AN APPROACH TO TIME SERIES ANALYSIS!

By EMANUEL PARZEN

Stanford Unaversity

Summary. It may fairly be said that modern time series analysis is a subject
which embraces three fields which while closely related have tended to develop
somewhat independently. These fields are (i) statistical communication and
control theory, (ii) the probabilistic (and Hilbert space) theory of stochastic
processes possessing finite second moments, and (iii) the statistical theory of
regression analysis, correlation analysis, and spectral (or harmonic) analysis of
time series. In this paper it is my aim to show the close relation between these
fields and to summarize some recent developments.

The topics discussed are (i) stationary time series and their statistical analysis,
(ii) prediction theory and the Hilbert space spanned by a time series, and (iii)
regression analysis of time series with known covariance function. In particular,
I describe a new approach to prediction and regression problems using reproduc-
ing kernel Hilbert spaces.

1. Introduction. A set of observations arranged chronologically is called a
time series. Time series are observed in connection with quite diverse phenom-
ena, and by a wide variety of researchers, such as (1) the economist observing
yearly wheat prices, (2) the geneticist observing daily egg production of a cer-
tain breed of hen, (3) the meteorologist studying daily rainfall in a given city,
(4) the physicist studying the ambient noise level at a given point in the ocean,
(5) the aerodynamicist studying atmospheric turbulence gust velocities, (6) the
electronic engineer studying the internal noise of a radio receiver, and so on.

Time series analysis constitutes one of the most important tools of the econo-
mist. Consider the prices or quantities of commodities traded on an exchange.
The record of prices or quantities over time may be represented as a fluctuating
function (or wiggly record). The analysis of such economic time series is a prob-
lem of great interest to economists desiring to explain the dynamics of economic
systems and to speculators desiring to forecast prices.

Techniques of time series analysis have long been used in science and engineer-
ing (for example, to smooth data and to search for ‘“periodicities” [6]). The
theory and practice of time series analysis is assuming new importance in the
space age since a wide variety of problems involving communication and/or
control (involving such diverse problems as the automatic tracking of moving
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objects, the reception of radio signals in the presence of natural and artificial
disturbances, the reproduction of sound and images, the design of guidance sys-
tems, the design of control systems for industrial processes, and the analysis of
any kind of record representing observation over time) may be regarded as
problems in time series analysis.

To represent a time series, one proceeds as follows. The set of time points at
which measurements are made is called T. The observation made at time ¢ is
denoted by X (). The set of observations {X(¢), t ¢ T} is called a time series.

In regard to the index set T, there are cases of particular importance. One
may be observing (i) a discrete parameter time series X (¢), in which case one
assumes T is a finite set of points written T' = {1, 2, --- , N}, (ii) a continuous
parameter time series, in which case 7' is a finite interval written 7 =
{t:0 <t = L}, (iii) a multiple (discrete or continuous, parameter) time series
{(X1(t), -+-, Xx(?)), t € T'} which may be written as a time series {(X(t),
te T} with index set T = {(j,t):7 =1, ---,k and t ¢ T'}, or (iv) a space
field X (z, y, 2, t) defined on space-time which is a function of three coordinates
of position and one coordinate of time.

The basic idea of the statistical theory of analysis of a time series { X (¢), ¢ ¢ T}
is to regard the time series as being an observation made on a family of random
variables {X(?), ¢t ¢ T}; that is, for each ¢ in T, X(¢) is an observed value of a
random variable. A family of random variables {X (t), ¢ ¢ T} is called a stochastic
process. An observed time series { X (¢), t ¢ T} is thus regarded as an observation
(or, in a different terminology, a realization) of a stochastic process { X (¢), ¢ £ T}.

It has been pointed out by various writers (see, for example, Neyman [34])
that there are two broad categories of statistical problems: problems of sto-
chastic model building for natural phenomena and problems of statistical de-
cision making. These two categories of problems are well illustrated in the analy-
sis of economic time series; some study time series in order to understand the
mechanism of the economic system while others study time series with the simple
aim of being able to forecast, for -example, stock market prices. In general, it
may be said that the aims of time series analysis are

(1) to understand the mechanism generating the time series,

(2) to predict the behavior of the time series in the future. To attack either
of these problems, one adopts a model for the time series.

A model often adopted for the analysis of an observed time series {X (t), ¢ ¢ T}
is to regard X (¢) as the sum of two functions:

(1.1) X(t) = m(t) + Y(2), teT.

We call m(t) the mean value function and Y (¢) the fluctuation function.
The stochastic process Y (¢) is assumed to possess finite second moments, and
to have zero means and covariance kernel

(1.2) K(s, t) = E[Y(s)Y(2)].

In addition it is often assumed that Y (¢) is a normal process in the sense that
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for every finite subset {¢;, - -+ , ¢,} of T, the random variables Y (%), ««-, Y (¢.)
are jointly normally distributed.
The mean value function

(1.3) m(t) = E[X(¢)]

is assumed to belong to a known class M of functions. For example, M may be
the set of all linear combinations of ¢ known functions w;(¢), --- , w,(#); then,
fortin T,

(14) 'm'<t) = Blwl(t) + -+ quq<t)7

for some coefficients B8, « - -, B, to be estimated. Other possible assumptions

often made concerning the mean value function m(¢) are as follows: (i) m(%)
represents a systematic oscillation,

(1.5) m(t) = Z:Aj cos (wit + ¢;)

in which the amplitudes A4 ;, the angular frequencies w; , and the phases ¢; are
constants, some of which are given and the rest are unknown and are to be esti-
mated; (ii) m(¢) represents a polynomial trend,

(1.6) m(t) = Z Bit’,

an assumption often adopted if m(t) represents the trajectory [given by m(t) =
xo + vt + Laf, say] of a moving object, or (iii) m(t) is the sum of a systematic
oscillation and a polynomial trend, an assumption traditionally sadopted in
treating economic time series.

Early workers in time series analysis sought to explain the dependence be-
tween successive observations of a time series X(¢) by assuming that X (¢)
[sometimes written X,] was generated by a scheme of the following kind:

(1.7) X, =m(t) + Y,
where m(t) represents a systematic oscillation of the form of (1.5) and the
fluctuations Y, , --- , Y, are assumed to be independent, normal random vari-

ables with mean 0 and common unknown variance o”.

The model given by (1.7) is called the scheme of hidden periodicities and was
first introduced by Schuster ([47], [48]). The method used to estimate the fre-
quencies w; (or, equivalently, the periods 27/w;) is called periodogram analysis.
The problem of tests of significance in periodogram analysis ([11], [18]) played
an important role in the early history of time series analysis.

Approaches to time series analysis which seem to be more fruitful than periodo-
gram analysis (see Kendall [22]) were pioneered by Yule and Slutsky in the
1920’s.

Yule’s researches [60] led to the notion of the autoregressive scheme, in which
a time series X, is assumed to be generated as a linear function of its past values,
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plus a random shock; in symbols, for some integer m (called the order of the
autoregressive scheme) and constants a; , -« - , an

Xi=aXea+ -+ + anXom + Nt

in which the sequence {#.} consists of independent identically distributed random
variables. In particular, Yule showed that an autoregressive scheme of order 2
provided a better model for sunspots than did the scheme of hidden periodicities.

Slutsky’s researches [51] led to the notion of a moving average scheme, in which
a time series X, is assumed to be generated as a finite moving average of a se-
quence of independent and identically distributed random variables {7;; in
symbols, for some integer m and constants ag, - - - , Gn

Xe=ame+ o+ - F Caeem

Slutsky showed that moving averages exhibit properties of disturbed periodicity
and consequently can be used as a model for oscillatory time series. In particu-
lar, Slutsky proved the Sinusoidal Limit Theorem which showed that a sine
wave could be approximated by a moving average scheme.

In the 1930’s and 1940’s, the probabilistic theory of stationary time series

.was developed, first as a result of the devélopment of ergodic theory and then
as a result of prediction theory. That the autoregressive and moving average
schemes may be interpreted as special cases of the theory of stationary processes
was pointed out by Wold [58] in 1938 (see [57], p. 169). Thus the link was estab-
lished between the statistical theory of analysis of time series and the probabilis-
tic theory of the structure of time series. In the last twenty years, an extensive
literature has developed exploring this link.

It may fairly be said that modern time series analysis is a subject which em-
braces three fields which while closely related have tended to develop somewhat
independently. These fields are (i) statistical communication and control theory
([26], [32]) (ii) the probabilistic (and Hilbert space) theory of stochastic processes
possessing finite second moments ([9], Chaps. 9-12; [28], Chap. 10), and (iii)
the statistical theory of regression analysis, correlation: analysis, and spectral
(or harmonic) analysis of time series ([13], [17], [23], [568]). In this paper it is my
aim to show the close relation between these fields and to summarize some re-
cent developments with which I have been closely associated. The contents of
the paper are as follows.

(I) Stationary time series and their statistical analysis. While it is a fiction to
regard an observed time series as having zero means, it is mathematically con-
venient to consider the analysis of time series under this assumption. Conse-
quently, one may consider the analysis of an observed time series {X(¢), ¢ ¢ T}
with vanishing mean value function and unknown covariance function.

It has long been traditional among physical scientists to regard time series as
arising from a superposition of sinusoidal waves of various amplitudes, fre-
quencies, and phases. In the theory of time series analysis and statistical com-
munications theory, a central role is played by the notion of the spectrum of a
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time series. For the time series analyst, the spectrum represents a basic tool for
determining the mechanism generating an observed time series. For the com-
munication theorist, the spectrum provides the major concept in terms of which
to analyze the effect of passing stochastic processes (representing either signal
or noise) through linear (and, to some extent, non-linear) devices. Spectral (or
harmonic) analysis is concerned with the theory of the decomposition of a time
series into sinusoidal components. For many time functions {X(f), — o <
t < o}, such a decomposition is provided by the Fourier transform

Sw) = [ &X(@) dt
Unfortunately, no meaning can be attached to this integral for many stochastic
processes {X (&), —w < t < o} since their samplé functions are nonperiodic
undamped functions and therefore do not belong to the class of functions dealt
within the usual theories of Fourier series and Fourier integrals. Nevertheless, it
is possible to define a notion of harmonic analysis of stochastic processes (that is,
a method of assigning to each frequency w a measure of its contribution to the
“content” of the process) as was first shown by N. Wiener [56] and A. Khint-
chine [24]. Among the stochastic processes which possess a harmonic analysis,
stationary processes are most important since a time series may be represented
as a superposition of sinusoidal waveforms with “independent amplitudes” if
and only if it is stationary (see Section 4 for a more precise form of this asser-
tion). In Section 2, some basic results concerning stationary processes are sum-
marized.

