ERRORS IN DISCRIMINATION
By S. Jonn
Indian Statistical Institute, Calcutta

Summary. The probabilities of misclassification involved in the use of esti-
mated discriminant functions are subject to chance variations. The author’s
purpose in this paper is to derive the distribution laws that the probabilities of
misclassification follow and to obtain their expected values. The parent popula-
tions are assumed to be normal. The first part of the paper considers the uni-
variate case and the second part the multivariate case. The discussion of the
multivariate case proceeds in three stages of increasing complexity. When the
exact results are complicated, asymptotic results or approximations are given.
Finally, the problem of estimating the expected probabilities of misclassification
is considered. Interval estimates as well as point estimates are given.

1. Introduction. Multivariate statistical methods have been found extremely
useful in devising efficient procecures for the solution of taxonomic problems.
About twenty-five years ago Sir Ronald A. Fisher was consulted by M. M.
Barnard as to the best method of classifying skeletal remains unearthed by
archaeological excavations. Fisher suggested the use of the now well-known
discriminant function [4], [7]. A general mathematical theory of statistical
taxonomy was built by Welch [23] on foundations laid by Neyman and Pearson’s
theory of tests of hypotheses. Subsequent authors introduced many refinements.
For a fairly complete account of the theory as it has developed during these
years see chapter six of [3] or chapter eight of [18] and literature cited therein.

The situation we are considering is the following: We have an individual who
has come from one of the two populations P, P®, but from which one is not
known. It is required to devise a procedure that ensures a high probability of a
correct classification of the individual. To come to a decision various charac-
teristics of the individual are measured. Suppose we have measurements on p
characteristics. Let the vector of measurements be x = (21, 2, -+, ©,). Let
the distribution of these measurements in P¥ have u'® as its mean vector.
Assume that the dispersion matrix is the same in both the populations. Denote
this common dispersion matrix by X. The discriminant function is then the
linear function (u® — w®)=7'x". We shall set

(1) D(x; v?, u®; 2) = (4® — )=
The procedure usually adopted’ is to classify the individual as belonging to
P® or P® according as
(2) D(x; v, ;%) £ DG + v?); u?, v B).
The above procedure is possible only if u*(k = 1, 2) and = are known. But
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1 Certain situations require a slightly modified procedure. See Section 12.
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1126 ‘ S. JOHN

usually such is not the case. We may then try to estimate the unknown param-
eters u”, u® and X from random samples from P® and P®, substitute these
estimates in the appropriate places and use the resulting function to classify
individuals in exactly the same way as D(x; u®; u®; =) is used.

Let2{®(1 = 1,2, -+ ,p;r=1,2, - , Ni) be a random sample of size N,
from population P%®. Put

N
(3) #¥ = Ni' 2 2l i=1,2-,p; k=12,

r=1
2

Ng
(4) i = (Nl + N2 B 2)_1 1 Z; [x:’:) - x-:'k)][x;":) - x-](_k)]’ %J = 17 27 2

k=1 7=
(5) £ =(&", %" -, %) k=12
(6) S = (si).

The vector £* is an estimate of u*’ and the p X p matrix S is an estimate of
the dispersion matrix X. Substituting these estimates in D(x; v, u®; =) we
get (2 — x®)87'x’. Using this function we may assign individuals to P®
or P® according as

(7) (i(z) — )8 %/ _><_ 1 (i‘” _ i(”) S—l(i(‘z) + i(‘))’.

In any classification procedure there are chances for two kinds of errors: (1)
we may classify an individual from P® as belonging to P®; (2) we may classify
an individual from P® as belonging to P®. It is clear that if an individual is
assigned to P or P® depending on the value of a linear function > c.z; , these
two chances will depend on the particular coefficients ¢; used. Now, in
(x® — x)S7'/, the coefficients of @, 2», - - - , z, are respectively the com-
ponents of the vector (¥® — x®)S™. These components are random variables.
Random fluctuations in the coefficients induce random fluctuations in the chances
of committing either kind of error and it is of interest to study these random
fluctuations. This is what we do in the present paper. We assume P (k = 1, 2)
to be normal.

Wald’s paper [22] appears to be the earliest one to discuss problems connected
with the classification of an individual to P® or P®, when the distributions
of the characteristics in P® and P® are not completely known. He considers
the use of the statistic (2% — x®)S™x’. Wald had visualized a way of using
this statistic slightly different from the one which we described. He required
the distribution of (£ — £®)S™'x’ to set up the classification procedure. Papers
{21, [8], [9], [10], [19] and [22] are partly or wholly concerned with the derivation
of this distribution.? In [2], [10], [17] and [19], other statistics which can be used
similarly are considered.

2 A referee informs the author that Elfving has given an expansion for the unconditional
probability in the univariate case and that Bowker and Sitgreaves have given an asymptotic
expansion for the distribution function of the classification statistic when all parameters
are estimated, in papers written for a forthcoming publication, Mathematical Studies in
Item Selection and Classification, to be published by the Stanford University Press.
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2. Notation. Besides the symbols already introduced in the introduction, we
use other symbols also. We shall here explain the manner in which these symbols
are to be construed.

