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1. Introduction and summary. Pillai and Mijares [7] gave the exact expressions
for the first four moments of the sum of s non-zero roots of a matrix occurring
in multivariate normal analysis as studied independently by R. A. Fisher [3],
P. L. Hsu [4] and S. N. Roy [9]. In this paper some properties of completely
homogeneous symmetric functions and certain determinantal results (Section 2)
are used to give an inverse derivation of those moments (Section 4). The method
is further extended to the moments in general of elementary symmetric functions
(e.s.f.) of the roots of a matrix in multivariate analysis (Section 6) through the
use of certain properties of compound matrices (Section 5).

2. Some results to be used in Sections 4 and 6. Define the completely homo-
geneous symmetric function (c.h.s.f.) of the pth degree in k arguments by
(2.1) Go(xr, -, m) = > afaf? - alh,

P (p)

where 2 extends over all partitions P, of a non-negative integer p = >k ipe.
Define further ¢ = 1 and ¢,» = 0if p’ < 0.
LemmMa 1.

Gp(@1, @) = ¢p(T1, o0, Tia, Tiga, wo 0, T) + Tidpa(Tr, o, Th).

Proor. Partition ¢,(z1, -+, %) into two groups, one group to contain z;
and the other group not to contain z; . Factor out z; from the first group and
take the sum of the two groups.

LeMMma 2.

(@irs — T)ppa(T1, =+, T2)
= ¢p(x1; cer X1y, Ligr, ,a;k)
— p(@1, o, Ty, Tigin, Tipitn, C 0, Tk
Proor. Use Lemma 1 separately for the z,.; and x; arguments on
¢P(xl y T xk);

take the difference of the two resulting equations, and transpose the term
(Tiyj — i)pp1(x1, -+, %) to the left of the equality sign.
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THEOREM. Let ry 5% 12 # -+ 1, be non-negative powers of the x’s in the suc-
cessive columns of the k-order determinant given below and let ¢; be the c.h.s.f.
in all k arguments. Then

(22) ‘xI:];i—H‘ =D I¢1‘j—k+i I, z’] = 1, cee, k,
where
(2.3) D = |27l |

and iy, bkt xh=3 11 are the (3, 7)th elements of the square matrices (x.i41),
(@rj—tti), (ii41), respectively.

Proor. Perform the following elementary operations on the left determinant
of (2.2): ¢th row — kth row,7 = 1, -+, k — 1. Use Lemma 2 for two argu-
ments to factor out x;z_;1; — 2; from the sth row. The result is

k
(24) q (x = m1) - lbrjrprir (@, Tpirpr)|, 7,5 =1,k
j=

where ¢, 1o (21, Tp_sr41) is the (7', j')th element of |¢, ' —piir(1, T i)l
Thus, the determinantal expression in (2.4) has c¢.h.sf. in two arguments for
its elements, except for the elements in the last row which have x; only as argu-
ment.

Next, repeat the operation on the determinant of (2.4) with sth row —
(k — 1)throw,72 =1, ---, k — 2 and use Lemma 2 for three arguments this
time in factoring out xx_,41 — @, from the sth row as the resulting determinant.
Repeat the operation until finally we have 1st row — 2nd row and the same
lemma is used but for & arguments. After factoring out x; — % from the last
determinant, the expression (2.4) reduces finally to

(25) H (xi - xi) 'l¢rj'—k+i’(x1 y Loy * 0, xk—i’+l)l; i’yj, = 17 et 7k)
i>j
with the 7th row of elements ¢,;’ i+« containing arguments z, , x2, * -, Te—ir41 -

The product [[i>; (#; — ;) is equal to a determinant of Vandermonde and
given directly by (2.3). The determinantal part of (2.5) can be reduced into a
determinant in the ¢’s, with complete arguments x, , - - - , zx , by the repeated
application of Lemma 1. Take any element at the intersection of the ¢th row,
i=2,---,k, and a given jth column of the determinant in (2.5), and note that

(2.6) Grj—eti(@1, * - y Tpmit1) + Trmipobri—itio(T1, o0, Tuita)

= ¢rjp+i(T1, =, Tumiz)
after using Lemma 1 for ¥ — ¢ 4+ 2 arguments. Hence, perform ¢th row -+
Tr—iya- (¢ — 1)th row successively for 7 = k, k — 1, ---, 2 in the order given
and use Lemma 1 on k — ¢ + 2 arguments. This increases by one the number of
arguments of the ¢’s in each row. Now, perform sth row + @443+ (¢ — 1)th row
fori =k, k—1,---,3and use Lemma 1 on k — ¢ 4+ 3 arguments, ete., until
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finally we have (k — 1)th row + z;-kth row with Lemma 1 used for k arguments.
This completes all the arguments in every ¢ of the determinant in (2.5).