Much of the recent statistical literature on time series analysis has been con-
cerned with questions of statistical inference on stationary time series and es-
pecially with

(i) deriving the exact and asymptotic distributions of various estimates of
the covariance functions R(v) and the normalized covariance (or correlation)
function p(») = R(v)/R(0) of a stationary time series,

(ii) fitting stationary time series by mechanisms (such as autoregressive
schemes or moving average schemes) which are completely specified except for
a finite number of parameters, and with estimating the parameters of such
schemes, '

(iii) estimating (and forming confidence sets) for the spectral density function
and spectral distribution function of a stationary time series.

For many purposes, it is preferable to estimate the spectrum of a stationary
time series rather than its correlation function, since many aspects of a stationary
time series are best understood in terms of its spectrum. The spectrum enables
one to (i) investigate the physical mechanism generating a time series, (i) de-
termine the behavior of a dynamic linear system in response to random excita-
tions, and (iii) possibly simulate a time series. Other uses of the spectrum are as
operational means (i) of transmitting or detecting signals, (ii) of classifying rec-
ords of phenomena such as brain waves, (iii) of studying radio propagation
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phenomena, and (iv) of determining characteristics of control systems. The
theory of statistical spectral analysis is too extensive to be reviewed here. For
surveys of this theory, see Bartlett [3], Hannan [17], Blackman and Tukey [4],
Jenkins [20], Parzen [41], Rosenblatt [45], and Tukey [53].

A comprehensive survey of the results available on topics (i) and (ii) has been
given recently by Hannan [17]. Other comprehensive reviews are given by
Bartlett [3], Moran [33], and Wold [57], Chap. 11; in these reviews one may
find references to the work of M. S. Bartlett, H. E. Daniels, J. Durbin, E. J.
Hannan, G. M. Jenkins, M. H. Quenouille, A. M. Walker, G. S. Watson, and
P. Whittle. In Section 8, I have attempted to give an introduction to some of
the large sample results available on topics (i) and (ii).

(II) Prediction theory and the Hilbert space spanned by a time series. A basic
problem in time series analysis is that of minimum mean square error linear pre-
diction. Let Z be an unobserved random variable with finite second moment.
Let {X(¢),t ¢ T} be an observed time series. One seeks that random variable,
linear in the observations, whose mean square distance from Z is smallest. In
other words, if one desires to predict the value of Z, on the basis of having ob-
served the values of the time series {X(¢), ¢ ¢ T}, one method might be to take
that linear functional in the observations, denoted by E*[Z | X (t), t ¢ T, whose
mean square error as a predictor is least. (The symbol E* is used to denote a
predictor because in the case of jointly normally distributed random variables,
the best linear predictor E*[Z | X(¢), ¢t £ T coincides with the conditional ex-
pectation E[Z | X(t), ¢ ¢ T]; for an elementary discussion of this fact, see Parzen
([38], p. 387). Indeed, it should be noted that in any event the conditional
expectation E[Z | X(t), ¢t ¢ T] can be defined as the minimum mean square error
non-linear predictor.)

The prediction problem has provided a framework in terms of which many
problems of statistical communication theory have come to be formulated. The
pioneering work on prediction theory was done by Wiener [56a] and Kolmogorov
[25] who were concerned with a stationary time series which had been observed
over a semi-infinite interval of time. They sought predictors which had mini-
mum mean square over all possible linear predictors. Wiener showed how the
solufion of the prediction problem could be reduced to the solution of the so-
called Wiener-Hopf integral equation, and gave a method (spectral factorization)
for the solution of the integral equation. Simplified methods of solution of this
equation in the practically important special case of rational spectral density
functions were given by Zadeh and Ragazzini [61] and Bode and Shannon [5].
Zadeh and Ragazzini [62] also treated the problem of regression analysis of
time series with stationary fluctuation function, by reducing the problem to one
involving the solution of a Wiener-Hopf equation. There then developed an ex-
tensive literature, seeking to treat prediction and smoothing problems involving
a finite time of observation and non-stationary time series. The methods em-
ployed were either to reduce the problem to the solution of a suitable integral
equation (generalization of the Wiener-Hopf equation) or to employ expansions
(in a series of suitable eigen functions) of the time series involved.
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As a result of these developments, prediction theory has turned out to pro-
vide a theory of the structure of time series and to provide mathematical tools
for the solutions of other problems besides the prediction problem, especially
regression problems. In Section 3, it is shown how the. prediction problem leads
naturally to the introduction of the important notion of the Hilbert space spanned
by a time series which plays a central role in modern time series analysis. In
Sections 4 and 6, I describe an approach to prediction and regression problems
(in terms of reproducing kernel Hilbert spaces) which may be called coordinate
free, and which by the introduction of suitable coordinate systems contains
previous approaches as special cases.

The approach I take seems to me to be a rigorous version of an approach that
is being developed in the Soviet Union by V. S. Pugachev [44]. Pugachev has in
recent years advanced a point of view, which he calls the method of canonic
representations of random functions, for-which in one of his articles [43] he
makes the following claim. ‘“The results of this article, together with the results
of [previous] papers, permits us to state that the method of canonic representa-
tions of random functions is the foundation of the modern statistical theory of
optimum systems.” It is my. feeling that reproducing kernel Hilbert spaces
provide a more powerful and more elegant means of achieving in a unified man-
ner the results which Pugachev has sought to unify by the method of canonic
representations.

(III) Regression analysis of time series with known covartance function: Let the
observed time series be of the form of (1.1) with unknown mean value function
m(t) and known covarfance function K(s, t). Various methods of forming esti-
mates of m(f) are available. The most important methods are classical least
squares estimation and minimum variance linear unbiased estimation. In the
case of normally distributed observations, one has in addition the methods of
maximum likelihood estimation and minimum varianée unbiased estimation.
In Sections 6 and 7, it is shown how Hilbert space techniques may be used to
form explicit expressions for these estimates in terms of certain so-called re-
producing kernel inner products.

There are, of course, large numbers of important problem areas of time series
analysis which have not been mentioned in the foregoing such as (i) the problem
of the distribution of zero-crossings and extrema of a time series (see references,
see Longuet-Higgins [30] and Slepian [50]), (ii) the problem of the asymptotic
efficiency of various classes of estimates of regression coefficients (see Grenander
and Rosenblatt [13], Hebbe [19], and Striebel [52]), (ili) the use of filters to
eliminate or extract trend or other components of a time series, and (iv) the
distribution of various functionals of a time series, such as quadratic forms.

Further, the statistical analysis of multiple time series is not discussed. The
relations that exist between different time series is on the whole a problem of
greater interest than the relations that exist within a single time series. The
results which exist under categories (I), (II), and (III) for univariate time series
can be formally extended to multiple time series. However, many new problems
arise which have not been thoroughly investigated.
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A word should be said about the references given at the end of this paper. I
have given a representative list rather than a complete list. Fortunately, a
complete list of references will soon be available. The International Statistical
Institute is compiling a bibliography on Time Series and Stochastic Processes
which is to list and classify books and papers published, in the years 1900-1959,
on both theory and applications. A bibliography (Parzen [42a]) of American
publications has been compiled at Stanford for inclusion in the I.8.I. bibliog-
raphy; a limited number of copies of this bibliography are available, and may
be obtained by writing to the author. A bibliography is also given by Deming [8].

2. Stationary time series. A discrete parameter time series
{X(t)’ t= Oy :I'-']-’ o '}

or a continuous parameter time series { X (¢), — o <t < oo} is said to be (weakly
or wide-sense) stationary if the product moment

E[X(s)X(s + t)] = R(2)

is a function only of . One calls R(-) the covariance function of the stationary

time series.
It was shown by Khintchine [24] in 1933 that in the continuous parameter

case there exists a non-decreasing bounded function F(w), defined for — o <
w < o, such that

(2.1) RG) = [ o dF (), o <t< o,
if it is assumed that R(-) is continuous at ¢ = 0. Wold [58] in 1938 showed
that in the discrete parameter case there exists a non-decreasing bounded func-
tion F(w), defined for —7 < w < =, such that

(22) R(t) = f " dF (w), 1=0,+1, .

The function F(w) is called the spectral distribution function of the time series.
Like a probability distribution function, F(w) can be uniquely written as the
sum,

F(w) = Fa(w) + Fee(w) + Foo(w),
of three distribution functions with the following properties. The function
Foc(w) is absolutely continuous and is the integral of a non-negative function
f(w) called the spectral density function of the time series. The function F,(w)
is a purely discontinuous (or discrete or step) function:
Fiy(w) = 2 AF (w;)
(l)j w

where {w;} are the discontinuity points of F(w), and AF(w) = F(w + 0) —
F(w — 0). Finally, F,.,(w) is a singular continuous function.



TIME SERIES ANALYSIS 959

It is usually assumed that physically observed time series have a spectral
distribution function of the following form:

F) = L ARG + [ f) do
«’ such —®
that AF(w) > 0
and o' S

where (i) the spectral density function f(w) has the property that it is an in-
tegrable non-negative function which is continuous except at a finite number of
points where it has finite left-hand and right-hand limits, and (ii) the set of
frequencies at which the spectral jump function (or spectral mass function)
AF(w) is positive contains at most countably infinite many points distributed
on the real line in such a way that in any finite interval there are only a finite
number of points of positive spectral mass. If these conditions are satisfied, we
say that the time series has a mized spectrum. If the spectral density function
vanishes for all w, we say that the time series has. a discrefe spectrum. If the
spectral jump function AF(w) vanishes for all w, we say that the time series has
a continuous spectrum.

