ON THE MONOTONIC CHARACTER OF THE POWER
FUNCTIONS OF TWO MULTIVARIATE TESTS!

By S. N. Roy anp W. F. MIKHAIL

Unaversity of North Carolina

1. Summary and introduction. The largest characteristic root has been pro-
posed in [2] as a test statistic in (i) the multivariate analysis of variance test,
and (i) testing that two sets of variates are independent. In this paper it is
shown that, in each case, the power function is a monotonically increasing func-
tion of each non-centrality parameter, separately. This property was stated in
[2] without proof. This provides a stronger result than would be obtained by any
direct use of Anderson’s Theorem [1] which implies that the power function
increases when all the roots are simultaneously increased in the same ratio. The
proof of the monotonocity property for the multivariate analysis of variance is
given in Section 3, and in Section 4 it is shown how the proof is modified for
testing independence between two sets of variates.

2. Preliminaries for the multivariate analysis of variance situation. Let u, s
and n denote respectively the “effective” number of variates, the degrees of
freedom of the hypothesis and the degrees of freedom for the error and let
t = min (u, s). Then, with X = [z;;]:u X sand Y = [y;;]:u X n, the canoni-
cal form for the d.f. in the multivariate analysis of variance model was ob-
tained in [2, p. 86] to be

[1/(27r)§uks+n)]
1 ( u n 12 u U 8
© exp [—— {Z 2o 2 (e — 0" 4+ 2 a2 2 xfj}]
(2.1) 2 i1 j=1 1=1 1=t+1 =1 js€i=1
: day; [T I1 dyii = Q dX dY,
i=1 j=1 i=1 j=I

and the acceptance region of size 1 — « for the linear hypothesis H, of analysis

of variance, i.e., for the case 6, = 6, = .-+ = 6, = 0, can be expressed as
(2:2) D = {X, Yieu[(XX')(YY)T] < 4},

where u is given by

(2.3) PIX,YeD|6is =0] =1 — q

and where the 62’s are the non-centrality parameters defined in [2, pp. 85-86],
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and c;(A) denotes the largest characteristic root of the (square) matrix A.
The problem now is to prove that the integral, P[X, Ye D] =[5 Q dX dY is a
monotonically decreasing function of each 67 , separately. If we regard the do-
main D as one of dimensionality u s +  n, where u s dimensions are associated
with X and u n with Y, then it is clear that we can rewrite this integral as

f const. exp [—% (Z i vii + ‘Z: Zs: xf,)] dX dy
(2.4) o* - i=1 j=1 i=1 j=1 V
- /5) Q*dX dY, (say),

where D* is merely the domain 9 translated by 6; along z;;, that is, along the
sith axis (with ¢ = 1,2, --- | t). Notice that if, in the integral (2.4), we replace
the domain D* by D, the integral over the new domain becomes equal to 1 — a,
where « is the probability of the first kind of error. Let

(2.5) YY = (V1)

where V is a v X u triangular matrix with zeros above the main diagonal. Ob-
serve that

eul (XX) (YY) 7] = eal(XX')(V'V)] = cul(VX) (VX))

and rewrite (2.2), that is, the domain D as
(2.6) D = {Y, X:cu[VX(VX)] = u}.

Notice that V is a function of Y given by (2.5).

The problem now can be rephrased in the following way. How does the in-
tegral of @* given by (2.4) over the domain D given by (2.6) change under
successive translations of 6, along xi;, of 6, along x5, - - -, 0, along x. ? It is
clear that the successive changes are cumulative. It will be also seen from the
mechanics of the demonstration that if we can prove that the integral decreases
for the first shift of ©, namely, by 6; along z;; , then the general theorem itself
will be proved.

3. Proof of the monotonicity property for the multivariate analysis of variance
situation. The proof is developed in three main steps discussed in the following

subsections. .
3.1 The proof for the univariate case. In this case, v = 1 and we can drop the
first subscript in X, Y. The domain D of (2.6) now takes on the form

(3.1.1) D= {x, Y: Z; @ Z Z: yf}
= =
and the integral of Q over this domain takes the final form

(3.1.2) /:;)' exp [—% (i yi + ; x?)] InI dy; JI;II dx; .

=1 j=1
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Notice that now D* is just a shift of D along z; by 6. It is evident from the
form of (3.1.2) that the integral (3.1.2) decreases under this shift if, for any
given set of y;’sforj = 1,2, ..., n,and z;’s, forj = 2,3, --- , s,

a0 1 a 1
(3.1.3) .LH exp [—§ xf] dry < [ exp [—§ xf] dxy,

where a = +[u Drayt — Dieal]; it is clear that it doesn’t matter whether
we take 0 to be positive or negative. It is easy to verify this and also an even
more general result, namely that

a+M

(3.1.4) | (@) da = [ ¢ da,

for all real A and @ > 0, where ¢(z) is a. continuous function of z, symmetric
about 0 and monotonically decreasing with |z | . It is also clear that the left
side of (3.1.3) monotonically decreases with | 8 | .

