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TESTING COMPOSITE HYPOTHESES
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0. Introduction and summary. The usual method of finding a most powerful
size o test of a composite hypothesis against a simple alternative is the guessing
of a Least Favorable Distribution (LFD)—introduced at various levels of
generality by Neyman and Pearson [6], Wald [7], Lehmann [4], and Lehmann
and Stein [5]—and testing the mixture of the distributions of the hypothesis over
this LFD against the alternate using the Neyman-Pearson Fundamental Lemma.
In guessing LFD’s statisticians have looked for a mixture which is “like” the
alternate.

In this paper, the notion of Uniformly Least Favorable Mixture (ULFM) is
introduced. In Section 2, we show that a ULFM is a point in the convex set of
mixtures of the hypothesis which is closest (in the sense of the £' norm) to the
alternate. The condition is not sufficient. More generally, any LFM corresponds
to a point which is closest to the alternate in some expansion or contraction of
this set of mixtures. A sufficient condition for ULFM’s is, essentially, that the
nuisance parameter can take on the same values in the alternate as in the hy-
pothesis. In Section 3, we consider the case where no ULFM exists. We show,
inter alia, that any distribution is least favorable for a closed set of o’s. (A
pathological example shows that this closed set need not be the union of a finite
number of closed intervals.)

1. Notation and definitions. We consider a family fs, 8 ¢ @, of densities and
a density g with respect to a o-finite measure u over a measurable space (€, A).
For tests ¢, i.e., measurable functions ¢ such that 0 < ¢(z) =< 1 for all z, we shall
use the inner product notation

(1) (o, fo) = [9c o(2)fo(z) du(a).

For the problem of testing a composite hypothesis H: fy , 6@, against the simple
alternative g a most powerful level a test is a test ¢ which maximizes the power
(¢, g) among all tests satisfying (¢, fo) < aforall 6 ¢ Q.

We assume there is a o-algebra B on the indexing set @ such that fo(x) is
measurable on A x B. If A is a probability measure over (2, B) we define the

mixture f\ by
@) @) = [ 5@ ).
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Then A is called a least favorable distribution and fy a least favorable mixture (LFM)
at level a for testing H:f5, 0 ¢ Q, against g if a most powerful level « test of fr
against g is also most powerful for testing H against g. If fy is least favorable at
every level @, 0 < o < 1, f is called a uniformly least favorable mixzture (ULFM)
for testing H against g.

To obtain a most powerful test for testing H: fo , 6 ¢ Q, against g and a least
favorable distribution N or mixture fi we shall frequently use the following
generalization of the fundamental lemma of Neyman and Pearson by Lehmann
and Stein ([5], Theorem 1, or Corollary 5, p. 92, of [3]):

TaroreM 1.1. Suppose that \ is a probability distribution over Q@ and that @ is @
subset of Qwith X (') = 1. Let ¢ be a test such that

o(z) =1 o g(z) > k()
o(z) =0 if g(2) < kfi(2).
Then ¢ ts a most powerful level o test for testing H against g provided
(3) (¢, for) = Supofn(go, fo) = a for all 6 £ Q.

2. Uniformly least favorable distributions. In [3] and [5] Lehmann and
Lehmann and Stein, respectively, give examples of problems where the least
favorable distribution depends on the level of significance. The case where the
LFD is independent of the level of significance is more tractable and we consider
it first. The following theorem shows the relation between ULFM’s and the
&' norm: '

TareoreM 2.1. If f) s @ ULFM for testing H: f, , 0 € Q, against g, then f, — g
18 @ point of smallest worm in the convex set {f, — g}. (Here {f,} is the convex set of
mixtures of fy’s formed by averaging with respect to a probability measure on
the space Q. Thus {f,} is a convex set in the positive part of the unit sphere in an
£ space.)

We omit the direct proof of Theorem 2.1 since it is a special case (for k = 1)
of Theorem 3.2.

For Bernoulli distributions with a single trial the situation is particularly
simple. The positive part of the unit sphere is the line segment in the Euclidean
plane consisting of points (z, 1 — z) with 0 < z = 1. Thus the convex set
spanned by the hypothesis is a line segment which we can take to be closed. The
closest point to the alternate is the one whose first co-ordinate minimizes |z — p|
(where (p, 1 — p) is the distribution under the alternate). This closest point is,
in fact, a ULFM. (If min |z — p| = 0, the alternate is in the hypothesis and
¢(x) = o is most powerful. If min [x — p| £ 0 there is a non-trivial test.)