To distinguish vectors and matrices from scalars we shall employ small bold
face type to denote row vectors and capital bold face letters to denote matrices.
The same letters, when primed, stand for the transposes of the vectors
or matrices.

The letter I will denote the identity matrix of order p. If u = (w1, u2, « - , up),
we shall set

(8) du = dusdus - - - du, .

The symbol g(z) will denote the standard normal density. The integral of g(x)
from — o to z will be denoted by G(x). The function inverse to G(z) will get
the symbol G7*(x). We define

G(xl y T2 5 P)

(9) 2\—4 sy pze
= (I_—M-f f exp [—3(1 — p") 7 (ul — 2pu1 w2 + u3)] dus dus .
27 —00 Y—o0

The symbol I.(p, q) will stand for the incomplete beta function,

P(p +Q) i -1 _ q—1
(10) T(—p)ITq)— A u (1 u) du.

Finally, we set
(11) 62 — (9(2) _ v(l))z—l(UQ) _ l"(l))-/

Besides the symbols introduced in this section, we use others locally. They
will be explained at the appropriate places.

DISCRIMINATION USING A SINGLE CHARACTERISTIC

3. Introduction to univariate case. In the univariate case we shall for con-
venience write u® for u{k), z® for :Eﬁ"), and z for z; .
It is easy to see that the general classification procedure described in the

introduction reduces in the univariate case to the following: If 2 > &, assign
the individual to P® or P® according as = s £ + z2]/2. If 22 < £°, assign

the individual to P® or P® according as z 3 £ + £?]/2.
Suppose 2* and £? are given. We shall denote by e(£”, Z*) the conditional
probability of assigning an individual from P® to P® and by ex (2, %) the

conditional probability of assigning an individual from P® to P®.
1— G([O'(l)]_l[%{x-(l) + a-;(2)} _ u(l)]) if x—(l) < £(2),
G( [0'(1)]_1[%{1-3(1) + i(2)} _ u(l)]) if z(l) > 5(2)‘

Here ¢® denotes the standard deviation of the characteristic under considera-

tion, in population P®. A similar equation for e; (%, %) can be written down

(12) 812((1-3(1), x—(2)) —
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at once. We shall obtain the distribution and expected value of e (2, £®).
A discussion of e; (2, £®) would be completely analogous.
The classification procedure we have described is usually adopted only if
e® = ¢®. However, in obtaining the distribution and expected value of
(8, ®) we shall not assume that ¢ = ¢@; there is some interest in study-
ing the chances of errors under the more general set-up, since, although the
classification procedure was designed on the assumption that ¢ = ¢®, there is
a possibility that the assumption was false.

4. The distribution of e;,("”, ). The quantity e(Z", 2%) can be less than
z if and only if either of the following two events happen:

f(l) < :'—:(2) and %_x—(l) + —(2)] (l) > _O_(I)G—l(z)

or

(1) (2)

and 387 + 2% — u?¥ < PG (2).

The distribution function of e;(F", %) is therefore given by the equation

v

T T

(13) Pr (en(z¥, 2%) < 2) = G(hu, ha 5 p) + G(haz, x5 p),
where :

(14) b = (NPT + N0®P) (= u®) = —hn,
(15) = (NTe%F + N e 1) 7126767 (2) + u® — u®,
(16) he = (NT'[oF + N [e®F) 26067 (2) — u® + 4™,
and

(17) p = (NTF + N 0®P) (W20 ®F — NT'eF).

The expression on the right hand side in equation (13) can be evaluated using
the tables of G(z; , 2, ; p) given in [15]. If Ni'[¢®] = N3 [«®T,

(18) Pr (ex(2”, 3%) < 2) = G(hu)G(har) + G(hi3)G(has),

and hence can be evaluated with the help of the tables of G(x) given in [14].

(o)

b. Expected value of e(2", 2%). The expected value of ep(Z”, %) can

be calculated from the equation

(19) Een(z”, &%) = G(au, an; p) + Glaw, an; p),

where

oy = T WEOT+ NPEOR T —u®) = —a,
an = HOT + VT + NPT W = ) = —am,

and
p = s(NT e + N PP
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(21) {0 + 2(WVT P + NP
(NTe®F — N'[e®P).

If Ni'e®F = N7'[0®F, Eew(z®, ) can be evaluated using only tables of
G(z); for, in this case,

(22) Eeu(a':(l), j&)) = G(au)G(am) + G(alz)G(an).

Equation (19) is easily established if we observe that a wrong assignment of
an individual from P corresponds to the occurrence of either of the following
two events:

i <z®  and =z = 1z® 4+ 79
or, .
@ > z® and z = %[:E(l) + z®).

The reader may wish to compare our treatment of the univariate case with that
of [11].

DISCRIMINATION USING MORE THAN ONE CHARACTERISTIC

6. Introduction to the multivariate case. We now take up for consideration
the multivariate case. The procedure discussed is the one described in the intro-
duction. It is an adaptation of the standard discriminant function analysis to
situations where the parameters required for the construction of the discriminant
function are unknown.