In terms of the spectral distribution function one can characterize various
representations (or models) for a stationary time series X(¢). For example, it
may be shown that a discrete parameter time series with a mixed spectrum whose
spectral density function satisfies the condition

[ log f(w) dow > —
may be written
23) X(t) = X A" + X om(t = v)

for suitable sequences of frequencies {w,}, constants {c,}, and uncorrelated ran-
dom variables {A,} and {7,}. In view of (2.3) one sees that the scheme of hidden
periodicities and the scheme of moving averages may be viewed as a special
kind of stationary process. Similarly, it may be shown that an autoregressive
scheme (where the 7, are uncorrelated rather than independent) corresponds
to a stationary time series whose distribution function is absolutely continuous
and whose spectral density function is of the form

m 2711
E b eikw

k
k=0

for suitable constants by, - -+ , b., . To prove these assertions, one uses the Hil-
bert space representation theory described in Section 4.

fw) = [z,r

3. The problem of minimum mean square error linear prediction. In order to
show existence and uniqueness, and to obtain conditions characterizing, the best
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linear predictor, we need to introduce the notion of a Hilbert space. (For a dis-
cussion of Hilbert space theory see any suitable text, such as Halmos [16].)

DEeriNITION 3A. By an abstract Hilbert space is meant a set H whose mem-
bers u, v, --- are usually called vectors or points which possesses the following
properties.

(I) H is a linear space [that is, for any vectors u and » in H, and real number
a, there exist vectors, denoted by u -+ v and au respectively, which satisfy the
usual algebraic properties of addition and multiplication; also there exists a
zero vector 0 with the usual properties under addition].

(ITI) H is an inner product space [that is, to every pair of points » and v in
H there corresponds a real number, written (u, ») and called the inner product
of u and v, possessing the following properties: for all points %, », and w in H,
and every real number a,

(1) (au, v) = a(u,v)

(11) (u + v, w) = (u’ w) + (U, w)

(iii) (v, u) = (u,v)

(iv) (u, u) > 0if and only if u  0].

(II1) H is a complete metric space under the norm ||u| = (u, u)* [that is,
if {u,} is a sequence of points such that [[um — ua|| — 0 as m, n — co then there
is a vector v in H such that |[u, — u|”> — 0 asn — o«].

In order to define the notion of the Hilbert space spanned by a time series,
we first define the notion of the Hilbert space spanned by a family of vectors.

DeriniTioN 3B. Let T be an index set, and let {u(t), ¢t ¢ T} be a family of
members of a Hilbert space H. The linear manifold spanned by the family
{u(t), t ¢ T}, denoted L(u(t), t ¢ T), is defined to be the set, consisting of all
vectors % in H which may be represented in the form u = >y cau(t;) for some
integer n, some constants ¢, - - , ¢, , and some points &, --- , ¢, in 7. The
Hilbert space spanned by the family {u(¢), t ¢ T}, denoted V(u(t), t ¢ T') [or
Ly(u(t), t e T) if H is the space of square integrable functions on some measure
space), is defined to be the set of vectors which either belong to the linear mani-
fold L(u(t), t e T) or may be represented as a limit of vectors in L(w(t),te T).
If V(u(t), t e T) coincides with H, we say that {u(¢), ¢ ¢ T} spans H.

DeriniTioNn 3C. The Hilbert space spanned by a time series {X(¢), t ¢ T},
denoted by Ly(X(t), t e T), is defined to consist of all random variables U which
are either finite linear combinations of the random variables {X(t), t ¢ T} or
are limits of such finite linear combinations in the norm corresponding to the
inner product defined on the space L. of square integrable random variables by

(3.1) (U, V) = E[UV].
In words, Lx(X(t), t ¢ T) consists of all linear functionals in the time series.

We next state without proof the projection theorem for an abstract Hilbert

space.
ProsecrioN THEOREM. Let H be an abstract Hilbert space, let M be a Hilbert

subspace of H, let v be a vector in H, and let v* be a vector in M. A necessary and
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sufficient condition that v* is the unique vector in M satisfying

(3.2) lo* — v|| = ming in a |Ju — 9|
1s that
(3.3) (v* u) =(v, u) for every w in M.

The vector v* satisfying (3.2) is called the projection of v onto M, and will here be
written E*[v | M.

In the case that M is the Hilbert space spanned by a family of vectors
{x(t), t e T} in H, we write E*[v | 2(t), t € T] to denote the projection of » onto
M. In this case, a necessary and sufficient condition that v* satisfy (3.3) is that

(34) (v* z(s)) = (v, 2(s)) for every sin T.

We are now in a position to solve the problem of obtaining an explicit expres-
sion for the minimum mean square error linear prediction E*[Z | X(¢), t & T].
From (3.4), with H equal to the Hilbert space L. of all square integrable random
variables, and v = Z, it follows that the optimum linear predictor is the unique
random variable in Ly,(X (t), t ¢ T') satisfying, for all sin T,

(3.5) E[EXZ | X (1), te TNX(s)] = E[ZX(s)].

Equation (3.5) may look more familiar if we consider the special case of an
interval T = {{: @ < ¢t < b}. If one writes heuristically

b
(3.6) f X(H)w(t) dt

to represent a random variable in Ly(X(t), t& T), then (3.5) states that the
weighting function w*(t) of the best linear predictor

b

(37) BMZ|X(0),e T = [ w*OX () i
must satisfy the generalized Wiener-Hopf equation

b
(38) [ 00K (5,0 de = pats), asssh
where we define
(3.9) K(s,t) = E[X(s)X ()]
(3.10) pz(t) = E[ZX(1)].

There is an extensive literature concerning the solution of the integral equa-
tion in (3.8); see [39] for references. In my opinion, however, this literature is
concerned with an unnecessarily hard problem, as well as one in which the very
formulation of the problem makes it difficult to be rigorous. The integral equa-
tion in (3.8) possesses a solution only if one interprets w*(¢) as a generalized
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function which includes terms which are Dirac delta functions and derivatives
of delta functions.

It seems to me that a simple reinterpretation of (3.8) avoids all these difficul-
ties. Let us not regard (3.8) as an integral equation for the weighting function
w*(t). Rather, let us compare (3.7) and (3.8). These equations say that <f one
can find a representation for the function pz(s) in terms of linear operations on the
Sunctions {K(s, t), t & T}, then the minimum mean square error linear predictor
E*[Z | X(t), t £ T] can be written in terms of the corresponding linear operations on
the time series {X(t), t & T}. It should be emphasized that the most important
linear operations are integration and differentiation. Consequently, the problem
of finding the best linear predictor is not one of solving an integral equation, but
is one of hunting for a linear representation of pz(¢) in terms of the covariance
kernel K(s,t). A general method of finding such representations will be dis-
cussed in Sections 4 and 5.

We illustrate the ideas involved by considering a simple example.

ExampLe 3A. Consider a stationary time series X (), with covariance kernel

(3.11) K(s,t) = CePl*™!,

which one has observed over a finite interval of time, ¢ = ¢ < b. Suppose that
one desires to predict X (b + ¢), for ¢ > 0. Now, fora < ¢ < b,

(3.12) p(t) = E[X()X(b + ¢)] = Ce™®+ = K (b, t).

In view of (3.12), by the interpretation of (3.7) and (3.8) just stated, it fol-
lows that

(3.13) E¥X(b +c¢) | X(t),a St < b] =™ X(d).

4. Hilbert space representations of time series. In the decade of the 1940’s,
probabilists began to employ Hilbert space methods to clarify the structure of
time series (see [21] and [27]). Among the fundamental theorems proved in this
period were the spectral representation theorem for stationary time series, and
the Karhunen-Lo&ve representation for random functions of second order on a
finite interval. Various workers (especially Grenander [12]) have made use of
these "representation theorems in treating problems of statistical inference on
time series. A representation theorem which does not seem to have found any
application is one due to Lo&ve ([27], p. 338) which shows that there is a very
intimate connection between time series (random functions of second order) and
reproducing kernel Hilbert spaces. It turns out, in my opinion, that reproducing
kernel Hilbert spaces are the natural setting in which to solve problems of sta-
tistical inference on time series. In this section we define the notion of a Hilbert
space representation of a time series and show how this notion may be used to
explicitly solve the prediction problem.

The definition we give of the notion of a Hilbert space representatlon of a
time series is based on the following theorem (for proof, see Parzen [37] or [40]).

Basic CoNGRUENCE THEOREM. Let H, and H, be two abstract Hilbert spaces.



TIME SERIES ANALYSIS 963

Denote the inner product between two vectors u, and uz tn Hy by (u1, ug); . Stmi-
larly, denote the inner product between two vectors v, and vy in Hy by (v1, v2)2.
Let T be an index set. Let {u(t), ¢t € T} be a family of vectors which span H, . Simi-
larly, let {v(t), t € T} be a family of vectors which span H, . Suppose that, for every
sandtin T,

(4.1) (u(s), u(®))1 = (v(s), v(t))2 -

Then there exists a congruence (a one-one inner product preserving linear mapping)
¥ from Hy onto H, which has the property that

(4.2) Y(u(t)) = v(t), tin T.

DeriniTioN 4A. A family of vectors {f(¢), ¢ ¢ T} in a Hilbert space H issaid to
be a representation of a time series {X(¢), ¢ ¢ T} if, for every sand ¢ in T,

(4.3) (f(s), f(8))m = K(s,t) = E[X(s)X(1)].

Then there is a congruence (a one-one inner product preserving linear mapping)
¢ from V(f(t),t e T) onto L:(X (%), t ¢ T) satisfying

(44) Y1) = X(0)
and every random variable U in L.(X(t), t ¢ T) may be written
(4.5) U = ¥(9g)

for some unique vector g in V(f(¢),t e T).

We next show that the representation of a time series as a stochastic integral
is best viewed as a Hilbert space representation.

DeriniTION 4B. We call (@, B, u) a measure space if @ is a set, B isa o-field
of subsets of @, and p is a measure on the measurable space (@, B). We denote
by L:(Q, B, u) the Hilbert space of all B-measurable real valued functions de-

fined on @ satisfying
(46) = [ Fdu< .

DerintrioN 4C. Let (Q, B, 1) be a measure space, and, for every B in B,
let Z(B) be a random variable. The family of random variables {Z(B), B ¢ B}
is called an orthogonal random set function with covariance kernel y if, for any
two sets B; and B. in B,

(4.7) E[Z(B1)Z(B,)] = u(BiB,),

where, as usual, B,B; denotes the intersection of B, and B; .