If we were able to find the LFM for a sample of #» independent observations
knowing it for a sample of one observation, we would not have to do the problem
over for each sample size. Such an inductive procedure is possible in a fairly
special case.
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Lemma 2.2. If plz | f(x) = kg(z)} = O for every k, then

(v X w){(2, ) [ f(@)f(y) = kg(x)g(y)} = 0

for every k.
Proor. Let E = {(z, y) | f(2)f(y) = kg(z)g(y)}. Consider a section E*° of
E by yo , i.e., the set of all z such that (x,y,) ¢ E. Hence x ¢ E** if and only if

f(@) = kg(2)g(yo) /F(yo).

Then by the condition of the lemma u(E*) = 0, and this is true for all , except
possibly the set where f(y) = 0. But this set has measure 0 by condition (taking
k = 0). Thus all y sections have measure 0 and hence E has product measure
0 ([2], Theorem 36A).

Turorem 2.3. Let fo, be a ULFM for testing Hy : fo , 0 € Q, against g; if 6o € @
and if p{z | fo,(x) = kg(x)} = O for each k, then for n independent observations of
X, the density ] i1 fo,(x:) s uniformly least favorable for testing Ho: | [i=ifo,(%:),
0 ¢ Q, against |[i= g(=:).

Proor. We prove the statement only for n = 2. The proof can easily be
generalized by an induction.

By Lemma 2.2 and the Neyman-Pearson Lemma there is for each a a most

powerful level a test ¢ for testing fo, (z)fo,(y) against g(x)g(y) such that
e(z,y) =1 o g(®)g(y) > kfo,(2)fo,(y), and
e(x,y) =0 i g(x)g(y) = kfo,()fo, (y)-

Thus ¢ is the indicator function Is of a set S. Since fo, is a ULFM, the section
S of S by ¥ is a most powerful test for testing H, against g for g(y) > 0 and S*
= ¢ for g(y) = 0. Hence

@ [ Ui(z) = fu(e)] dutz) 2 0
and similarly
5 [ Untw) = )l dut) 2 0

Applying Fubini’s theorem we obtain
(6) [ @) = S@h)] k% ) 2 0.
Thus ¢ = I is uniformly most powerful for testing H, against g(z)g(y) ([3],

Theorem 3.7). Hence fs,()fo,(y) is a ULFM.
The LFM has to be in H; , for otherwise we would be looking at

1§ iuz)in(o);
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and this, in general, is not of the form [ J]i= fo(x:)dN(6). It is mixtures of the
latter sort that are available as potential LEM’s.

In many densities of practical importance, the most natural parametrization
is given by an indexing set which is a product space. (For normal distributions
the pair (g, o*) where u is the mean and ¢ the variance is a natural choice.)
In many hypothesis testing problems, the statistican is only interested in one
co-ordinate of the parameter. However, the nature of the observations he can
make forces him to consider the other co-ordinates (traditionally called ‘“nui-
sance parameters’).

For problems of a certain form we can eliminate the nuisance parameters
from consideration. Toward this end, let X, ¥ be independent random variables
whose joint probability measure is a,bsolutely contmuous with respect to the
product measure u X v; thus,

(7) PUX, V) e 4) = [[ @) du x

THEOREM 2.4. If there exists a probability measure N on H such that h(y) =
[ug:(y)dN(n), then fo,(z)h(y) s a ULFM for testing H: fo,(x)g,(y), n € H,
against fo,()h(y).

Proor. A most powerful level « test for testing fo,(z)h(y) against fo, (x)h(y)
is given by

e(x) =1 if fo(2)h(y) > Kfe,(x)h(y)
e(x) =0 if fo(x)h(y) < kfo,(x)h(y),

where k is chosen so [ ¢(x)fs,(z)du = a. Since ¢ is independent of y it follows
that ¢ is most powerful for testing H against fo,(x)h(y). Since a is arbitrary
fo,(x)h(y) is uniformly least favorable. (Theorem 2.1 suggests that this is a
natural candidate for ULFM.)