Classification procedures based on the correct disecriminant function are known
to be the best possible when the distributions in the two populations are multi-
variate normal with identical dispersion matrices. We shall, throughout our
discussion, assume that the distributions in the two populations, do, in fact,
satisfy these conditions.

The discussion will proceed in several stages. We shall, at stage number one,
assume that only u® is unknown. The case where only u® is unknown is com-
letely analogous and does not require separate consideration. At stage two we
shall only assume that the dispersion matrix = is known. In the third stage we

shall not assume that 4, u®, or = are known.

7. Case one: only x® is unknown. Before starting discussion of this case let
us note that we shall not err seriously if we take ¥ to be the true value of u®
and S to be the true value of X, provided N is sufficiently large.

For constructing the discriminant function, u® has to be estimated. Substi-

tuting £ for u® we have the discriminant function,
(23) D(x; ¢*, 2%, 2) = ¥ — ¢¥)27%.
An individual with measurements x is assigned to P or P® according as

(24) D(x; u°, 22; 2) S DGlu® + x@); u®, 22; 3).
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7.1. Distribution of en(2®). Given ®, the probability of misclassifying an in-
dividual from P® is 1 — G(y) where

(25) v =3EY — ")27@? - o)1
We shall denote this probability by e;(®). Clearly, e2(®) is a random vari-

able since it depends on . The distribution function of e;2(®) is given by the
equation

(26) Pr (en(x®) < 2) = Pr (4Ny’ > 4N.[G'(2)) (0 < z £ 3).

Now, 4Ny’ is a noncentral chisquare variable with p degrees of freedom and non-
centrality’ equal to (Nz6®)/2. Pr (ep(2®) < z) can therefore be determined from
tables of the noncentral chisquare distribution®.

It is interesting to note that w”, y® and X enter into the distribution of
e(2®) only in the form of 8. For any given z, Pr (e(2?) < 2) is a monotonic
function of 6 and therefore can be asserted to lie between certain bounds pro-
vided we know upper and lower bounds for 6.

7.2. Expected value of e1s(x®). From the preceding section we see that

(27) en(2?) = 1 — G(3lo/Na)
where
(28) v = Nz(i(2) — v(l))z—l(i@) _ B‘(l)),-
The random variable v has the density function
—1 2) 3p— o 1 ()T
(29) o, —HEN), o1 ,_Zo [T(p + r)]™ (zr_!v)_,
where
(30) A = IN,¢6.
Therefore,
L 0 1 r
Eeu(i@)) — 2—}1)6—)\ l v%P—le—l‘v {';) [I‘(%p + r)]-—-l (?:.‘:)) }
31 v
ey {/i(v/zvz)i g(x).dx} @,

AN
=%e)\zor—lla(%p+r)%)

where a = 4N,/(1 + 4N:).

3 Some authors use the term ‘‘noncentrality’’ for twice this number.

¢ Tables now available are not exactly in the form we require. Editors of [14] have an-
nounced that tables of the probability integral of the noncentral chisquare distribution
are among the tables considered for inclusion in Vol. II. For the present, recourse must be
had to approximate methods developed in [1] and [13].
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The justification for the last step is the fact that

(32) [T(3p + r)]* 27He" f P e gy f 9(z) dz
o $(v/N2)}

is equal to half the probability that a random variable having the F-distribution
with degrees of freedom one and p -+ 2r takes a value greater than
(4N3)7(p + 2r).

It is possible to give several other expressions for Ee(®); the one we have
given above appeared to be the most convenient.

7.3. Distribution of e (X®). Thus far we have been discussing the chances of
wrongly assigning an individual from P® to P®). We now take up consideration
of the probability of wrongly assigning an individual from P® to P,

Given 2®, the probability of misclassifying an individual from P® is G(w)
where

(33) w = %[(i@) _ v(l))z_l(i(2) _ v(l))l]‘}
_ [(i(2) _ v(l))z—l(i@) _ v(l))/]—}[( 9(2) - v(l))z—l(i@) - l"(l))l]'

This probability we denote by ex(%®). Obviously ex(2®) is a random variable.
We shall derive its distribution.
The distribution function of ey (®) is given by the equation

(34) Pr (ex(2?) < 2) = Pr (w < G '(2)).

This equation shows that it suffices to derive the distribution of w.
Observe that w is a function of

(i(2) _ v(l))z—l(i@) _ l"(l)),’ and (9(2) — v(l))z—l(i@) — 9(1))1'

Set
(35) b= (32— y)Z7 @ - O
and
(36) b= (42 — g — @)

Without loss of generality we may assume that y = 0 and £ = I. The density
function of £ is then

(Wo/2m)" exp [—3Na(2¥ — ¢®)(X¥ — )]

(37)
= (N2/27)!" exp [—iNa2(t — 2t + 8°)].

