j}{P_{ij}} \le 1; \qquad \sum_{s_2} P_{ij} \le e$$

and

$$\sum_{e_3} \frac{P_{ij}^2}{P_i Q_j} \leq \sum_{i,j} \frac{P_{ij}}{P_i} = \sum_{i=1}^a \frac{1}{P_i} \left(\sum_j P_{ij} \right) = a,$$

and similarly $\sum_{s_3} P_{ij}^2/(P_iQ_j) \leq b$. Since f(x) is monotonically increasing for $x \geq 1$, the result follows

(2) and (3). Consider $f(P_1, \dots, P_n) = \sum_{i=1}^n P_i (\log P_i)^2$, where $P_i \ge 0$ and $\sum_{i=1}^n P_i = 1$.

Using the method of Lagrange multpliers we easily find the unique maximum of this function for the case n > e (i.e., $n \ge 3$) to be $(\log n)^2$, which is attained for $p_i = n^{-1} (i = 1, \dots, n)$. Let, now,

(6)
$$S = \sum_{i,j} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_j} \right)^2 = \sum_j Q_j \sum_i \frac{P_{ij}}{Q_j} \left(\log \frac{P_{ij}}{Q_j} \right)^2 - 2 \sum_{i,j} P_{ij} \left(\log \frac{P_{ij}}{Q_j} \right) (\log P_i) + \sum_i (\log P_i)^2 \cdot P_i.$$

From the above it follows that the first and the last terms of (6) are $\leq (\log a)^2$ and the second is non-positive. Hence, owing to the symmetry of S in i and j, the assertion (3) follows.

(2) follows immediately by using the same method and considering the function $x(\log x)^2 + (1-x)[\log(1-x)]^2$ for $0 \le x \le 1$.

$$s_{1}^{*} = \{(i, j) \mid 0 \leq P_{ij}/(P_{i}Q_{j}) \leq 1\}; \qquad s_{2}^{*} = \{(i, j) \mid 1 < P_{ij}/(P_{i}Q_{j}) \leq e\};$$

$$s_{3} = \{(i, j) \mid P_{ij}/(P_{i}Q_{j}) > e\}.$$

Let $f(x) = (\log x)^2 (x > 0)$; $h(x) = x \log^2 x (x \ge 0)$ and $g_K(x) = x \log^2 (x/K) - x (x \ge 0, K\text{-integral})$.

It is easily seen by elementary methods that

$$\max_{0 \le x \le 1} g_K(x) = g_K(1) = (\log K)^2 - 1 \text{ for } K > e^{1+\sqrt{2}}$$

and

$$\max_{0 \le x \le 1} h(x) = 4e^{-2}.$$

Now

$$\begin{split} \sum_{s_{1}^{*}} P_{ij} \left(\log \frac{P_{ij}}{P_{i}Q_{j}} \right)^{2} &= \sum_{i} P_{i}Q_{j} h\left(\frac{P_{ij}}{P_{i}Q_{j}} \right) \leq 4e^{-2} \cdot \sum_{s_{2}^{*}} P_{ij} \left(\log \frac{P_{ij}}{P_{i}Q_{j}} \right)^{2} \\ &\leq \max_{s_{2}^{*}} f\left(\frac{P_{ij}}{P_{i}Q_{j}} \right) \sum_{s_{2}^{*}} P_{ij} = \sum_{s_{2}^{*}} P_{ij} \leq 1 - \sum_{s_{3}} P_{ij} = 1 - \alpha, \text{ say,} \end{split}$$

since f(e) = 1 and this function is monotonically increasing on s_2^* .

Moreover $\sum_{s_3} P_{ij} \{ \log [P_{ij}/(P_iQ_j)] \}^2 = \alpha \sum_{s_3} [P_{ij}/\alpha] f[P_{ij}/(P_iQ_j)],$ and, since f is convex on s_3 , we have

$$\sum_{s_3} P_{ij} \left(\log \frac{P_{ij}}{P_i Q_j} \right)^2 \le \alpha f \left(\frac{\alpha}{\theta} \right) \quad \text{where} \quad \theta = \sum \frac{P_{ij}^2}{P_i Q_j}.$$

Thus

(7)
$$\sum_{s_{\alpha}^{*}} + \sum_{s_{3}} \leq 1 + \left[\alpha f\left(\frac{\alpha}{\theta}\right) - \alpha \right].$$

Now $\theta \leq \min(a, b) = c$, and on s_3 : $e \leq (\theta/\alpha) \leq (c/\alpha)$. Therefore, from the monotonicity of f on s_3 , it follows that

$$f(\alpha/\theta) = f(\theta/\alpha) \le f(c/\alpha) = f(\alpha/c).$$

From the definition of $g_{\kappa}(x)$ and (7) we obtain

$$\sum_{s_0^*} + \sum_{s_3} \leq 1 + g_c(\alpha).$$

Hence

$$\sum_{s_2^*} + \sum_{s_3} \le (\log c)^2 \text{ for } c > e^{1+\sqrt{2}}$$
 (i.e., $c \ge 12$)

From here the assertion follows.