CoROLLARY 2.5. (See [1], p. 86.) For testing H: f5,(x)g,(y), n € H, against
fo,(2)ga(y), n & H, there is a uniformly most powerful test given by

ez, y) =1 if fo(x) > kfo,(2)
¢(x’ y) =0 7’f f‘h(x) < kf"o(x)'

Proor. Apply the theorem to the problem of testing fs,(€)g,(y), n € H, against
fo,(2)ga (y) for each g, . A ULFM is fo, (2)gn (¥)-

The corollary says, in effect, that we can not get information about 6 by ob-
serving a random variable whose distribution is independent of 6!

Theorem 2.4 is a generalization of the method to obtain a uniformly most
powerful test for the following example, used by Lehmann and Stein [5] (or see
(3], p. 96).

ExampLe. Let X, ,- -+, X, be independently normally distributed with mean
n and variance 6. For given 6, > 6,, we wish to test the composite hypothesis
H:0=86,,— o <5<+ «,against the simple alternative § = 6, 7 = m .
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The normal distribution of the parameter n with mean n; and variance (6, — 6o)/n
is uniformly least favorable.

3. The non-uniform case. In the case where no ULFM exists, a result similar
to Theorem 2.1 holds.

Lemma 3.1. Let f and g be probability densities with respect to u; if k& > 0,
then
(®) I = gll =k = 1+ 2 supacx [, (o(2) = Kf(2)) d.

Proor.

I = oll = [ 14(2) — o(2))] du
= [ i@ —g@) du+2 [ (&) — () du
& o>kf

= b= 1+ 2ow.n [ (9(2) — (=) dn
TrEOREM 3.2. Suppose fra(x) ¢s an LFM at the level o for testing H: f5, 6 € Q,
against g and the most powerful test is given by
o) =1 if g(z) > kfra(®),
o(z) =0 if g(2) < kfia(),

then kfve — g 7s a point of smallest norm in the convex set {kf, — g}.
Proor. Consider any mixture f, of fy’s. Since ¢(x) is a most powerful level a
test we have

(©) [ o@)5i(2) du 5 o
Hence by Lemma 3.1 and by definition of ¢

Ikf — gl = k — 1 + 2 sup.c f (9(z) — kfy(2)) du

>k—1+2 f o(2)(9(2) — kfy(z)) dp 2 ke — gll-

In solving a problem where there is no ULFM, we would like to know how to
proceed from an LFM for a; to one for a; . We prove three useful theorems.

TueEOREM 3.3. The set of LFM’s for a particular o 1s convez.

Proor. Suppose f; and f are both LFM’s at level « and suppose 0 < a =< 1.
Let a most powerful test be ¢. Then

p(x) =1 if g(x) > kifi(x)
o(z) =0 if g(x) < kifix)
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for ¢ = 1, 2. Let ko and b be determined by
(10) kwa = kb and ko(1 — a) = k(1 — b).
Then
e(z) =1 if g(z) > klafi(z) + (1 — a)fa(2)]
o(z) =0 if g(z) < kdafi(z) + (1 — a)fa(2)].

Thus ¢ is a most powerful test for af; + (1 — a)fs vs. g and consequently af, +
(1 — a)fs is least favorable.

CoroLLARY 3.4. Suppose fi and f» are both least favorable ot level o, and the k’s
of the fundamental lemma are ky and ks with ky = ky > 0. Then for any ko, by =
ko = ks, there is an a, 0 £ a = 1, such that the k of the fundamental lemma for
testing afy + (1 — a)fe against g is ko .

Proor. Determine a and b from (10). The corollary then follows from the
proof of Theorem 3.3.

TaeoreM 3.5. For testing H: fo , 0 ¢ Q, against g, any fi is least favorable for a
closed set of o’s (which may be empty).