Therefore, if we denote by f(# , &) the joint density function of ¢; and ¢, ,
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f(t, ) dtydty = f f (N2/21)* exp [ —3No(t — 26 + 8)1dx®,

t1<x (D)x(2) ' <ty4dity
£a<u(2)2(2) ' <totdty

(38) = (No/21)* exp [—iN,(t — 2t + &°)] f f dz®,

1<z (2)x(2)'<ty4dty
ta<u(2)2(2)'<to+dty

= (No/2)"r or (3 (p — 1)1
fa - (tz/a)zl*“’f” exp [—iNa(ty — 26, + 6°)] dty dba>

since [21]

dx?® = ﬂ_i(p—l)[lw(%(p ) B (12/6)2]%(”_3) dty db,.

(39) th(z)i(2)'<t1+dt1
ta<u(DE(2)'<tytdty

Substituting
(40) =1, w=3it— &,
we find that the joint density function of » and w is
(41) Cu™1 — 62w — )" exp [—4N.(2uw + &°)]
where
(42) ¢ = 27" P r (3(p — 1N
Integrating out u we obtain as the density function of w the function
2 (w+90)
rC’e—"}(’v 2% f WL — 872 (w — 3u) PV dy if w2 5,
2(w—3)
_ . 2(w+5)
(43) h(w) = Ce—f(N262) f up-«l[l - 6_2('11) — %u)‘l]‘%(p—me—-l\lguw du
0
f —6=w<=,
0 if w< —é

If p is odd, the expression within square brackets in the integrand may be ex-
panded and each term integrated by parts. For example, if p = 3,

f(2N2)%7r—%(5,w)—le—%(Ng51)[6—2Nzw(w—8){2(w _ 5)2

+ 2(Naw) 7 (w — 8) + (Naw)™)

_ e—2N2w(w+5){2(w + 6)2

+ 2(Naw) (w + 8) + (Naw) ™%} if w6
(2N (6w) e PV [(Ngw) ™ — PV (2(w + 5)°

+ 2(Naw) (w4 8) + (Naw) )] if =6 S w < dbutw =0
PAC I VA Pl o if w=0,

(44) h(w) =

0 if w< —é.
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For even values of p either recourse must be had to numerical integration or
percentage points must be obtained by interpolation from corresponding per-
centage points for distributions with p an odd integer.

Here we observe that w > —& with probability one. Therefore, with proba-
bility one

(45) en(2?) > G(—9).

From equations (27) and (28) we see that e;(x®), on the other hand, can go
down even to zero.

Observe that besides N; and p, § is the only parameter entering into h(w).

7.4. Asymptotic distribution of en(X®). Since the exact distribution of ex (%
is somewhat complicated, it may be useful to note that, as N; — o, the dis-
tribution of 2N 3[9(6/2)]—1[@1(1'{(2)) — G(—46/2)] tends (weakly) to the normal
distribution with mean zero and variance unity.

Perhaps it is better to use the asymptotic distribution of w together with
equation (34). The limiting distribution of 2N4(w + 8) is normal with mean
zero and unit variance. Hence we have, using equation (34),

2) )

(46) Pr (en(2®) < 2) = G2NYG(2) + 33]).
8. Case two: only X is known.
8.1. Introduction to Case two. Since y and ) are unknown we shall con-

(2)

struct the diseriminant function using ¥ and ¥®. The resulting discriminant

function is
(47) D(X -(1) -(2) ) — (X(Z) -(1))2—1X'.

. . . . . . . o e 1
The classification procedure consists in assigning individuals to P® or P? ac
cording as

(48) D(X -(l) —(2) )> D( [x(l) + x(z)] -(l) -(2) 2)

Given ¥ and £®, the probability of misclassifying an individual from P® is
1 — G(u;) where
Uy = %[(i@) _ i(l))z——l(i@) _ i(l))/]§

+ [(i(2) _ i(l))z—l(i@) - i(l))l]—%[(i(‘z) — i(‘))z"‘(i(‘) _ v(l))I].

We shall denote this by e(x®, ?). Similarly let e (?, ?) denote the con-
ditional probability of misclassifying an individual from P®. Being functions of
random variables, en(X®, ?) and e, (X, %) are themselves random vari-

ables. We shall obtain the distribution of e (%™, 2®). Since we are free to regard
either of the two populations as P® it is not necessary to consider e; (2", £?)

(49)

separately.
8.2. The distribution of ex(x®,%®). Since
(50) Pr (ex(2?,29) <2) = Pr(m > —G7'(2)),

the distribution function of ex(X®, ®) will be determined when the distribution
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of u; is obtained. In deriving the distribution of u; we shall assume that £ = I
and y® = 0. Clearly, there is no loss of generality in doing so.