The Hilbert space Ly(Z(B), B ¢ B) of random variables spanned by an or-
thogonal random set function may be defined, as was the Hilbert space spanned
by a time series, to be the smallest Hilbert subspace of the Hilbert space of all
square integrable random variables containing all random variables U of the form
U = Y. ¢ Z(B;) for some integer n, subfamily {B;, -+, B.} C B, and real
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constants ¢;, - - - , ¢, . On the other hand, L,(Q, B, ) may be described as the
Hilbert space spanned under the norm (4.6) by the family of indicator functions
(Ig, B ¢ B), where the indicator function I of B is defined by Iz(q) = 1 or 0
according as q ¢ B or ¢ # B. Now for any B, and B; in B,

(4.8) (Is, , In,)u = w(B1B:) = ElZ(B1)Z(By)].

Therefore, by the Basic Congruence Theorem, there is a congruence y from
Ly(Q, B, u) onto Ly(Z(B), B ¢ B) such that for any B ¢ B,

(4.9) v(Is) = Z(B).

This fact justifies the following definition of the stochastic integral.
DerriniTioN 4D. Let (@, B, 1) be a measure space and let {Z(B), B € B} be an

orthogonal random set function with covariance kernel u. For any function f in

Ly(Q, B, u) one defines the stochastic integral of f with respect to {Z(B), B ¢ B},

denoted [o f dZ, by

(4.10) qudZ =y¥(f),

where ¢ is the congruence from L.(@, B, u) onto L.(Z(B), B ¢ B) determined by
(4.9). f

We are now in a position to state our version of Karhunen’s theorem (see
[13], p. 29).

TuEOREM 4A. Let {X(t), t & T} be a time series with covariance kernel K. Let
{f(t), t € T} be a family of functions in a space Ly(Q, B, u), such that for all s, t inT

(4.11) K(s 1) = fq A7) du.

Then {f(t), t € T} is a representation for { X (t), te T}.
If, further, {f(t), te T} spans Ls(Q, B, u), then there s an orthogonal random
set funétion {Z(B), B ¢ B} with covariance kernel u such that

(4.12) x(0) = [ j) az, teT,
e

and every random variable U in L:(X (%), t ¢ T') may be represented

(4.13) U = f g dzZ
e

for some unique function g in Ly (Q, B, u).

Proor. Let ¢ be the congruence from L. (f(t),t e T) onto L:(X (t), t & T') satis-
fying (4.4). If {f(t), t ¢ T} spans L:(Q, B, n), define, for Be B, Z(B) = ¢(Iz).
It is immediate that {Z(B), B ¢ B} is an orthogonal random set function with
covariance kernel u. By the definition of the stochastic integral, (4.12) is merely
another way of writing the fact that X (¢) = ¢(f(¢)).

Theorem 4A, together with (2.2) and (2.1), yields the following fundamental
result.
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SPECTRAL REPRESENTATION THEOREM FOR STATIONARY TiME SERIES. A
discrete parameter time series {X(t), ¢t = 0, 1, - - -} is weakly stationary if and
only if for some Lebesgue-Stieltjes measures u on the interval @ = {\: —r S N = 7}
the complex exponentials {e™',t = 0 & 1, - -} form a representation for the time
series tn Ly(Q, B, u) where B is the o-field of Borel subsets of Q. Then there exists
an orthogonal random set function {Z(B), B € B} such that

(4.14) X(@t) = f eMZ(dN),t =041, ...

A similar theorem holds for continuous parameter time series with
Q ={\ —o <A< o}

The representation of a time series as an integral with respect to an orthogonal
random set function is not a natural representation, since one may choose such
representations of a time series in a multitude of ways. Indeed, if (@, B, u) is a
measure space such that Ly(X(t), t e T) and @:(Q, B, u) have the same dimen-
sion, there are many families {f(¢), ¢ ¢ T} of functions in L;(Q, B, u) which are a
representation for {X(¢), ¢t ¢ T}. What one desires is a family {f(¢), te T} of
familiar functions [such as the family of complex exponentials ¢™*, which are a
representation in a suitable space L.(Q, B, u) for a stationary time series]. I be-
lieve there is a natural representation in terms of which to solve problems of sta-
tistical inference on time series, namely the representation of a time series with
covariance kernel K by the functions {K(, t), ¢ ¢ T} in the reproducing kernel
Hilbert space H(K).

DeriniTioN 4E. A Hilbert space H is said to be a reproducing kernel Hilbert
space, with reproducing kernel K, if the members of H are functions on some set
T, and if there is a kernel K on 7 ® T having the following two properties; for
every t in T (where K( -, ¢) is the function defined on 7', with value at s in T
equal to K(s,t)):

(4.15) K(-, ) eH
(416) (g’ K( “ t))II = g(t)

for every g in H.

Intuitively, a reproducing kernel Hilbert space is a Hilbert space which con-
tains a function playing the role of the Dirac delta functlon 5(¢). It should be
recalled that, for square integrable functions f(-),

[:f(s)é(s — t) ds = f(¢).

Consequently, the kernel K(s, t) = §(s — t) satisfies (4.16). However it does
not satisfy (4.15), and therefore is not truly a reproducing kernel.

TureoreEM 4B (Moore-Aronsjazn-Loeve [1], [27]). The covariance kernel K of a
time series generates a unique Hilbert space, which we denote by H(K), of which
K s the reproducing kernel.



966 EMANUEL PARZEN

Since K(s,t) = (K(-,8),K(,t))ax) = E[X(s)X(t)] we immediately obtain
the following important theorem.

TarorEM 4C. Let {X (1), t € T} be a time series with covariance kernel K. Then
the family {K (-, t), t ¢ T} of functions in H(K) is a representation for { X (t),t e T}.
Given a function g in H(K), we denote by (X, g)x or (g, X)x the random variable
U in Ly(X(t), te T) which corresponds to g under the congruence which maps
K(-,t) into X (t). We then have the following formal relations: for every t in T, and
g, b in H(K),

(X} K('} t))K = X(t)
El(X, M)x(X, 9)x] = (h, 9)x

where we hereafter write (h, g)x for (h, 9)uex) -

The next theorem shows the relationship between the reproducing kernel
Hilbert space representation of a time series, and the representation of a time
series by an orthogonal decomposition of the form of (4.12).

Tueorem 4D. Let K be a covariance kernel. If there exist a measure
space (Q, B, u), and a family of functions {f(t), t & T} in Ly(Q, B, n) such that
(4.11) holds, then the reproducing kernel Hilbert space H(K) corresponding to the
covariance kernel K may be described as follows: H(K) consists of all functions g,
defined on T, which may be represented in the form

(4.18) g(t) = fo g*f(t) du

for some (necessarily unique) function g* in the Hilbert subspace Ly(f(t),te T) of
Ly(Q, B, u) spanned by the family of functions {f(¢), t € T}, with norm given by

(4.19) lol? = [ lo*F* du.

If {f(t), te T} spans Lx(Q, B, u), so that X(t) has an orthogonal decomposition
(4.12), then we may write

(4.20) (X, 9)x = f g* dZ.

(4.17)

Proor. Verify that the set H of functions of the form of (4.18), with norm
given by (4.19), is a Hilbert space satisfying (4.15) and (4.16).

TueoreM 4E. (General solution of the prediction problem.) Let {X (¢), t e T},
be a time series with covariance kernel K (s, t), and let H(K) be the corresponding
reproducing kernel Hilbert space. Between Lo(X (t),t e T) and H(K) there exists a
one-one inner product preserving linear mapping under which X (¢) and K( -, t) are
mapped into one another. Denote by (h, X ) x the random variable in Ly(X (t), te T)
which corresponds under the mapping to the function h(-) in H(K). Then the gen-
eral solution to the prediction problem may be written as follows. If Z is a random
variable with finite second moment, and if

(4.21) pz(t) = E[ZX(1)),



TIME SERIES ANALYSIS 967

then

(4.22) ENZ|X(t),teT] = (pz, X)x

with mean square error of prediction given by

(423)  E[|Z — B4Z|X(®),teT1|" = E|Z|® = (pz, pa)x.-

Theorem 4E represents a coordinate free solution of the prediction problem.
The usual methods of explicitly writing optimum predictors, using either eigen-
function expansions, Green’s functions (impulse response function), or (power)
spectral density functions, are merely methods of writing down the reproducing
kernel inner product corresponding to the covariance kernel K(s, t) of the ob-
served time series.

The validity of Theorem 4E follows immediately from the definition of the
concepts involved. However, it may be instructive to give a proof of the theorem,
using the following properties of the mapping (h, X)x . For any functions g and
hin H(K) and random variables Z with finite second moment it holds that

(4.24) E[(h, X)x(g, X)x] = (h, 9)x
(4.25) EZ(h, X)x] = (pz, h)x,

in which pz(t) = E[ZX(t)]. Now a random variable in Ly(X (¢), ¢t ¢ T) may be
written (h, X)x for some h in H(K). Consequently the mean square error be-
tween any linear functional (k, X)x and Z may be written

E[| (h, X)x — Z|"] = El(h, X)x] + EIZ"] — 2E[Z(h, X)x]
(4.26) = E[Z] + (h, h)x — 2(pz, B)x
= E[Z2] - (pz, Pz)x + (h—pz,h — pz)x.

From (4.26) it is immediate that (pz, X)x is the minimum mean square error
linear predictor of Z, with mean square prediction error equal to E[Z%] —
(pz, pz)x - The proof of Theorem 4E is complete.

6. Examples of reproducing kernel Hilbert space representations. In this
section we give the reproducing kernel Hilbert space representation of a time
series {X (¢), t ¢ T} under a variety of standard assumptions.

ExampLE 5A. Suppose T = {1, 2, ---, N} for some positive integer N, and
that the covariance kernel K is given by a symmetric positive definite matrix
{K;} with inverse {K*}. The corresponding reproducing kernel space H(K) con-
sists of all N-dimensional vectors f = (fi, : + - , f~) with inner product

(5.1) (f, 9z = gélfaK“gt.