LEMMA 2. Let $0 < \delta \le 1$ and t > 0, then, for $x \ge \delta$,

$$x^{-t} \le 1 - t \log x + \left[\frac{1}{2}\delta^{-t}(t \log x)^2\right],$$

where the equality occurs if and only if $x = \delta = 1$.

Proof. The result follows directly from the obvious inequality

(8)
$$e^{y} \leq 1 + y + (\frac{1}{2}e^{R})y^{2}, \qquad \text{for all } y \leq R,$$

where $y \leq R$ and R is any non-negative number, by substituting $y = -t \log x$. The equality in (8) holds if and only if y = R = 0.

3. Proof of the main result. Consider a discrete memoryless channel with input alphabet having a (>1) elements and the output alphabet having b (>1) elements. Let $P(\cdot)$ be a probability distribution on the elements i of the input alphabet $(i=1, \dots, a)$, and let $P(\cdot | i)$ be a distribution of the elements j of the output alphabet $(j=1, \dots, b)$ for every i of the input alphabet.

As in [1] we start with the r.v. J(P) defined by

$$\Pr\left\{J(P;i,j) = \log \frac{P_{(i,j)}}{P_{(i)}Q_{(j)}}\right\} = P(i,j) \qquad \text{if } P(i,j) > 0 \\ \text{if } P(i,j) = 0,$$

where P(i, j) = P(j | i)P(i) and $Q(j) = \sum_{i} P(i, j)$.

It is well known (e.g., [1]) that the capacity C of a channel is defined by $C = \sup_{P} EJ(P)$, where the supremum taken over all possible input distributions, is actually attained for some $P = \bar{P}$. We choose in the definition of the r.v. J the input distribution to be \bar{P} , so that C = EJ.

The moment generating function of J is given by

(9)
$$E(e^{-Jt}) = \sum_{i,j} P(i,j) \left[\frac{P(i,j)}{P(i)Q(j)} \right]^{-t}.$$

Let t > 0 and $I_n = J_1 + \cdots + J_n$, where $J_K(K = 1, \cdots, n)$ are independent, identically distributed random variables with the distribution of J.

From Chebyshev's inequality it follows that, for any $\epsilon > 0$,

(10)
$$\Pr\{I_n \le n(C - \epsilon)\} \le [e^{t(C - \epsilon)} E(e^{-tJ})]^n.$$

Let $0 < \delta < 1$ and t < 1. Denoting by \sum' the sum in the right hand side of (9) over all i, j for which $P(i,j)/[P(i)Q(\overline{j})] \leq \delta$, we obtain

$$\sum_{i,j}' P(i,j) \left(\frac{P(i,j)}{P(i)Q(j)} \right)^{-t} \leq \sum_{i,j} \delta^{1-t} P(i)Q(j) = \delta^{1-t}.$$

Denoting by \sum'' the sum in the right hand side of (9) over all i, j for which $P(i,j)/[P(i)Q(j)] > \delta$ and using Lemma 2, we have

$$\sum_{i,j} P(i,j) \left(\frac{P(i,j)}{P(i)Q(j)} \right)^{-t} < \sum_{i,j} P(i,j) \left[1 - t \log \frac{P(i,j)}{P(i)Q(j)} + \frac{\delta^{-t}}{2} t^2 \left(\log \frac{P(i,j)}{P(i)Q(j)} \right)^2 \right].$$

Let h(c) = 2.343 for c = 2, $h(c) = \min \left[\left(\frac{\log (1 + e + c)}{\log c} \right)^2, 2 \right]$ for $3 \le c \le 11$ and $h(c) = \min \left\{ [\log (1 + e + c)/\log c]^2, [4e^{-2} + (\log c)^2]/(\log c)^2 \right\}$ for $c \geq 12$.

Since $\delta < 1$, we obtain, using Lemma 1 and the definition of C,

$$E(e^{-tJ}) < 1 - tC + h(c)(\frac{1}{2}\delta^{-t}t^2)(\log c)^2 + \delta^{1-t},$$

where $c = \min(a, b)$. Let $\delta^{1-t} = qt^2 (\log c)^2$, q > 0 and such that $qt^2 (\log c)^2 < 1$. We have

(11)
$$E(e^{-tJ}) < 1 - tC + \frac{t^2}{2} \{h(c) \left[qt^2(\log c)^2\right]^{-t/(1-t)} + 2q\} (\log c)^2.$$

We minimize the expression in curly brackets of (11) with respect to q. The

unique minimum is obtained for

(12)
$$q_{\min} = [h(c)]^{1-t} [t/(1-t)]^{1-t} (t \log c)^{-2t}.$$

It can be easily checked that $q_{\min} t^2 (\log c)^2 < 1$ for all $c \ge 2$, and for all t such that $t \le \min \left(\frac{1}{4}, [h(c)K(t)(\log c)^{2-t}]^{-1}\right)$, where

$$K(t) = 2^{t}(t)^{-2t} \{ [(1-t)/t]^{t} + [t/(1-t)]^{1-t} \},$$

which we shall require soon.