From equation (49) we observe that u; is a function of £® — 2® and £
The joint distribution of ¥ — %® and 2 is multivariate normal with means

(l)

(y(” 0) and variance-covariance matrix
Ni' 4+ NI —NTT
(51) [‘1’ ).
—N71 N1

(2) PA¢))

Therefore, the distribution of £©, given £® — £ = y, is multivariate normal

with mean vector
— (N1 + N2)7No(y — v®)
and dispersion matrix (Ny 4+ N;)7'L. It follows, therefore, that, given

£? — 2 = y, 4, has the normal distribution with mean
3(N: + No) (N — Na)(3y')t + (N1 + No)'Na(u®y) (39")
= 3(Ny + N;) 7 (N: — No)tt + (Ny + No)'Nufi 'ty (say)

and variance (N; + N;) ™. Hence, if h(u:) denotes the density fﬁnction of u; and
f(ts , ts) the joint density function of #; and # , we have the equation

o = J] () e gt

. 1 N1— N2y N, P 2]
(ul 3 NiE Nzt A t3_t4) f(ts, ts) dit; dts

where the region of integration is the entire domain of variation of # and .
It is thus necessary to obtain the joint density function f(¢;, &) of ¢; and £ .
This is done in the next section.

8.3. The joint density function of t; and ts .

(52)

(53)

(54) b= (& — 20 - 1) =y
(55) t4 = v(2)(i(2) _ i(l)), = u(2)y

The distribution of y is multivariate normal with mean g
covariance matrix (N1* + Nz*)I. Therefore,

_(oyon (NN N1
f%@%%—%ﬂ(mﬁ@ f f

t3<yy’'<tg+dts
t<u Dy’ <ty+dty

. __ NN, @Y — @Y
exp[ SN, T N (y—u”)(y—u )]dy

® and variance-
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B o NiNs
= (2m) (N1+N2)

(56) .exp[_% NilNe () o + 52)] X ff dy

N1+ N, ,
t3<yy <tzt+dig
t4<p(Dy <t tdty

= (2m) (LIN_L)”

N1+ N,
N; N.
-exp [—%'ﬁ-‘ziv;' (ts — 2t + 62)]
ﬂ_hp—l) . 2ihod)
X smar— v 9 [ts — (2/8)°1"% dt;s dts .

TG — 1))

8.4. The distribution of w; when N1 = N, . If the two sample sizes N; and N,
are equal to N (say), the distribution of u; takes a simpler form. In this case,
given £? — £ =y, the conditional distribution of w, is normal with mean

(57) )

and variance (2N) ™. Therefore, if f(¢) is the density function of ¢, we may write

Y = 38t (say)

(58) hw) = [ (N/m)* exp =N (u — 30710 dt

It is now necessary to obtain the density function of ¢. For this we have only
to use the joint density function f(fs, ts) of ¢ and # to find the joint density of
t; and ¢ and integrate out £; from this joint density. The resulting expression for
f(t) is given by the equation

(59) f(t) = 7T ((p — DI (L — )P Zor—(%@;,ir—))-lv*'(st)’.

8.5. An alternative derivation of the distribution of u, in the case Ny = N, . In
the general case we gave the distribution of u; as a double integral. When
N, = N;, we are able to give the density function of u; as a single integral. In
this case it is also possible to give the density function of 4, in a more explicit
form using a different method.

Let ¢.,(0) be the characteristic function of u; . We have seen that, given
£® — 2 = y, 4, has the normal distribution with mean (8¢/2) and variance
(2N)7". Therefore, the conditional characteristic function is

(60) exp [44dt0 — (4N)7'¢%.

Hence we have

(61) ou(8) = [ :l exp [3it9 — (4N)7'¢°]f(¢) dt.
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For the sake of convenience we now change over from u; to the variable v, de-
fined by the equation
(62) n = (2N)hy, .
Let ¢,,(0) denote the characteristic function of v, . Then,
¢0(8) = ¢u,(2NT),

- [ ] exp [i(N/2)%st0 — &/21§(1) dt,

63
(63) 7 H{T(p — 11)} ™ exp (—iN5* — 36%)

. fl [i I'(3lp + ) Nr/2(6t)r} (1 — £)eonrgwmin g,
—1 L r! )

=0

Expanding the exponential factor of the integrand and integrating term by
term we obtain the following equation for ¢,,(6):
T(3lp + rDTGlr + m + 1])
L(ilp + r + m)
(N62) (r+m)/2( _%02)m/2
rlm!

00 (8) = 77 exp (—2Ns* — 36°) D'
(64) .

where Y.’ denotes summation over all non-negative integral values of r and m

such that r 4 m is an even integer.
The inversion formula for characteristic functions now readily yields an ex-

pression for the density function of v; . This expression is
W—le—Ns2/4—vf/2 3 r(3lp +17‘])I‘(%[7‘ + m 4+ 1])
TGlp + r + m))
( N52) (r+m) /22—(m—1) 2
. rim!

(65)
‘ Hm(vl)~

Here H,(x) denotes the Hermite polynomial of degree r defined by the equation
A P —ja2
(66) ( d—x) e H.(z)e ™.

8.6. The asymptotic distribution of (P, ®). As N; and N, tend to infinity,
the distribution of 2(N1* + Nz*)Hg(26)] [en(X®, 2?) — G(—18)] tends
weakly to the normal distribution with zero mean and unit variance.