To prove (5.1) one need only verify that the reproducing property holds: for
u=1:.--,N, '

-

(f, Ku)K = th=1 sz‘thu = ;faa(sy u) = fu .
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The inner product may also be written as a ratio of determinants:

: " e s W J:l Kn -+ Kuw
52 = —; : N .
(52) e T S e

91 gN 0 N1 NN

To prove (5.2) one again need only verify the reproducing property. In the case
in which the covariance matrix K is singular, one may define the corresponding
reproducing kernel inner product in terms of the pseudo-inverse of the matrix K
(see Greville [15] for a discussion of the notion of pseudo-inverse).

Although (5.1) provides a formula for the reproducing kernel inner product
in terms of the inverse of the covariance matrix, it is to be emphasized that one
need not necessarily invert the covariance matrix in order to find the reproducing
kernel inner product. The point of introducing the reproducing kernel inner
product is that the inversion of the covariance matrix is usually an intractable
problem, and one should look instead to evaluate that for which one would use
the inverse K'; namely, the evaluation of inner products in the reproducing
kernel space. Various iterative methods of evaluating these inner products can
be given (see [39] or [40]). This observation is undoubtedly not as important in
the case of discrete parameter time series as it is in the case of multiple time
series and continuous parameter time series.

ExampLE 5B. Autoregressive schemes (discrete parameter). A discrete parameter
weakly stationary time series X () is said to satisfy an autoregressive scheme of
order m if X (%) is the solution of the stochastic difference equation

(5.3) LX(t) = 2 aX(t — k) = n(t)
where o, - - -, an are given constants, and {(¢)} is an orthonormal sequence of
random variables. We now show that given observations {X (¢),¢ = 1,2, --- , N}
the reproducing kernel Hilbert space H(K) corresponding to the covariance
kernel K of the observations consists of all N-vectors f = ((f(1), ---, f(N))
with inner product given by

N m
54)  Gox= 2 (L0} LeW) + 2 dafia(k)

where the matrix D = {d;} has an inverse D™* = {d"} with general term
(5.5) @ = K(j — k) = EIX(G)X(®)].

In the case that N = 2m, an explicit expression for d;; is given by

min(j,k)
(5~6) djk = Z {aj—uak—u - au+m—jau+m—k}o

u=1
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In particular for a first order autoregressive scheme and N = 2

(f, )= = (ag — ai)f(1)g(1)

(5.7 N
) + ;{a')f(t) + arf (t — 1)}Haog(t) + ag(t — D}

For a second order autoregressive scheme and N = 4

(f, O = (a3 — a2){f(1)g(1) + f(2)g(2)}
+ (aom — @ma){f(1)g(2) + f(2)g(1)}

+ g;{aof(t) + arf (t — 1) + aaf (t — 2)}
Jag(t) + ag(t — 1) + asg(t — 2)}.

One can give a purely algebraic proof of (5.4). However a simpler proof can
be given if one uses certain facts from probability theory. Let us suppose that
X(1), -+, X(N) are jointly normally distributed random variables with co-
variance matrix Ky = {K,.4 with inverse matrix Ky' = {K*}. Then the joint
probability density function of X(1), - -+, X(N) may be written

(59)  fraxmn(@, - @) = (207 | Ky |7 exp {—3(2, 2)xn}

where |Ky| is the determinant of Ky, and the inner product (, ¥) ky is defined
by the right hand side of (5.1). On the other hand, if X(1), --- , X(N) satisfy
the difference equation L. X (t) = 5(t), where q(1), -+ -, 9(N) are independent
normal random variables with means 0 and variance 1, then

(5.8)

fxay, - xm im0, -, A (L1, Ty Ymar, 0 Yn)
(5.10) _ y
= {@m)" |Kal) ™ exp [~} (2, ) + 2 U]

J

Transforming from
(X(l), e ,X(m)) "(m + 1)7 Tt ﬂ(N)) to (X(l)) e )X(N))

by the linear transformation L, X () = #(t),t=m+1,---,N, it follows from
(5.10) that
fx(l),m'xw)(xl, A Ty) = {(2T)N|Km|}_%ag_m
(5.11) N
- exp [—%{(z, )k, + E Ithtlz}].
j=m+1

Comparing (5.9) and (5.11) it follows that for any N-vector &
N
(5.12) (%, 2)xy = (2, )&, + -Z.,_l |La, *
J=m

which is equivalent to (5.4).
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To prove (5.6), define the function e,{t) by e;(t) = 1 or 0 according as ¢ = j
or ¢ # j. Since the time series X (¢) is stationary,

(5-13) (ej,ex)x = (GN—:‘+1 , eN—k+1)K -

Forl < j, k < m, defining a; = 0 forj < 0 orj > m,

(en—jt1, en—kt1)x =

) Lt(GN_j+1)Lt(€N—k+l)

(5.14) =

te=m+
t=m+1
%

N
2

N
E Qjtt—N-10k4t—N—1
2

=1

Qj—uO—u
while
N
(ej, ex)r = dp + tz-l-l Lt(ei)Lt(ek)

N

(5.15) =dp+ 2 Gl

te=m+1

N—m

=dj + Z; Quom— Qe
U=

From (5.13), (5.14), and (5.15), we obtain (5.6).

From (5.4) and (5.6) one may obtain the inverse matrix of the covariance
matrix of an autoregressive scheme (see Siddiqui [49] and references cited there).

ExampLE 5C: Autoregressive schemes (continuous parameter). We next consider
the reproducing kernel Hilbert space corresponding to the covariance kernel of
an autoregressive scheme X (¢) observed over a finite interval a < ¢ < b.

A continuous parameter stationary time series X (¢) is said to be an autore-
gressive scheme of order m if its covariance function R(u) = E[X(¢)X (¢ + u)]
may be written (see Doob [D1], p. 542)

ei(s—t)w

5 dw

m

(5.16) R(s — t) = f°7 S
ap T

2

where the polynomial > o az™ " has no zeros in the right half of the complex
z-plane. It may be shown that given observations of such a time series over a finite
interval @ < ¢ < b, the corresponding reproducing kernel Hilbert space contains
all functions h(¢) on a < t < b which are continuously differentiable of order m.
The reproducing kernel inner product is given by

(5.17) (h, 9)x = f ' (L;k)(Lyg) dt + ;i:o d; 1 1? (a)g® (a)
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where
(5.18) Lk = X a7 (1)
Fo=0
P 5+
(5-19) {dj'k} = {at’auk R(t B u) t-a,u—o} )

The first and second autoregressive schemes are of particular importance.

A stationary time series X (f) is said to satisfy a first order autoregressive
scheme if it is the solution of a first order linear differential equation whose input
is white noise #’(¢) (the symbolic derivative of a process 5(¢) with independent
stationary increments):

(5.20) (dX/dt) + BX = 7'(t).

It should be remarked that from a mathematical point of view (5.20) should be
written

(5.21) dX(t) + BX(t)dt = dn(t).
Even then, by saying that X (t) satisfies (5.20) or (5.21) we mean that

522) Xt = [ H(t -9 dn(s)

where H(t — 8) = ¢ **™ is the one-sided Green’s function of the differential

operator L.f = f'(t) + Bf(¢).
The covariance function of the stationary time series X(¢) is

(5.23) “R(t — u) = (1/28)e ™Y

The corresponding reproducing kernel Hilbert space H(K) contains all differen-
tiable functions. The inner product is given by

b
(524)  (hoh = [ (0 + 8W)( + By) dt + 26h(a)g(a).

More generally, corresponding to the covariance function
(5.25) K(s, t) = Ce®*
the reproducing kernel inner product is
_L ' }
(h o) = gic { [ O + B + B0) dt + 28h(@)g(@)

(5.26) > :
= EBIZ'L (g’ + B°hg) dt + 2%, {h(a)g(a) + h(b)g(b)}.

The random variable (h, X)x in Lo(X(t), a < t < b) corresponding to A(-) in
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H(K) may be written

1

X = L g [hxwa+ [ @ ax
o 2;30{6[, HX(t t+fahtd t}

+ g5 IM@X (@) + BBX(B)).

Note that X’(¢) does not exist in any rigorous sense; consequently we write dX (t)
where X’(t) dt seems to be called for. It can be shown that (5.27) makes sense.
In the case that h(-) is twice differentiable, one may integrate by parts and write

(5.28) fwwmm=mmmw—w@m@—fmmmma

A stationary time series X (¢) is said to satisfy a second order autoregressive
scheme if it is the solution of a second order linear differential equation whose
input is white noise 7'(¢):

(5.29) (X /df) + 2a(dX/dt) + v*X = 7'(2).

If o = 4* — &® > 0, the covariance function of the time series is

—a|u—t|

(5.30) Rt —u) =%
4oy

The corresponding reproducing kernel Hilbert space contains all twice differen-
tiable functions on the interval @ < ¢ < b with inner product

{cos olu —t) + g sin wlu — t]}

b
(531) (0= f (K" + 2k’ + 7'h) (¢" + 209’ + +g) dt
+ 407"h(a)g(a) + 4ah’(a)g'(a).

To write an expression for (h, X)x , one uses the same considerations as in (5.27).
Other examples of reproducing kernel Hilbert spaces are given in [39] and [40].

6. Regression analysis of time series with known covariance function. The
theory of regression analysis (and of the general linear hypothesis) plays a
central role in statistical theory. In this section we show how to solve certain
standard problems of regression analysis in cases in which the observations
possess properties of dependence or continuity. For a discussion of the history
and literature of regression analysis the reader is referred to Wold [58].

The classical problem of regression analysis may be posed as follows. Given (i)

observations X (¢), ¢t = 1, -+, N, with known covariance kernel
(6.1) K(s,t) = Cov [X(s), X(8)]

and mean value function m(¢) = E[X(%)] of the form

(6.2) m(t) = Buwr(¢) + - -+ + Bawy(?)

where wy (), - -+, wy(+) are known functions, and 8;, - - , B, are unknown real
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numbers, and (ii) a linear function

(6.3) Y(B) = b+ -+ + ¥ibe

of the parameters, where ¢, , - - - , ¥, are known constants. Estimate ¢(-) by an
estimate which (i) is linear in the observations in the sense that it is of the form
>y ¢ X (¢) for some real numbers ¢; , - - - , ¢y, (ii) is an unbiased estimate of
¥(-) in the sense, that forall 8 = (8, -+ -, B,),

64) B [i ctXu)] = 3 emlt) = > 3= au(®) = 9(8),

and (iii) has variance

(6.5) Var [é ctX(t):l =

equal to the minimum variance of any unbiased linear estimate.