3. The mathematical expectation of the sum of the roots. The well-known
distribution of the s non-zero roots obtained independently by R. A. Fisher
[3], P. L. Hsu [4] and S. N. Roy [9] can be written [7] in the form

(6, -+, 8,) = c(s,m,n) 1;110?(1 - 0¢)”I>Ij(0¢ — 0;),

0<6<---56,<1,

(3.1)

where m and n have various interpretations which depend on the null-hypothesis
[6] and '

h T{i@2m +2n + s+ ¢+ 2)}
(3.2) c(s,m,n) = LI] T{i@m + ¢+ 1)IT{ZCn + 7 + 1)}T ()

Denote the sum of the roots 3.2 6; by V{”, the subscript 1 indicating the first
e.s.f. (Pillai uses the V® notation.) Then the mathematical expectation of
exp(tV®) can easily be shown to take the determinantal form

E("7) = f . .ff(gl’ R DA I:[ do;

(3.3)

02

1 0,
= ¢(s,m,n) f dé, f Abp-q -+ - dé,
o o

0
: Io?ji‘-l-_lj(l - 0¢~1'+1)new‘_‘+ll ’ 17.7 =1,

where the (i, j)th element of the determinantal expression is given by
g+ (1 — 6,_ip1)"e*—+!, by first noting that the product II:i(6: — 6;) of
f(8y, -+, 8,) is a Vandermonde determinant like (2.3) and then multiplying
the ith row of this determinant by 6™ ;41(1 — 6,_ipa) €=+, 4 = 1, -+, s.

Now, denote (3.3) by U(m + s — 1, ---, m; n; ¢) and more con-
venient:ly by U(s — 1, s — 2, - -+, 0) with the m’s and # omitted when ¢ = 0.
To obtain in general the moments of the sum of the roots in determinantal form,
U(m+s—1,---,m;n; t) is differentiated [5, 8] successively with respect to
t and ¢ is set equal to zero after each differentiation. The lower-order moments
through the fourth moment are given by equations (3.2) through (3.5) of [8].
For the purpose of this paper, the third moment is reproduced below with ye®
changed to V{”,

E[(V§s))3] = 6(8, m, n)[U(s+ 2,8s —2,8—3, -, 1, 0)
(34) +2U0(s+1,s—1,8—3,---,1,0)
+ U(s,s—1,8—2,8s—4,---,1,0)].

4. An alternative derivation of the moments of V{”. We indicate in this sec-

tion an alternative way to derive the moments of V{”, and we extend this method



SYMMETRIC FUNCTIONS OF MULTIVARIATE ANALYSIS 1155

later in Section 6 to obtain the moments of V{?, the jth e. s. f. of s roots, which

are not yet available in the current literature except for j = 1 and s.

Consider the classes of functions of 6, , - -, 6, of form
(4.1) U(gs, Qoo == v 5 @1 3 8) = [00555" 5, ¢,> - > g2 m,
where 7,5 = 1, --- , s, and are respectively the indices of the rows and columns

of the determinantal expression. Denote those of form (4.1) for ¢ = 0 and
g; = ¢; — msimply by U'(¢s, ¢o=1, -+, q1). Then U(m + s — 1,m + s — 2,
-«-,m;n;t) of Section 3, i.e., (3.3), may be rewritten as

02

1 0s 0g_1
c(s,m,n) f de, [ do,,_lf e de,
o o o

0

(42) : \
Umts—1,--,m0)- IT (= 0"

The class U(gs, @s—1, -+ , @1 ; n; t) of functions of 6, , - - -, 6, generated by the
successive differentiations of U(m + s — 1, m + s — 2, -+, m; n; ¢) with
respect to ¢ can be represented by the class U'(¢s, @o—1, -+ , ¢1 ; ¢) of functions
generated by successive differentiations of U'(m + s — 1, - -+ , m;t).

Since U'(m + s — 1, - -+, m; t) may be verified to be equal to

IT o7e™i” T1 (6: — 05)

=1 >7
by comparing (3.3) and (4.2),
E(V) = d'/df {E(¢"1")} im0

= cto,mm) [ oo [{[Tor@2y I - 00} (I10 = 00" an),

where the right side of the first equality indicates evaluation of the rth deriva-
tive at t = 0. Obviously, the factor (V{?)" [[i>; (8; — 6;) is a linear combination
of functions in the class U’(q. , goe1, - -+ , ¢1) and so moments of V{” may be
derived alternatively by finding the necessary linear combination in this class
with the aid of the theorem in Section 2 applied in the reverse manner.