Again it may be better to use the asymptotic distribution of u; together with
equation (50). The limiting distribution of 2(Ni* 4+ Nz2)*(u; — %5) is normal
with zero mean and unit variance. Hence we have

(67)  Pr(en(x®, 2?) < 2) & G@QINT' + NG (z) + 13]).

9. Case three: u®, y® and = unknown. In this case the discriminant function
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as constructed from sample estimates of u®, u® and = is
(68) D(x; 2°, £®; 8) = &% — x*)s7x

The classification procedure consists in assigning individuals to PY or P®
according as

(69) D(x; 2°, 22, 8) S DEE® + 9]; z©, 22, ).

Given 2, ¥ and S, the probability of misclassifying an individual from
P is 1 — G(w,) where

wy = [(i(Z) _ i(l))s—lzs—l(iﬂ) _ i(l))/]—%

(70) [(i(2) _ i(l) ) S—l(%[i(l) + i(2)] _ v(l) ) I].

We shall denote this probability by en(x”, 2%; 8). Clearly, en(2®, 2?; S) is
a random variable. The exact distribution of eu(x(l) x?: 8) is comphcated and
we shall be content with giving its asymptotic dlstrlbutlon. To be slightly more
general, we shall suppose that S is some estimate of = with n degrees of freedom
and independent of 2 and ¥®, not necessarily obtained exclusively from the
same samples as those from which £ and £® were obtained. It can then be shown
that as N1, N» and n tend to infinity, the distribution of 2[N1* + _l]_i[g( IH™
len (XD, ®; S) + G(%5) — 1] tends (weakly) to the normal distribution with
mean zero and unit variance. We have also, corresponding to equations (46)
and (67) of previous sections, for large values of N1, N. and n,

(7)) Pr(en(®”, X3 8) < 2) & GENT + V7167 () + 39)).

10. Expected probability of misclassification.

10.1. Introduction. We have been discussing in previous sections. sampling
fluctuations in the chances of misclassification involved in using estimated dis-
criminant functions. Distributions and expected values were the objects of in-
vestigation. The expected values were evaluated in certain special cases using
ad hoc methods. We shall, in this section, give a unified treatment.” The method
of this section is capable of yielding expected values in all cases where the dis-
persion matrix is known.

Besides exact expressions some simple approximations also will be given.

10.2. Exact expressions. Consider the case where only the variance-covariance
matrix X is assumed to be known. We require expected values of e (X", ¥®
and ey(X”, £?). We shall evaluate Eep(x®, 2*) only, since Een(x®, x?)
can be evaluated on similar lines.

Using results contained in [10], it is possible to prove that

(72) Een(x®, 3?) = Pr(s7%u > [1 4+ o1 — o))

® Though the method of this section has the merit of greater generality, the expressions
obtained in the earlier sections are somewhat simpler.
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where »; and v, are independent non-central chisquare variables each having p
degrees of freedom and non-centralities given respectively by

(73) M= (41 + p)I”NiNe[ (N1 + Nao) ™ — (N1 + N + 4N:V,) e’

and

(74) A = [4(1 — p)INNGL(Ny + No) 4 (N1 + Ny + 4N.N,) .

Here

(75)  p = [(N1+4 No)(N1+ Na + 4NNo)HN, — NY).

Using the expression for the density function of v3'v; we may write

Ben(3® §P) = o003 sy Tlp+r+s) MM
en(X, %) = ¢ 2 ,;0 TGp +nNT@Ep + s rls!

. /; (1 + u)*(ﬁﬁ&)uiﬁr—d du.

1—p)/(1+p)

(76)

We shall put equation (76) in the slightly different form
Fea(x?,2%) = P [ XN 4o Gt r o))

r=0 =0 I" ' 8'

) .
+Z Z I;(1+m(2p+s,2p+r)]

r=0 s=r+1 T' s!

The various terms on the right hand side in equation (77) can be evaluated using

tables of I,(p, ¢) given in [16].
In case y' Y glso is known with X, we have only to take, in equation (77),

= [4(1 + p)]'Ne[l — (1 + 4N) VP8,

78

(7#) = [4(1 — p)I7'Nall + (1 + 4N,) I,
and

(79) p=—[1+ 4N,

to get the expected value of ex(2®). If the known parameters are = and u®,

we take
= [4(1 + p)]7'Ni1 — (1 + 4Ny) ¥,

80

( ) )\2 = [4:(1 - P)]_INI[]- + (1 + 4Nl)-i]2627
and

(81) p=(1+4N)

10.3. An approximation. In the previous section we obtained an exact expres-
sion for the expected value of e(X”, ). That expression is not quite con-
venient for numerical evaluation. For this reason we now give an approximation
which permits evaluation of the expected value using only tables of G(z).
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We start with the result

(82) Eew(x®, 2) = Pr(vi’ny > [1 + o[l — o]).
Now,
Pr(vy'n > [1 + oI [L — p]) = Pr(sz* ol > [1 + o] 7'[1 — f]Y),