The problem of finding the minimum variance unbiased linear estimate of a
linear parametric function ¥(8) can be posed as a problem involving the minimi-
zation of a quadratic form subject to linear restraints. Define K = {K (s, 1)},

wi(l) --- wq(l) , 1 €1
66) W=|: i ,ov=|i], e=]:
wi(N) -+ w,(N) 2 e

and let ¢’ denote the transpose of a (column) vector ¢. The unbiasedness condi-
tion (6.4) can be stated in matrix form as

(6.7) W = .

The problem of finding the minimum variance unbiased linear estimate can now
be posed as follows: find the vector ¢ which minimizes the quadratic form ¢'Ke,
subject to the constraints ¢'W = ¢’ (compare Bush and Olkin [7]).

THEOREM 6A. Let K be a positive definite n X n symmetric matriz, W be an
n X q matriz, and ¢ a q-vector. Assume that

(6.8) V = WKW

1s non-singular. The n-vector ¢* which minimizes the quadratic form ¢’ Ke among all
n-vectors ¢ satisfying W'e = ¢ is given by

¢ K(s, t}ct

N
8,t=1

(6.9) ¢t =K "WV
and the minimum value of the quadratic form s given by
(6.10) cHKe* = ¢V

Proor. One easily verifies that the vector ¢* defined by (6.9) satisfies the re-
straint W’e¢ = ¢, and that (6.10) holds. To complete the proof we show that for
any n-vector ¢ such that ¢'W = ¢’ it holds that

(6.11) cKe = 'V .
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Now for any g-vector z, letting y = W,

(c'y) _ (¢W2)’ _ (¥2)*
. ' 2 = —3 .
(6.12) cKe 2 yKy 2'Vz 2Vz
Taking the supremum of the right side of (6.12) over all g-vectors 2, one obtains
(6.11), since

(6.13) sup, [(¥'2)*/2'Vz] = ¢V

From Theorem 6A, one immediately obtains Theorem 6B.
TueoREM 6B. The minimum variance linear unbiased estimate of a parametric

Sfunction Y(B) s

(6.14) Y* = VX = ¢V (WK 'X).

The variance of Y* is given by ‘

(6.15) Var [Y*] = c¥Kc* = ¢’V Y.

In particular, the vector B* = (8%, -+ , BY) of minimum variance unbiased linear
estimates of By, « -+ , B, may be written

(6.16) g* = V(WK'X)

with covariance matriz

(6.17) {Cov [6F, 871} = VX

The foregoing treatment of the problem of regression analysis with known co-
variance function depended very much on the assumptions that there were only
a finite number of observations, and that the matrices K and V were non-singular.
We now show how to relax these assumptions by using the reproducing kernel
Hilbert space representation of a time series. The results we now state include
as special cases the results which were first obtained by Grenander ([12], [14]).

Let {X(t), teT} be a time series whose covariance kernel K(s, ¢) =
Cov [X(s), X(t)] is known and whose mean value function m(t) = E[X(¢)] is
only assumed to belong to a known class M. Let H(K) be the reproducing kernel
Hilbert space corresponding to K. Assume that M is a subset of H(K). It may
be shown that between L,(X(¢), te T) and H(K) there exists a one-one linear
mapping with the following properties: if (h, X )k denotes the random variable in
Ly(X(t), t e T) which corresponds under the mapping to the function 4 in H(K),
then for every ¢in T, and h and g in H(K),

(6.18) (K(-, 1), X)x = X(8),
(6.19) E,[(h, X)k] = (h, m)g, for all m in M,
(6.20) Cov [(h, X)x , (g, X)xl = (b, g)x -

The subscript m on an expectation operator is written to indicate that the expec-
tation is computed under the assumption that m(-) is the true mean value
function.
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If T is finite, and K is non-singular, then (h, X)x = h’K'X. For other exam-
ples of (h, X)x, see Section 5.

We are interested in estimating various functionals ¢(m) of the true mean
value function m(-) by estimates which (i) are linear in the observations
{X(t), t e T} in the sense that they belong to Ly,(X(t), te T), (ii) are unbsased
and (iii) have ménimum variance among all linear unbiased estimates. A func-
tional ¥(m) is said to be linearly estimable if it possesses an unbiased linear esti-
mate (g, X)k . Since

(6.21) Enl(g, X)x] = (9, m)x = ¥(m), for all m in M

it follows that ¥(m) is linearly estimable if and only if there exists a function g
in H(K) satisfying (6.21). Now the variance of a linear estimate is given by

(6.22) Var [(g, X)&] = (9, 9)x -

Consequently finding the minimum variance unbiased linear estimate y* =
(g*, X)x of ¥(m) is equivalent to finding that function ¢* in H(K) which has
minimum norm among all functions ¢ satisfying the restraint (6.21). To find the
vector g* with minimum norm it suffices to find any vector ¢ satisfying (6.21).
Then the projection

(6.23) g* = E*g | M),

of g onto the smallest Hilbert subspace M containing M, satishes (6.21) and has

mnim um norm among all vectors satisfying (6.21).
TueoreM 6C. The uniformly minimum variance unbiased linear estimate ¥* of a

linearly estimable function ¢(m) is given by

(6.24) v* = (B*g | M), X)x
with variance
(6.25) Var [y*] = ||[E*lg | M]|| &,

where g is any function satisfying (6.21), M is the smallest Hilbert subspace of H(K)
containing M, and E*g | M| denotes the projection onto Mofg. In particular, the
uniformly minimum variance unbiased linear estimate m*(t) of the value m(t) at a
particular point t of the mean value function m( ) is given by

(6.26) m*(t) = (B¥K(-,t) | M], X)x
since
(6.27) - m(t) = (K(+, ), m)x.

In the special case that M consists of all functions m(t) of the form of (6.2),
and the matrix

(wly w)g « -+ (wy, wq)x
(6.28) V=

(wq; W)k * - (wqy wq)x
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is non-singular, then

(wly X)K
(6.29) g* = v : .
('wq: X))k

One may write an explicit formula for the minimum variance unbiased linear
estimate ¢* of a linear parametric function ¢(8) = ¥161 + -« - + ¥,8, asfollows,
where V; = (w;, w;)x ;

V.u ce V.1q (X, :wl)K Vi - Vi
(6.30) ypr=— : :

Vql qu

Va o+ Voo (X, wp)g| ~
o Y 0

It should be noted that the proof of Theorem 6C is exactly the same in spirit
as the proof of the Gauss-Markov theorem given in Scheffé ([46], p. 14). The
point of Theorem 6C is that it enables one to develop a theory of regression analy-
sis and analysis of variance for cases in which one has an infinite number of ob-
servations. In particular, we state the analogues of certain basic results on simul-
taneous confidence intervals (Scheffé [46], p. 68) and hypothesis testing (Scheffé
[46], p. 31).

Hypothesis testing and simultaneous confidence bands for mean value functions.
If the time series X (¢) is assumed to be normal, or if all linear functionals (A, X )«
may be assumed to be approximately normally distributed, then one may state
a confidence band for the entire mean value function m(-) as follows. Given a
confidence level , let Cy(e) denote the o percentile of the x* distribution with ¢
degrees of freedom; in symbols, Plx; = Cy(a)] = a.

We now show that if the smallest space M containing all mean value functions
has finite dimension ¢, then

m*(t) — [Co(a)lalm*(1)] < m(t) < m*(t) + [Cola)l'olm*(t)]

(6.31) .
foralltin —ew <t < o

is a simultaneous confidence band for all values of the mean value function with
a level of significance not less that «; that is, if m(-) is the true mean value func-
tion then (6.31) holds with a probability greater than or equal to a.

To prove (6.31) we prove more generally the following theorem.

TrEOREM 6C. (Simultaneous confidence interval of significance level « for all
estimable functions (m, g).) If M has dimension q then for all m in M

X, g | M])x — (m, g)l
6.32 Pm[s (X, k! =C = a.
(6.32) ventey  Var [(X, B*[g | )] da) [ = o
Proor. Let w,, - -+, w, be orthonormal functions which span M. Then we
may write m = B + -+ + B,w, where 8; = (m, w;) is a function of m. Fur-

ther, (my g)K = afy + - + agfq (X) E*[glM])K = alﬂ;k + -+ aqﬁ:)
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Var [(X, E¥jg | Mgl = D %1 o}, where a; = (w; ,9xand B} = (X, w;)x . Next
the random variable appearing in (6.32) is equal to
]

2
Z ai(ﬂ;? — Bi) [
(6.33) sup =1 = Z B8 — 8;)?

—c0<ag, e, gl &L, =1
PIRY
j=1

which is distributed as x; (compare Scheffé [46], p. 416).

Similarly one may prove the following theorem.

TuEOREM 6D. Given a g-dimensional subspace M of H(K), and a q'-dimensional
subspace M' of M, to test the composite null hypothesis Hy : m(-) &€ M’, against the
composite alternative hypothesis, Hy : m(-) &€ M, one may use the statistic
(6.34) A = |lmu(t) — mi (O &
where my(t) [mi-(t)] denotes the minimum variance unbiased linear estimate of
m(t) under the hypothesis H\[Ho). Under Ho, A is distributed as x* with ¢ — ¢
degrees of freedom.

In the special case that M consists of all functions m(t) of the form (6.2), and
M’ consists of all functions in M for which 8; = 0 forj = ¢’ + 1, -+, g, then
the statistic A may be written

(6.35) A= > 5

where, defining V;; = (w;, w;)x,
6}' = Kw] - E*[wJ | Wiy *--, wj—I]; X')Kl2
llw; — E¥w;|wy, -, wil|x

(636) Vu s Vl,j_l (wl, X)K2 Vu e Vlj

Vu --- Vl,j—l

-
v

Vis oor Vija (wi, X)g Vio oo Vil [Vicag + o+ Vicnja

The reader may find it illuminating to write out (6.36) in the case that ¢ = 2
and ¢/ = 1. -

Regression analysis when the covariance function of the observations is only known
up to a constant factor. Suppose that the covariance function of the time series
{X(2), t e T} is of the form

Cov [X(s), X(t)] = ¢’K(s, 1)

where the kernel K(s, t) is known and ¢” is an unknown positive constant, and
that the mean value function m(t) = E[X(¢)] is known to belong to a set M
which is a subspace (of dimension ¢) of H(K), the reproducing kernel Hilbert
space corresponding to K. Theorem 6C continues to hold, except that (6.25
should be replaced by '

(6.25") Var, Y*] = o* |E¥g | M]| & .
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The variance of the estimate ¢* depends on the unknown parameter ¢°. There-
fore one needs to estimate ¢ in order to know Var,[¢*]. To discuss the estimation
of o°, we need to distinguish between the case in which the index set T is finite
and the case in which 7 is infinite.