3.2. The nature of the multivariate domain (2.6). We now characterize D as a
domain in (g, x , *** , Zwu) for fixed values of V, u and X (excluding the first
column). Toward this end, put X* = VX and observe that, if » is any charac-
teristic root of X*X* = S* then

(821) [S* — 4| =0 = |S*| — sty + PPtrpa — -+ — +(—1)"",

where tr; is the trace of the jth order, or in other words, the sum of the jth rowed
principal minor determinants of S*. But, given af; (fori = 1,2, -+, u;j =
2,--+,8),| S*| = | X*X* | is a homogeneous quadratic function of (a1, - - - , zu1)
+ a constant which is really a function of the other z¥’s just mentioned. The
coefficients of the quadratic function are also each a polynomial function of
z¥ys (fori = 1,2, -+ ,u;j = 2,3, -+, s). Likewise, if we take any g-rowed
principal minor determinant of [s};], say the one with rows and columns hum-
bered, 1, 2, ---, g, then that determinant is

* * * *
Ty vt Tie || T ot Tal
qu DAY xqs xl& DI xqs

which, given the other z};’s, is a homogeneous quadratic function of (zfy, - - - , z31)
(in which the coefficients are polynomials in the other z7’s) + a constant
which is really a function of the other z¥7s. Thus, given » and the other z};s,
the equation (3.2.1) in » yields a homogeneous quadric surface in zf; , -+ - , Zu1 .
Now recall from (2.5) that, given y,,’s, that is V, the (1, - - - , 2%;) are linear
functions of (zyu, -+, xu) and likewise (27;, --+, zx;) are linear functions
of (15, -, Tu;), forj = 2, ---, 8. Thus, given » and

xii(fori= 1,2,---,u;j=2,---,s),

the equation (3.2.1) yields a homogeneous quad‘ric surface in (&3, *+*, w) In
which the coefficients and the constant term are all functions of », Y and the
other z;;’s already referred to. This is for any characteristic root ».
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Let us now rewrite (2.2) in the (almost everywhere) equivalent form

D = {X, Y: sup,
(32.2) , ,
(wn+ Gan+ - Gua)’ + - (@ + Gy + - GTw) M}
G+ Gayn+ - Y+ -+ Win + Yo+ - GYun)® T S
where ' = (a2, -+ -, a,). Now, given p, Y and z;’s (for i = 1, --- , u;j =
2, .-+, 8), (3.2.2) represents the domain of (xy, -+, ®u) in an u-dimensional

Euclidean space, the boundary being given by the surface defined by the equality
sign. An equivalent form of the same surface is the homogeneous quadric asso-
ciated with (3.2.1) after » is replaced by u. Next, it is easy to check from the
definition of © and the manner in which the vector (zu, - -, zu) occurs in it
that (3.2.2) implies the following:

(i) (X, Y) ¢ ® implies that ((cx;, Xz), ¥) e D for 0 = ¢ = 1, where X is

decomposed into (x;, X;) such that x; = (#u, -+, Ta) and X is a matrix
with the other elements of X.
(ii) Any straight line passing through the origin (0, ---, 0) has an inter-

section with the domain, of finite length.

Thus, given u, Y and the other z;;’s (already described), (2.2) or (2.6) can
be regarded as a domain of (zyu, -, #.) which is the interior of a u-dimen-
sional ellipsoid whose boundary is given by (3.2.1) after u is substituted for ».
Tt is well known that there is an orthogonal transformation by which the el-
lipsoid can be referred to principal axes, or in other words, the transformed
equation to the surface becomes free from the product terms in the transformed
variables and involves only the square terms with positive coefficients. Let
X, = [tu, *++ , Tw] and

(3.2.3) z = Lx,,

where L:u X u is an orthogonal matrix that transforms the ellipsoid into prin-
cipal axes. This L can be determined and the rows of L, say Taay vy lw), 2 =
1,2, -, u, are the direction cosines of the different principal axes. Note that
7z = xix; . It would be useful to rewrite (2.4), after substitution of ® for D*
and omission of the constant, in the form

620) [ow[ {5 Tob+ 5 N+ Gaf| e [T [T,
D =1 j=1 =1 j=2 =1 1=1 j=2 =1
where, given u, Y and the z;s, the domain D, as a domain in (21, -+, 2u),
forms the interior of an ellipsoid referred to principal axes (that is, in a form
which is free from the product terms of 2’s and involves only the square terms
with positive coefficients). In other words, ® is symmetric about the origin in
each z; separately. A displacement 6; along the direction of z, might be regarded
as the resultant of a displacement I;,6; along z; , that is, along the direction with
cosines (1, hs, -+ , lw), & displacement lx6; along z;, that is, along the direc-
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tion with cosines (la1, b2, - -, leu), and so on, and finally a displacement 7,16,
along z, , that is, along the direction with cosines (11, - - , luu). It should be
remembered that these I;;’s are functions of u, Y and the z,;s of (3.2.4).