= Pr([1 + o' o}— [1 — p'o} > 0).
From [1] we know that if x* has a noncentral chisquare distribution with f degrees
of freedom and noncentrality parameter equal to \, the variable (x¥/r)}!, where
(84) r=7f+2\

has approximately a normal distribution with expectation 1 — 2(1 + b)/9r
and variance 2(1 + b)/9r. (Here b stands for 2[f + 2\]™A). Using this result
and also equations (82) and (83) we may now write

(83)

(85) Een(x¥, 2?) =~ G(a)
where

a= (18)7FTH(L + )P + b))+ 1711 — p)'(1 + b))
(86) (7} (1 = p)'(1 + b)) — 7' (1 + p)*(1 + b))

+ 9{r(1 + o)} — 9fra(1 — )},
the quantities 71 , 2, by and b, being defined by the equations
ri=1p+ 2\ (1=1,2),
b: = 2(p + 2M) 7\ (1 =1,2).

The question of the closeness of the approximation (85) now arises. We should
expect that the approximation involved is of the same order as that involved
in assuming that the cube root of a noncentral chisquare variable has the normal
distribution. Though it would be interesting to compare the approximate values
with the corresponding exact values using numerical computations, we shall not
embark on this venture at the present moment. Some numerical results given
in [1] may be found enlightening,.

(87)

11. Estimation of the expected probabilities of misclassification. The expres-
sions for the expected probabilities of misclassification are found to be functions
of 8. The problem of estimating these expected probabilities now arises. The
empirical method of estimating the probability of an event by computing the
proportion of outcomes favourable to the event in a number of repetitions of
the experiment is available to us. This method is suggested iri [20]. If the problem
is one of estimating the conditional probabilities of misclassification, the empirical
method is a simple way of solving it. What we have to do is to use the estimated
discriminant function to classify the N individuals known to belong to P®
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and note down the proportion of these individuals assigned to P? (s = 1 and
j=2ori=2andj=1).

If the problem is one of estimating the unconditional probabilities of mis-
classification, the empirical method can prove exasperating. Fortunately, the
maximum likelihood estimator is simple enough. To obtain the maximum likeli-
hood estimate, all we have to do is to substitute (8% — u®)=7(x® — u®),
or (9(2) _ i(l))z_l(v(Z) _ i(l))/, or (2(2) _ i(l))z—l(i@) _ i(l))', or

(N1 + Ny — 2)7(N1 + No) (x? — 29)87'(x? — 2/
for 6° in the expressions for the expected error (or approximations to them),
depending on which parameters are known.

The exact value of the expected probability is certain to differ from its estimate.
An idea of the magnitude of the difference that may be expected can be obtained
from the variance of the estimator. But the expression for the variance happens
to be quite cumbersome. Besides, it involves unknown parameters. Fortunately
another approach is open to us. We indicate below how intervals which enclose
the true value of the probability with any preassigned degree of certainty can
be constructed.

The procedure to be adopted is the following: Suppose the desired confidence
level is a. Set up for § a confidence interval of confidence coefficient a. Suppose
the upper and lower bounds are respectively 6; and 8, . Evaluate the expression
for the expected probability of misclassification substituting in turn §; and &,
for 8. The two values thus obtained will enclose the true value of that quantity
with probability a.

Confidence bounds for é can be set up if we remember that
Nl(i(l) _ 9(2)) z—l(i(l) _ 9(2))/’ N2(i(2) _ y(l))’E_l(i@) _ v(l))/’

(Nl + ]\72)—11\]—1]\72 (i(Z) _ i(l))z—l(i@) _ i(l))/

have noncentral chisquare distributions with p degrees of freedom and noncen-
trality parameters equal respectively to N136°, No38°, and (N, + N;) 'NiN,i8°
and that [p(N; + N2) (N1 + N; — 2)]'NiNo(Ny + Nz — p — 1) (@® — 2©)
$7'(x® — %)’ has the noncentral F-distribution with degrees of freedom p
and N; + N: — p — 1 and noncentrality equal to (N1 + Nj) "N1Ny3é".

For the sake of definiteness, let us suppose that we are dealing with a situation
where X is known and u® and u® are unknown. Let v be a noncentral chisquare
variable with p degrees of freedom and noncentrality equal to (N; + N;)™*
NiN236". Set
(88) Fs(z) = Pr (v < 2).

As 6; we can take® the least upper bound of the set of all numbers 6 satisfying the

6 Marakathavalli [12] should also be consulted. She discusses how unbiased critical
regions can be set up for testing hypotheses specifying the value of the noncentrality
parameter. Inversion will give an unbiased confidence interval. Methods of approximately
evaluating the probability integral of the noncentral chisquare density developed in [1]
and [13] will be required. Tables given in [6] and [12] will be found useful.
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condition
(89) F3(IN: + No 'NiN, (22 — 2P)27'(3? —2P)) 2 L(1 4+ «)

and as §; we can take the greatest lower bound of the set of all numbers & satis-
fying the condition

(90)  F3([Ny+ N "NiN,(2® — )z 7'(2® — x®)) £ (1 — ).