If T is finite, the time series {X (t), ¢t ¢ T}, regarded as a function of ¢, may be
shown to belong to H(K). Further if n is the dimension of H(K), then for all
possible mean value functions m(t) and values of ¢*

E[IX(t) — m(t)]| x] = no*
(6.37) E[m*(t) — m()| ] = ¢o*

E[|IX(t) — m*t)| &l = (n — g)o".
Therefore

(6.38) o = (n— ) |IX (1) — m*)]| &

is an unbiased estimate of ¢ (which in the case of normally distributed observa-
tions is independent of m*(¢)).

If T is infinite, it is possible to estimate o® exactly by forming a sequence of
estimates of the form of (6.38) based on a monotone sequence of finite subsets
{T,} of T whose limit is dense in T'. ~

7. The probability density functional of a normal process. The prediction and
regression problems considered in the foregoing have all involved linear estimates
chosen according to a criterion expressed in terms of mean square error. Never-
theless the mathematical tools developed continue to play an important role if
one desires to employ other criteria of statistical inference. All modern theories
of statistical inference take as their starting point the idea of the probability
density function of the observations. Thus in order to apply any principle of
statistical inference to problems of time series analysis, it is first necessary to
develop the notion of the probability density function (or functional) of a sto-
chastic process. In this section we state a result showing how one may write a
formula for the probability density function of a stochastic process which is

normal.
Given a normal time series {X (¢), t ¢ T} with known covariance function

(7.1) K(s,t) = Cov [X(s), X(8)]

and mean value function m(t) = E[X(t)], let P, be the probability measure in-
duced on the space of sample functions of the time series. Next, let m, and m, be
two functions, and let P; and P be the probability measures induced by normal
time series with the same covariance kernel K, and mean value functions equal
to m; and m, respectively. By the Lebesgue decomposition theorem it follows
that there is a set N of P;-measure 0 and a non-negative P;-integrable function,
denoted by dP;/dP, , such that for every measurable set B of sample functions

(72) Py(B) = fB (dPy/dP,) dP; + Py(BNS.
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If Py(N) = 0, then P; is absolutely continuous with respect to Py , and dPs/dP,
is called the probability density function of P; with respect to P; . Two measures
which are absolutely continuous with respect to one another are called equivalent.
Two measures P; and P; are said to be orthogonal if there is a set N such that
P1(N) = 0 and Pz(N) = 1.

It has been proved, independently by various authors under various hypotheses
(for references, see [40], Section 4), that two normal probability measures are
either equivalent or orthogonal. From the point of view of obtaining an explicit
formula for the probability density function, the following formulation of this
theorem is useful.

TueoreM 7A (Parzen [37], [40]). Let P, be the probability measure induced on
the space of sample functions of a time series {X (t), t & T} with covariance kernel K
and mean value function m. Assume that either (i) T is countable or (i) T is a
separable metric space, K is continuous, and the stochastic process {X(t), te T} is
separable. Let Py be the probability measure corresponding to the normal process with
covariance kernel K and mean value function m(t) = 0. Then P, and P, are equiva-
lent or orthogonal, depending on whether m does or does not belong to the reproducing
kernel Hilbert space H(K). If m belongs to H(K), then the probability density func-
tional of P, with respect to Py s given by

(7.3) f(X, m) = dPn/dPo = exp E(X, m)x — (3)(m, m)x}.

Using the concrete formula for the probability density functional of a normal
process provided by (7.3), there is no difficulty in applying the concepts of
classical statistical methodology to problems of inference on normal time series.
In particular the following theorem may be proved.

TueoreM 7B. Let {X(t), t & T} be a normal time series, satisfying the assump-
tions of Theorem TA with known covariance kernel K(s, t) = Cov [X(s), X (¢)],
whose mean value function is only assumed to belong to a known class M. If M is a
finite dimensional subspace of the reproducing kernel space H(K), then the mazxi-
mum likelihood estimate m*( - ), defined as that estimate in the space M of admissible
mean value functions such that

(7.4) (X, m*) = maxn e u f(X, m),

exists and is given at each t in T by the right hand side of (6.26).

If M is an infinite dimensional space, then a maximum likelihood estimate does
not exist. This is not too surprising, since M is not compact in this case. However,
an estimate does exist which is the uniformly minimum variance unbiased linear
estimate of the value m(t) at a particular time ¢ of the mean value function;
this estimate is given by (6.26).

The theory of reproducing kernel Hilbert spaces turns out to provide a natural
tool for treating problems of minimum variance unbiased estimation (see Parzen
[37]). Further work along these lines in the case of normal time series is being
done by Ylvisaker ([59]).
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8. Correlation analysis of regression free stationary time series. In this
section, we state some results for discrete parameter time series (a more compre-
hensive survey is given by Hannan [17]). Many of the results stated may be
extended to continuous parameter time series.

We consider a discrete parameter time series {X(¢),t =1, 2, --- }, with zero
means, which is weakly stationary of order 4 in the sense that its covariance
function

(8.1) R(v) = E[X(0)X(t + v)]
and its fourth cumulant function
Q(U] y U2, 03) = E’[X(t)X(t + vl)X(t + vz)X(t + 03)]

(8.2)
— R(n)R(v2 — v3) — R(v2)R(v; — v3) — R(v3)R(vy — v2)

are independent of ¢.
ExampLE: Linear Processes. A discrete parameter time series X (¢) is said to be
a linear process, if it may be represented

0

(8.3) X() = a;w w(t — a)n(a)

where Do, |w(a)| < o, and {g(a), a = 0, %1, ---} isa sequence of inde-
pendent identically distributed random variables with zero means, finite fourth
cumulant A, and second cumulant A; . A linear process X () is weakly station-
ary up to order 4, with covariance function, spectral density function, and fourth
cumulant function satisfying

0

3wl |,

a=—w

0

R() =\ Z w(a)w(a + v), fo\) = %s-r

a=—00

0

(8.4) Qvy,v5,03) =N\ 2 w(a)w(a + v)wla + v)w(a + v5),

a=—00

i Q(vy,u,u + 1) = aR(1)R(v2), @ M

U=—00 B 6—‘2)2 )

Correlation analysis is concerned with estimating the covariance function R(v),
and the normalized covariance (or correlation) function

(8.5) p(v) = RE(v)/R(0)

of a stationary time series.
Given observations {X(¢),¢t = 1,2, --- , N}, one can form the sample covari-
ance function, for ]| < N — 1,

N—|

1
N =3

<

(86) Ry(v) = XX+ |v])

which has mean
(8.7) ERy(v)] = [1 — ([o|/N)IR().
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As an estimate of R(v)', Ex(v) is biased (although asymptotically unbiased).
Consequently if we are interested in estimating R(v) it may be preferable to take
as our estimate

Ex(v) = [N/(N = [p])IRx(v).

Many authors have advocated the use of the unbiased estimate Ry(v) in pref-
erence to the biased estimate Ry(v). However, it appears to me that Ry(v) is
preferable to Ry (v) for two reasons: (i) Ry(v) is a positive definite function of v,
which is not the case of Ry(v); (ii) the mean square error of Ry(v) as an estimate
of R(v) is in general less than that of Ry(v). That (i) holds is immediate. That
(ii) holds is shown in Parzen [42]. It will be seen that for theoretical purposes it
is certainly more useful to consider Ry(v) rather than Ry(v).

Using the large of large numbers proved in Parzen ([38], pp. 419-420), one
may prove the following theorems on consistency of the sample covariance
function.

TuroreM 8A. The sample covariance function of a weakly stationary time series
18 consistent in quadratic mean, in the sense that, forv = 0,1, - - |

(8.8) limy.o E | Ry(v) — R(») |* =0

tf the time series is weakly stationary of order 4, and satisfies (forv = 0,1, ---)

N—1
(89) im 3 R s) = 0
N->o0 N 8=0
N—vy—1
(8.10) lim L > Qv,8,v+s) =0.

N> N =0

TurorEM 8B. The sample covariance function of a weakly stationary time series
18 strongly consistent, in the sense that, for each v = 0,1, - - - ,

(8.11) Pllimyow Ry(v) = R()] = 1

if the time series is weakly stationary of order 4 and satisfies for positive constants
C and q

N—1
(8.12) %Z R(s) < CN™* for i N
8=0
1 N—y—1
(8.13) ¥ > Qv s,v+s)| SCN® forall N.
8=0
In particular, (8.12) and (8.13) hold if it is assumed that
(8.14) 2 IR(v)| < =
(8.15) > 1Qn, v, m)] < w.

V1,02,03,=—%

We next obtain expressions for the asymptotic covariance of the sample co-
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variance function (for proofs of the following theorem see Bartlett [2], [3] or
Parzen [36]).

TrareoreEM 8C. Let X (t) be a time series weakly stationary of order 4, with abso-
lutely summable covariance and fourth cumulant functions (that is, (8.14) and
(8.15) hold). Then the sample covariance function Ry(v) has asymptotic covariance,
for any mon-negative integers v, and v ,

(8.16) limyo N Cov [RN(Ul), RN(Dz)] = D(Dl , vz)
where we define

(8.17) D(vi,0) = 25 {R(WE(u+ 02— )

+ R(u)R(u + vz + v1) + Q(v1, u, u + v2)}.

For a linear process with spectral density function f(-)

D(vy,v2) = 4m [ cos Mg cos Aoz f2(A)d\
(8.18) " o
+ a«.[- .[ cos )\1)1 €OS s f()‘l)f()\z) d)\l dxz .

In particular, the variance of Ry(v) is approximately given by

(819)  Var[Rw(v)] = ‘]‘V_” f_ " o o F1(0) d + O 2 ;\f, % R).