To illustrate now the alternative method of obtaining the moments of V
take the case of the third moment given by (3.4). Let ®, be the equivalent
c.h.s.f. of ¢, in Section 2 when the arguments in ’s are replaced by arguments in
@’s. The initial choice of the s-order determinant in the class U’(qs , go1, -+ * ,q1)
is suggested by ® which is equivalent to (V{”)%. Choose the U’-detéerminant
such that we have the elements &;, &, &, &, ---, & along the principal
diagonal. The product of these diagonal elements is ®} since ® = 1 by definition.
We have

(4.3)

(8)
1,
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® P 0 0 0
<I>2 @1 ‘I)o 0 O
‘133 @2 ‘I)l 0 0 -t
(4.4) & B B B ol = & 4+ By — 28, B, .
q)s @s—l (1)3—2 (ps—'i cte q>0

It may be remarked that if the determinant of (4.4) is multiplied by
II:5(6: — 6;) and the theorem of Section 2 is applied, the determinant reduces
toU'(s,s — 1,8 —2,s—4,---,1,0).

We next wish to eliminate the product ®;®, in the right-hand side of (4.4).
This suggests taking the s-order determinant in the U’-class with elements in

the principal diagonal given by ®; , &, ,®,, -+ - ,®,. Thus
&% & O 0
o2 P, 0 0
(4:.5) @4 q)z ‘I’() 0 = ‘I’l ‘I’z - q)g.
@s-;-l ‘I)s——l q)s——3 e ‘I)O
By the saine principle as (4.4) above, the left determinant of (4.5) can be re-
ducedto U'(s + 1,s — 1,8 — 3, - -+, 1,0). Finally, after inspecting right sides
of (4.4) and (4.5), we need
& 0 o --- 0
& ¥ 0 .- 0
(4.6) ‘195 ‘I’] ‘I’g 0 = ‘193 y
q)s+2 q>s—2 q)s—:i e @0
which gives U'(s + 2,s — 2,s —3, - -+, 1, 0). Combining properly the right-
hand sides of (4.4) through (4.6), we see the equivalence
4.7) ®} = (B} + B3 — 2BDs) + 2(PPy — B;) + B .

Now multiply (4.4) through (4.6) by [[i— 67(1 — 6:)™ [[>; (6: — 6;) and
integrate over proper limits. We have

E(<I>1)3=c(s,m,n)f-'-f{U’(s,s—1,s—2,s—4,~~-,1,0)

(4.8) +2U(s+1,s—1,s—3,---,1,0)
+U(s+2,s—2,8s—3,---,1,0)} {HO?(l — 6:)" db;},
which reduces to (3.4) after noting how the U-class there and the U’-class here

have been defined. It may be remarked that the linear combination in the U’-
class is really (Vi”)*[]:>; (8: — 6;) by comparison with (4.3).



SYMMETRIC FUNCTIONS OF MULTIVARIATE ANALYSIS 1157

5. The kth compound of a matrix. In order to extend our results to the mo-

ments of V§”,7 = 2, ---, s, we need an important property of compound ma-
trices.

Consider the expansion of [H’ﬁ_l (1 — z#)]" into a power series
(5.1) I —az)] " =14+t + " + -+ + " + ---

where ¢; is a c¢.h.s.f. in k arguments. Let a; = > @ - z; be the Jthesf. with &
arguments in z’s. Multiplying bothsides of (5.1) by II: (1 —z) = D50 (—=1)7
a;t’ and equating coefficients, we have

¢ — m =0
¢ — d1a; + ay =0
(52) ¢3 — 201 + ¢102 — a3 =0

¢ — dprar + - + (=)' = 0.
If we define two (k£ + 1)th order triangular matrices by

a 0 P 0
(a) — —al ao . e O
(_l)kak (—l)k_lak—1 IR /)

% 0 -+ 0

¢1 ¢ -+ O

(¢) =

................

b D1 - o

where ay = ¢o = 1, then it may be checked that an alternative form of (5.2) is

(5.3) (a)(¢) = (¢)(a) =1

where I is a unit matrix of order (k + 1).

Now, consider the kth compound of a matriz (b), denoted by (b)®, defined
by a matrix whose elements are k-order minors of det(b) arranged in Aitken’s
lexical sense (see [1], p. 90), i.e., minors which come from the same group of k&
rows from (b) are placed in the same rows in (b)*, the order being decided by
the columns of (b) that the minors contain in the same manner that words are
arranged in a dictionary. For instance, the minor containing columns 1, 3, 4 of
(b) is preceded in the row of (b)® by those minors containing columns 1, 2,
g for ¢ = 3. The same definition holds if the words row, rows are replaced by
words column, columns, respectively, and vice versa.