12. About a more general classification procedure.” There are situations where
the two kinds of errors are not of equal importance. In some cases it may even
be possible to determine the different losses consequent on each type of mistake.
Suppose ¢y2 is the loss incurred in assigning an individual from P to P® and
¢z is the loss incurred in assigning an individual from P® to P®. Suppose further
that the a priors probability of an individual coming from P® is #*. Then the
procedure with minimum expected loss is that of assigning an individual with
measurements x to P® or P® according as

(91) (9(2) _ y(l))z”lx’ é %(9(2) . El(1))2—1(9(2) + v“))’ + ¢

where

(92) ¢ = log, ———

P
(3], p- 134). The procedure we considered earlier is a special case of this more

general procedure. It corresponds to the case ¢ = 0. A sufficient condition for
¢ to be zero is that ¢p = ¢y and 7@ = 7@,

The procedure mentioned above can be carried out only if all the parameters
@, u® and = are known. If such is not the case we may assign thé individual

to P® or P® according as
(93) (}_{(2) _ i(l))s_lil é %(i&) . i(l))s~l(i(2) + i(l))' + c.

The sampling fluctuations of e (x®, 8%, S) and ex (%, x®, S), the conditional
probabilities of the two kinds of errors, are again of interest. We shall briefly
discuss the case of = known and give indications of the changes to be made in
some of the earlier formulae, leaving a fuller discussion of the procedure to

another occasion.
The distribution of e;(x®, ¥®) is given by the equation

(94) Pr (e, 2?) < 2) = Pr (u; > —G7'(2))
where
U = %[i(Z) _ i(l))z_l(i(2) _ i(l))/]%

(95) + [(i(Z) _ i(l))z—l(i(m _ i(l))/]—%[(i@) _ i“))z_l(i“’ _ U(D)I + C].

7 The results of earlier sections can be generalized in other ways, which we hope to
indicate in a later communication.
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This equation shows that it suffices to obtain the distribution of u; . The density
function h(u;) of u; is

N1+N29 [_l —1 Ne— Na s
ff( 27 )exp §(N1+Nz){u1 s vt
2

- (NlN-Iz-tfl\f2 + c) 53} ]f(t3 , o) dis di,

where f(ts, &) is to be taken from equation (56).
If N1, N; and n are large, we have, corresponding to equation (71),

Pr (en(2®, 2%; 8) < 2) &~ G(28°[(8* + 2¢)’N1*
+ (8* — 2¢)°N7* + 2(2¢8)*n7 G (2) + 7" + 23]).

(96)

(97)

If more information is available, the results become simpler. Thus if u® is
also known with X, the distribution function of ;,(2®) is given by the formula

Pr (v < Ai(2)) + Pr (v > As(2))
(98) Pr (en(x®) < 2) = ifz<1— G2, -(c=0)
1 ifz=1— G(2),

where v is a random variable having the noncentral chisquare distribution with
p degrees of freedom and noncentrality N,46° and

(99) Ai(2) = No[G7(2) + {[G' ()] — 24P
and
(100) Ax(z) = NG '(2) — {[GT(2)]" — 24}

Similarly we have, for the distribution function of ex(£®), the equation
(101) Pr (ex(2®) < 2) = Pr(w < G'(2))

where the random variable w has the density function A(w) defined below.

( —Nob(—2¢+52) meg(w) mg(w) B )
Ce + 1 —6%w—1u

my(w) mg (w)

_ cu——l)zlﬁ(p—a)up—le-—Nww du fw=46+ (2C)i

(102) h(w) = Ce—‘Nzi(—2c+82) fm4(w) [1 _ 6—’2(w _ %u _cu—l)2]§(1’—3) (C g 0)

m1(w)
u? eV du if(2) — 6 sw< (20)+5
0 ifw < (2) — 5

Here
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m(w) = w+ 6 — [(w + 8)* — 2]},
my(w) = w — 8 — [(w — 5)° — 2]},
ms(w) = w — & + [(w — 8)* — 2¢},
ma(w) = w + & + [(w + 8)* — 2P},

and C is the C of equation (42).
Observe that with probability one,

(103)

(104) - en(x?) = 1 — G([2c]') (c 2°0)

and

(105) n(x®) 2 G((2) —8) (c 2 0).
If ¢ < 0, we have, for the distribution function of ;,(2®), the equation

(106) Pr (en(2®) < 2) = Pr (v > 4(2))

instead of equation (98) and, for the density function of w, the equation

—Noh(—2c+52 m4 () et
(107) h(w) = (e VA2t j;ns(w) N—6"(w—1%u

—17\ 27} (p— -,
— cu™) Iy gy

instead of equation (102).
Note that statements corresponding to equations (104) and (105) cannot be

made if ¢ < 0.
For Eeis (2%, 2®) we have the following result:

(108) Eeyn(2”,2%) = fd i fi(2) de

where fi(z) is the function defined by equation (4.9) of [10] and
(109) d = AN:N3(Ny + No)H(Ny + N, + 4N:N,) e

As the expression for f1(z) is complicated we shall not reproduce it here.
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