The mean square error of Ry(v) as an estimate of R(v) is given by
2
(8.20) E|Ry(v) — R(v) |* = Var [Ry(v)] + (%) R*(v).

It was empirically observed by M. G. Kendall that the sample covariance func-
tion (traditionally called the observed correlogram) fails to damp down to O for
increasing values of v, although the true covariance function R(») does damp
down to 0 as v tends to «. This fact is borne out theoretically by (8.19) and
(8.20), which show that the coefficient of mean square error E | Ry(v) — R() |*
/R}(v) is of the order of 1/N for all lags v of the sample covariance function.

One may state in a variety of ways conditions under which the sample covariance
function Ry(v) is asymptotically normal in the sense that for every choice of lags
v, -+, v and real numbers u; , -+, U,

Elexp i{us N*(Ry(v) — E[Rx(v)]) +o NY(Ru(v) — E[Ry(2)])}]
(821) —> exp I:— %{fk_: u; D(v;, ;) u.}]

,j=1

as N — o (see Walker [54], Lomnicki and Zaremba [29], Parzen [35]). In par-
ticular, (8.21) holds if X (¢) is a linear process.
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As an estimate of the correlation function p(v) we take the sample correlation
function

(8.22) pn(v) = Rn(v)/En(0).

We do not discuss here the question of the best definition of the correlation
function for short series. For a discussion of this problem, and references to the
literature, see Wemstem [565].

By standard large sample statistical theory one readily obtains, from (8. 21)
and (8.16), the following theorem.

TueoreM 8D. If X (t) is a linear process, then py(v) is asymptotically normal
with asymptotic covariances satisfying, as N — o,

(8.23) NE[pa(01) ~ p(01), px(va) ~ p(v)] = d(v1, v2)
where we define

(824)  d(v;, ) = 4r f_ " ANFE(\) feos My — (1)} {cos Mz — ()},

I
RO)"

REMARK: It should be noted that while the variance of the sample covariance
function Ry(v) of a linear pracess depends on «, the variance of the sample cor-

relation function px(v) does not.
Proor. Using only the first few terms of the Taylor series expansion one ob-

tains that

(8.25) F) =

(8.26) 5——5—:——?/—{(?1 Yo)xo — (x — x0)yo} +0(|z — 20"+ |y — 9o |")

Consequently, if X, , Y., and Z, are sequences of random variables, and o , %o,
and 2, are constants, such that
W Xn — ), n(¥Ya— ), n(Z— 2)

are jointly asymptotically normal it follows that

4 &__xo) l(zn_zo)
”(y,. w' "\

are jointly asymptotically normal with asymptotic covariance satisfying

yo n Cov [}Y(n —g—:,% - ?%:IaxozoE[(Y — %)’

+ yi El(Xn — 20) (Zn — 20)] — 20 4o BU(Y » — y0) (Zn — 20)]
— 20 Y E[(Yn - yo) (X. — xo)]-

Applying these results to the present case it follows that the sample correlations

(8.27)
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pn(v) are asymptotically normal with asymptotic covariances satisfying
R*'0)N Cov [px(v) — p(v1), pn(v2) — p(v2)]
(8.28) = R(v:1)R(v)D(0,0) + R*(0)D{(v:, v2) — R(0)R(v,)D(0, v,)
— R(0)R(v2)D(0, vy).

From (8.28) and (8.18), one obtains (8.24).

We are now in a position to obtain confidence intervals for, or test hypotheses
about, a correlation coefficient o(»). From Theorem 8D it follows that the sample
correlation coefficient py(v) may be regarded as being normally distributed with
mean p(v) and variance equal to d(v)/N where we define

(8.29) d0) = 4x [ T DT feos o — p(0) .

Now d(v) = 167 JZ. d\F?(N); further, for large values of v, approximately
d(v) = 2= [Z. d\F*(N). One thus sees that in order to obtain bounds for d(v)
one must have a knowledge of the quantity

— 7)1 2
(8.30) o f_ D) vZ R ().

In the study of both correlation analysis and spectral analysis of stationary
time series it will be found that the quantity d arises frequently as information
which one requires about the time series under consideration in order to carry
out various statistical procedures. A satisfactory estimate of d from observations
{X(¢),t=1,2, .-, N} is provided by

1 N—1

2
2Rz, (0) "ﬁ%_n Ex(0).

If one does not desire to compute the sample covariance function for all

(8.31) dy =

= 0,1, , N then one may take, for any §in 0 < 6-= 1,
1 [6N] .
(8.32) dy,om) = 2., Riy()

(1 4+ 26 — ®)R%(0) .~

as an estimate of d. The properties of the estimates dy and dw,x; have been
extensively investigated by Lomnicki and Zaremba [29]; among other things
they show that dy is a consistent estimate of d which in the case of a linear proc-
ess has an asymptotic variance not dependent on the residuals {n(a)}.

An alternate approach to the problem of investigating the mechanism generat-
ing a time series is to attempt to fit the time series by a finite parameter scheme
(such as an autoregressive scheme or a moving average scheme). Here we con-
sider only the problem of fitting an autoregressive scheme which has the most
developed theory (for recent work on fitting moving average schemes, see
Durbin [10]).

TuroreM 8E. I'n order that a stationary time series X (t) with covariance func-
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tion R(v), satisfy the autoregressive scheme of order m,
(8.33) X(t) = aX(t — 1) + -+ + anX (¢t — m) + n(t)

where 7(t) are a sequence of orthogonal random variables (with common variance
o*) representing the tnnovation at time t so that

(8.34) EX(s)9(t)] =0 fors <t

1t is necessary and sufficient that the covariance function R(v) satisfy the difference
equation

(8.35) Rw) = aR(u—1) + -+ + anR(u — m) foru >0
while for u = 0
(8.36) R(0) = aR(1) + - -+ + anR(m) + o"

ReMaRrk. Equations (8.35) are called the Yule-Walker equations, after G.
Udny Yule and Sir Gilbert Walker who first obtained relations of this kind (see
Wold [58], especially pp. 104-5 and pp. 140-146).

Proor. Verify that (8.33) and (8.35) are each equivalent to the assertion
that the minimum means square error linear predictor of X (¢), given its infinite
past, depends only on the finite past X (¢ — 1), --+, X(¢ — m); in symbols,
for all ¢

E*[X(t) |X(t - 1)) e 7X(t - m)7 "']
=uX(t—1)+ -« + a.X(t — m).

We may use the fact that the covariance of a stationary autoregressive scheme
satisfies the difference equation (8.35) to obtain expressions for the constants

°

(8.36)

@y, *++ , Gn in terms of correlations; (8.35) with w = 1, --- , m yields m equa-
tions which may be written in matrix form
r »(0) p(1) coe plm—=1)7 Ta]  [p(1) 7
(8.37) p(}) p(0) -eo p(m —2) a:2 _ p(:2) '
Lom=1) p(m—2) - p0) ] Lanl Lo(m)l]
Consistent asymptotically normal estimates af", ---,a%"’, of @, -+, Gn

respectively, may be obtained from observations {X(t), ¢t = 1,2, ---, N} by
forming consistent asymptotically normal estimates px(v) of p(v) and defining
a{™ to be the solutions of

i PN(O) PN(]-) v PN(m - 1) raiN) i PN(]-)
PN(l) PN(O) cee PN(m - 2) aéN) = PN(2)
Lon(m — 1) PN(m -2) .- PN(O) J '-aan)J PN(’m) J

It may be shown, using standard techniques of large sample statistical theory,
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that if the estmates Ry(v) satisfy (8.21), then the estimates o satisfy

Elexp i{u(N) (& — @) 4+ -+ + un N (as” — am)}]
(839) “
— exp [— % Z Ui 0'20.']' uj]
4,7=1
where {C;j} is the inverse matrix of the m by m matrix whose (7, j)th entry is
p(i — j). As an estimate {9} of {Ci;} one may take the inverse matrix of
{pn(i — §)}, and as an estimate of " one may take

N
840) oh = o 2 (X —aPKG=1) — o~ alX (= m))?
In words, (8.39) says that the usual theorems of regression analysis apply
asymptotically to the problem of estimating the autoregressive coefficients,
even though the regression functions X (¢ — 1), -++ , X(¢ — m) represent lagged
values of the observed time series X (t). This fact was first shown by Mann and
Wald [31] whose paper is a fundamental contribution to the theory of time series

analysis.
To prove (8.39), we write (8.37) and (8.38) in alternate form as follows.
Define ao = a$™ = 1. Then, for¢ = 1,2, --- ,m
(8.37") 2 (i —4) =0
(8.38") Zoai-"’pn(z‘ —j) =0.
j-
Therefore forz = 1, --- , m

(8.41) ,;o on(i — Hia” — aj} = j;oaj{P(i — ) — en(i — )}
From (8.41) one may deduce (8.39). '

Exampre. Let us write out the foregoing formulas for the case of an autore-
gressive scheme of order 2. Then (8.38) may be written

(8.42) o® 4 (1) = pu(1)
' a™px(1) + as¥ = on(2).

The estimates a{™ and a$" are explicitly given by

afN) — PN(I){I - PN(2)}

1 — py(1)
(8.43)
;N) = PN(2) - P?v(l)
1—p(1)

The estimated covariance matrix of {Cov [a{", ai™}} is given by
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-—l‘
(844) {Cov [a{™, " I} eat = %a’fr [ :1) pﬂil)]
PN

To test the null hypothesis that the time series obeys an autoregressive scheme
or order 1 against the alternative hypothesis that it obeys an autoregressive
scheme of order 2 one uses the statistic

™ _ N{pw(2) — pn(1)}?
Var [af")] ox{l — px(1)}

which under the null hypothesis is distributed as x* with 1 degree of freedom.
One may similarly give a test of the null hypothesis that the time series obeys
an autoregressive scheme of order ¢’ against the alternative hypothesis that it
obeys an autoregressive scheme of order ¢ (greater than ¢’).

For an excellent review of both the small and large sample theory of goodness
of fit tests for autoregressive schemes, we refer the reader to the monograph by
E. J. Hannan [17]. For references to recent work on explosive stochastic differ-
ence equations, see Rao [44a].

(8.45) 6=
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