Thus, since h(c) > 1, we obtain from (11) and (12)

(13)
$$E(e^{-tJ}) \le 1 - tC + \frac{1}{2}t^2h(c)K(t)(\log c)^{2-t}.$$

K(t) tends to 1 as $t \to 0$ and the approach is monotonic starting from t = 0.5100. Using the inequality $1 + x \le e^x$ we obtain from (10) and (13)

(14)
$$\Pr\{I_n \leq n(C - \epsilon)\} \leq \{e^{-\epsilon t} e^{(\frac{1}{2}t^2)h(c)K(t)(\log c)^{2-t}}\}^{n}.$$

We shall now assume that $c \geq 3$.

Let $0 < \epsilon \le \frac{1}{2}$ be given. For each integer c we choose a real number m > 1 such that if $t \le [mh(c)]^{-1}$, then $K(t) \le D$ and also $\{2D(\log c)^{2-[2Dh(c)\log c]^{-1}}\}^{-1} \le m^{-1}$. (Clearly $m \uparrow \infty$ and $D \downarrow 1$ as $c \uparrow \infty$.)

We set

$$(15) t = t_0 = \epsilon/[h(c)D(\log c)^{2-t}]$$

so that $t_0 < \{2D \ h(c) (\log c)^{2-[2Dh(c)\log c]^{-1}}\}^{-1} < \frac{1}{4}$, (see Table 1). Next, we define $R = C - \epsilon$ and $d = 2D \ h(c) (\log c)^{2-[2h(c)D(\log c)^2]^{-1}}$ (clearly, $d \uparrow \infty$ with c). For $0 < \epsilon \le \frac{1}{2}$,

(16)
$$R + (\epsilon^2/d) \le C - [1 - (2d)^{-1}]\epsilon.$$

From (16), (14) and (15) we obtain

(17)
$$\Pr\{I_n \leq n[R + (\epsilon^2/d)]\} \leq \exp\left\{-\frac{n\epsilon^2}{g(c)(\log c)^{2-\{\epsilon/[Dh(c)(\log c)^2]\}}}\right\},$$

where
$$h(c)D2d/(d-1)=g(c)$$
. (Clearly, $g(c)\downarrow 2$ as $c\to\infty$.)

As in [1], we will now apply the basic theorem of Feinstein which states:

For any discrete memoryless channel and for any two positive numbers θ and λ , with $\lambda \leq 1$, any input $P(\cdot)$, and any n, there exists a code (n, N, λ) such that

$$(18) N > e^{\theta}[\lambda - P_{\tau}[I_n(P) \leq \theta]]$$

(See [1].)

We set

$$\theta = n[R \,+\, (\epsilon^2/d)] \text{ and } \lambda = 2 \exp\left\{\,-\, \frac{n\epsilon^2}{g(c)(\log c)^{2-\{\epsilon/[Dh(c)(\log c)^2]\}}}\right\}.$$

Applying (17) and (18), we obtain for the case of $c \ge 3$ the existence of a code with length $N > e^{n(C-\epsilon)}$ and probability of error

$$\lambda = 2 \exp_{\epsilon} - \left\{ \frac{n\epsilon^2}{g(c)(\log c)^{2-\{\epsilon/[Dh(c)(\log c)^2]\}}} \right\} \quad \text{for } 0 < \epsilon \le \frac{1}{2}.$$

The case c=2 requires several obvious modifications in the definitions. One of the possibilities is to set $[2D(\log c)]^{-1} \le m^{-1}$, $t_0 = \epsilon/[h(c)D\log c]$, d=2D $h(c)\log c$ and to redefine

$$g(c) = \frac{h(c)D2d/(d-1)}{\log c}.$$

This case was treated numerically using the Cornell Computing Center's Burrough 220, where also the numerical values of g(c) for values of c in the range of 3-25 were computed. The results of these computations are presented in Table 1.

TABLE 1

The computed values of h(c), m, D, d and g(c) for values of c in the range of 2 25.

c	h(c)	[m h(c)] ⁻¹	D	d	g(c)
2	2.343	0.1187	2.593	8.422	19.891
3	2.000	0.0421	1.600	7.632	7.366
4	2.000	0.0232	1.351	10.061	5.999
5	1.810	0.0168	1.264	11.387	5.017
6	1.611	0.0136	1.219	12.037	4.283
7	1.486	0.0114	1.189	12.724	3.833
8	1.401	0.0099	1.165	13.410	3.529
9	1.340	0.0087	1.148	14.088	3.312
10	1.293	0.0077	1.134	14.745	3.148
12 ¦	1.088	0.0073	1.128	14.263	2.638
15 ¦	1.074	0.0055	1.100	16.360	2.517
18	1.065	0.0044	1.083	18.231	2.440
20	1.060	0.0039	1.074	19.379	2.402
25 ¦	1.052	0.0030	1.060	21.964	2.336

I am much indebted to Professors J. Wolfowitz and J. Kiefer and to Dr. S. Kantorovitz for their valuable comments.

REFERENCE

[1] DAVID BLACKWELL, LEO BREIMAN AND A. J. THOMASIAN, "The capacity of a class of channels," Ann. Math. Stat., Volume 30 (1959), pp. 1229-1241.