Further, define the kth adjugate compound of (b), denoted by adj® (b), as the
transpose of the matrix formed from (5)*® after replacing every element in
()® by its cofactor in [b].

It may be noted that from the way (5)® and adj®(b) are defined above,
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®)® = (b) and adj®(b) = adj(b). Furthermore, every element in the product
(0)® adj® (b) is a Laplace Development according to k-ordered minors and their
cofactors in det(b). It may be checked easily that only the diagonal elements in
the product (b)® adj ®(p) are expansions in minors by their algebraic comple-
ments (for definition, see [2], p. 23) and each is equal to det(d). The off-diagonal
elements are sums of products of minors by the algebraic complements of some
other minors and each sum is therefore equal to zero. Hence, if (b) is of order n,

(5.4) (0)®adj® () = Pp| 1,

where I is a unit matrix of order n!/{k!(n — k)1}.

Consider now the product (a)(¢) in (5.3). On applying the Binet-Cauchy
theorem (see [1], p. 93) and multiplying both sides of the equation by (adj(a))®,
we have :

(5.5) (®)®(a)®(adj(a))® = (adj(a))“L

It may be recalled that (a) adj(a) = |a|I and by the Binet-Cauchy theorem, the
kth compound is

(5.6) (@)®(adj(a))® = |al'L
Furthermore, comparing (op. cit., p. 98) the equality in (5.6) with (5.4) after
replacing (b) by (a), we have

(5.7) (adj(@))® = |al""adj® (a).
Using (5.6) and (5.7) and noting that |a| = 1, (5.5) reduces finally to
@)* = (adj(a))®
= adj®(a).
From the nature of the construction of (¢)* and adj® (a), the last equality of

(5.8) reveals an inner relationship of minors of |¢| and |a| which plays a key role
in the next section.

If the columns of elements of (¢)®”, which are k’-order minors of (k + 1)-
order determinant |¢|, are labelled by their highest suffixes occurring in the
columns and if the same method of labelling is used for the elements of adj*” (a)
which are (k + 1 — k’)-order minors of |a|, then the two sets of suffixes form a
bicomplementary set with respect to the highest index. Specifically, we restrict
our use of (5.8) only to those minors with consecutive suffixes in the columns.

For example, if an element of (¢)® has column indices labelled 4, 2, 1 then
the indices missing in the sequence of numbers 4, 3, 2, 1, 0 are 3, 0. Thus the
complementary indices with respect to the highest index 4 in the corresponding
adj®(a) have labels 1, 4 in reverse order. Hence,

¢ ¢ O
b3 b1 do| =
by ¢ 1

(5.8)

—ag Qo

Qy — a1
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6. The mathematical expectations of the e.s.f.’s. From the property (5.8)
and the theorem in Section 2, the inverse derivation of the moments of the first
e.s.f. of s roots may now be extended to any e.s.f. As an illustration, take the
second moment of the second e.s.f. for the case of s = 3.

If the arguments in #’s of the ¢’s and a’s of Section 5 are now replaced by
arguments in ¢’s, then ¢; — ®; and a; — V¥ = V,, say, with superscripts
omitted if the meaning is clear from the context. The second moment suggests
taking the V-determinant with V;, V in the principal diagonal so that the corre-
sponding ®-determinant is of order 3 (since s = 3). Thus

Vo =T
Vi W

(6.1) A

which suggests to add to (6.1) a V-determinant with V; , V3 in the principal
diagonal. Thus, we have only

V. Vi

(6.2)
Vs Vs

Vs T
P
since V4 = 0 in the case of s = 3. Using (5.8) the equivalent ®-determinants of
the V-determinants are

P & 0 d & 0
(6.3) o P 0|+ |2 & &

d P; P d & P

on noting that the subscripts (in reverse order) of the last rows of the V-deter-
minants form a bicomplementary set with respect to the highest index 4 with
the missing subscripts in the last rows of the ®#-determinants.

The next obvious step to find E[(V5?)?] is to employ directly the method of
Section 4 on (6.3). This gives

B(VEY] = o3,m,m) [+ [ (U/(4,3,0) + U(4, 2, D{I] 671 — 0" doi}

= ¢(3,m,n)[U4,3,0) + U(4,2,1)].

The author is presently tabulating the lower-order moments of V§”, ¢ = 2, 3, 4
and s = 2, 3, 4 for values of 2m = —1(1)10(10)60(20)120 and 2n = 10(10)200.
The results will be reported at some future time.
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