3.3 The final step in the proof of the monotonicity property. Looking at (3.2.4)
and using (3.1.4) we observe that a displacement of ® by li:6; along 2, will de-
‘crease the integral under (3.2.4), because, for any given set u, Y, 2;’s and
R2,%, """, %,

a+l110; 1 a 1

(33.1) f exp [—— zf] da < [ exp I:—— zf] dz,

. Y=atinb 2 a 2
where a and I;16, , without any loss of generality, can be assumed to be positive.
Recall that a is a function of u, Y, z;/’s and 2, - - - , 2z, . Using the same argu-
ment for successive displacements by 1516, along 2 , by l;16; along 2; , and so on,
and finally by 1.6, along z, we have successive decreases of the integral. In
other words, the resultant displacement which is along x;; and by 6; decreases
the integral. At this point we go back to the integral over © of @*, forget about
the z;’s, use the result just stated about a displacement by 6, along zy; , apply
successive displacements by 6, along x , 6; along z3; and so on, and finally 6,
along x;; and eventually obtain an integral over the displaced domain D* which
is less than the one over the original domain . It is also clear from the mechanics
of the proof that the integral over D* decreases as each | 0;]|,7 = 1,2, ---, ¢,
increases separately. This proves the monotonicity property.

4. The case of the test for independence between two sets of variates. With
a (p + ¢) set (p £ ¢) of variables let us assume, for a sample of size n + 1
(>p + Q), the canonical distribution law ([2], p. 68)

[1/(21r)%(p+q)n g (1 — p%)nl2:|

P q n
(4.1) - exp l:—% {Z L (@3 + i — 2pimi955) + =Z Z=: y?f}]

i=11_P% i=p+1 j=1
q n

. dx,-j
=1 j=1 =1 j=

dyii )
1

where p;’s are the population canonical correlation coefficients. The hypothesis
of independence H, is equivalent to the hypothesis that p.’s = 0; the acceptance
region (of size 1 — «a) for H, is

(4.2) D = {X, Yieu[(XX)H(XY) (YY) (YX)] £ 4},
where p is given by
PX,YeD|H]=1— a

The monotonicity in this case is proved in exactly the same way as in the
previous case. For this purpose ‘we rewrite the D of (4.2) as
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(4.3) D = {X, Y: ex[(UU)(VV) 7] < i ﬁ ”,i.e., < p* (say)},

and the d.f. of (4.1) as

const. exp [—— <i Zqi (ui; — visti)* + Zq: i ti; + Zp: Z”: vf:’)]

i=1 j=1 i=1 j=1 i=1 j=q+1
(4.4) .
- dUu av [] &7 4T,
1=1
where

vii = pi/ (1 — p})* = 6 (say),

(4.5) . o
(fOI'] = 1727"'72;/‘: 1727"';p)7and7if=07

otherwise, and where T:q X ¢, U:p X ¢, and Vip X (n — q) are related to
(X:p X n, Y:¢ X n) in the following way:

(4.6) Y = TL,

where L:q X n is orthonormal and T is lower triangular. M: (n — ¢) X nis an
orthogonal completion of L, D,; ; p X p stands for a diagonal matrix with
diagonal elements a,, a2, -+, a,, and U and V are given by

(4.7) U =D, 'XL', V= Dy 'XM".

In the transformation from (4.1) to (4.4), M does not occur explicitly, L does,
but is easily integrated out as in [2, pp. 196-197].

The probability of the second kind of error is given by integrating (4.4) over
the domain (4.3). It is easy to see that, aside from the positive constant factor,
this is equivalent to

q

49 [ en[s(EZxa+EEuw+E 5 ) |wallea
where, for any given set of T and V, D* is just © displaced by 6,ty; along uy; , by
Ot along us; and Oate along use , and so on, and finally by 8,t,1 along uy , 8,t,2 along
Upa, * -, Optpp alONg u,, . Notice that when H, is true, that is, when 6, = 0, we
should have D* replaced by D in the integral (4.8). Using the same kind of
argument as in Section 3 it follows that, for any given T, the partial integral
over U and V decreases as D is displaced by 6:¢1; along uy , where #; > 0, almost
everywhere, and with this displacement of ®, it is easy to see that the total in-
tegral (if we now integrate over T) will also decrease. From considerations of
symmetry, the same result would follow for the other displacements in that the dis-
placement associated with any 67 could be represented as a 0,t;; along u;; under a
suitable transformation. Thus (4.15) monotonically decreases as each |6, that
is, each |p;| separately increases.

Concluding remarks. The power functions of the A-criteria for the multi-
variate linear hypothesis and for the test of independence between two sets of
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variates have also somewhat similar monotonicity properties that will be dis-
cussed in a subsequent paper. ’
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