Proor. Suppose lim, a, = « and f, is least favorable at level a, for each
positive integer n. We show f is least favorable at level a. Let the most powerful
level ax test be ¢a . Then, because of the weak* compactness of the set of tests,
([3], Appendix 4) there is a ¢(z), 0 < ¢(x) < 1 and a subsequence of {¢a}—
which we take to be {¢,} itself such that lim, (¢, ,f) = (g, f) for every f. In par-
ticular we have (since ¢, is level a,)

(11) (Samfo) S o
so that
(12) (¢, fo) < e

Thus ¢ is level « for H.
Similarly, since fy is least favorable at level a. ,

(13) (e, A) = a

and ¢ is level « for f) vs. g.
Let the power of o, be 1 — 3, , s0

(14) (("m g) =1—fa.

Now power is a concave and hence continuous function of size so the most
powerful level « test of fy vs. g has power 1 — 8 = lim,(1 — B8,). But (¢, g) =
1 — B, so ¢ is a most powerful level a test of fi vs. g, and satisfies the size re-
quirements of the original problem. Hence f, is least favorable.

Before proceeding to the final theorem of this section, we remark that for
testing f vs. g (both simple) and for any £ > 0, there is an « such that the most
powerful level « test of f vs. g is
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p(xz) =1 if g(z) > kf(x)
e(x) =0 if g(z) < kf(z).

Clearly we can take any « satisfying

(15) f fdp £ a = fd p.
kf<g kf<g
Further, if we let k. be the (not necessarily unique) & of the Fundamental
Lemma such that ¢ is a most powerful level « test of f vs. g, then o < a; implies
kal é kaz .
TuEOREM 3.6. Suppose for testing H : fy , 6 € Q, against g there are a finite number
of mixtures of the hypothesis, fi, -+ , fm, (not necessarily distinct) each least

favorable for an interval I; of o’s such that
(16) U =[o,1]
=1

Then there is an LEM for some o which is a point closest to g (in £' norm) among
the points of the convex set {f}.

Proor. Let the ends of the intervals be 0 = a < a1 < +++ < am = 1. We
can assume, without loss of generality, that f; is least favorable fora;1 < a < a; .
Let k(a, ¢) be the k of the Fundamental Lemma for testing f; against g at level a.
We can take k(aop, 1) = o and k(an, m) = 0. Hence there is an ¢ such that
k(ois, ) = 1 2 k(ai, 1) or k(ai, 4) = 1 = k(ai, ¢ + 1). In the first case,
by the remark above there is an a, @iy < o = a;, such that k(e, ) = 1 and
hence by Theorem 3.1 f; is closest to g. In the second case by Theorem 3.3,
fr = afi + (1 — a)fiy is least favorable at level a; , and for a suitable choice of
a the k of the Fundamental Lemma, is 1 for f\ by Corollary 3.4. Then fy is a point
closest to the alternate.

Thus one might be able to proceed stepwise—finding an LFM as a mixture
closest to the alternate, then finding the set of o’s for which this is least favorable.
For each point which is a boundary point of this set of o’s there may be another
LFM. (This is true if there are only a finite number of LFM’s.) For this LFM,
we could proceed as with the first one. This procedure works perfectly for some
problems which will be considered elsewhere. The theorems suggest, however,
that LFM’s are going to be difficult to find in general.

We conclude with a pathological example. We take as sample space the
positive integers; the distributions can be represented as sequences {a,} with
a, = 0and D a, = 1. We consider three sequences defined inductively.

o= 1/3 b = 1/3 en = (1/2)"
a: = 2/9 + ¢ by = 2/9 — ¢

as = 4/27 — € by = 4/27 + ¢

as = 2°/3" by = 2°/3*
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ag = (2/3)3172 by = (2/3)30/2
as = (2/3)%; be = (2/3)%a
Unie = (2/3)6‘7’” bnys = (2/3)6bn

where 0 < ¢ < 2/81. Then the sequences {a./c.} and {b./c,} are monotone
increasing and
6k+2 6k+2 6k+5 6k+5

S an> 2 b, and D b, > D an fork=0,1,2,---.
n=1 n=1 n=1 n=1

Hence for testing H: {a.}, {b.} against {c.} any most powerful level « test is of

the form

o(n) =1 if n<ne
e(n) =0 if n>n;

however no uniformly least favorable distribution exists. Further {a.} is least
favorable for a closed set of o’s which is not the union of a finite number of
closed intervals.

The example is a fairly natural one to construct from the point of view of
hypothesis testing. What it says about the £' norm as a byproduct is something
of a surprise (at least to the originator).
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