ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Central Regional Meeting of the Institute, Urbana, Illinots,
November 2426, 1961. Additional abstracts appeared in the December, 1961 issue.)

8. Completeness and the Existence of Unbiased Tests. C. B. BELL, San Diego
State College and the University of Washington. (By title)

In investigating extensions of the Lehmann unbiasedness criterion for two-sample tests’
and, independently, the concept of completeness, one finds the following relations between
the existence of unbiased test functions (UTF) and the classes of cpf’s involved. Theorem
A. If G is a translation-invariant cone of functions, then (a) implies (b); and (b) implies
both (¢c) and (d), where (a) w and @ — w are totally complete with respect to (wrt) G ,
the class of bounded functions of G, and the null classes of w and 2 — w are equal; (b)
every UTF in G is essentially constant [©2]; (c) every UTF in G is of constant power; and
(d) 2 is complete wrt Gy . Corollary B. For non-randomized tests the last three conditions
are (b’) every unbiased critical region (UCR) with indicator function in G is similar with
probability 0 or 1; (¢’) every UCR with indicator function in G is similar; and (d’) every
similar region has probability 0 or 1. By noting that no nondegenerate class of power cpf’s
is complete one establishes Corrolary C. For arbitrary w and @ —  there exists a noncon-
stant unbiased test for any random sample of size n = 2.

9. Estimating the Parameters of Negative Exponential Populations from One or
Two Order Statistics. H. LEoN HARTER, Wright-Patterson Air Force Base.

This paper discusses the use of order statistics in estimating the parameters of (neg-
ative) exponential populations. For the one-parameter exponential population, the best
linear unbiased estimators, x = ci%i and Gim = ci%: + cmZTm , of the parameter o are given,
based on one order statistic zx and on two order statistics z; and z» . For samples of any
size up through n = 100, a table is given of %, I, and m and of the coefficients c , ¢; , and
¢m , together with the coefficients of o? in the variances Vi and Vi of the estimators, and
the corresponding efficiencies Ei and Ei» (relative to the best linear unbiased estimator
based on all order statistics). For the two-parameter exponential population, the best
linear unbiased estimators, @ = cai®i + Cam®m , & = Ca1%i + ComZTm , a0d & = CL1%1 + CymZm ,
of the parameters « and o and the mean u = « + o are given, based on two order statistics
z; and z, . For samples of any size up through n = 100, a table is given of m (I is always
1 for the best estimator) and of factors ¢, and ¢, for computing the coefficients c.: = 1 +
CayCam = —Ca,Col = —Co,Com = Ca, Cul = 1 + €a — €o, a0d Cum = ¢, — Ca , together
with the coefficients of o2 in the variances Vz, V; , and V; of the estimators, and the cor-
responding efficiencies Ez , E5 , and E; (relative to the best linear unbiased estimators
based on all order statistics).

10. Estimation of Variance Components in the Two-Way Classification, Eisen-
hart’s Model II (Preliminary report). LEoNnt Y. Low, University of
Illinois.

Several methods of Analysis of Variance are used for observations with the model y;; =

u =+ b; + t; + e:; where u is constant, and b; , ¢; and e;; are distributed normally, independ-

ently, with zero mean, and variances respectively o4 , o; and ¢2. Each of the methods yields
unbiased estimates which are linear combinations of four quadratic forms. The variances
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and covariances were obtained. An expression giving all unbiased estimators based on the
four quadratic forms is shown, for each variance component, to consist of linear combina-
tions of two estimators. Since the minimum variance estimator of this type is a function
of the unknown variance components, the error obtained by using another estimator is
discussed. If the design has proportional numbers in the subclasses, there is a unique esti-
mator for each component. Some inequalities involving the variance components are ob-
tained for the balanced incomplete block estimators.

11. A Generalized Partially Balanced Association Scheme. J. N. SRIvAsTAVA,
University of North Carolina. (By title)

Partially balanced designs were defined by Bose and Nair and the association scheme
possessed by them and the corresponding linear associative algebras have been studied by
Bose and Mesner. This paper generalizes the concept of a partially balanced association
scheme to many dimensions. Its properties have been studied by considering the cor-
responding linear algebras. Its use in the inversion of a large class of patterned matrices
has been discussed. This scheme includes most of the important known association schemes
as particular cases. It appears to have great potentialities for the development of new
designs, and also in the analysis of known designs. It has been used to develop multidimen-
sional partially balanced designs, and also the theory of fractional replications.

12. Some New Incomplete Factorial Designs. STEPHEN R. WEBB, University of
Chicago. (Introduced by William Kruskal.)

An exhaustive search of possible three-quarter replicates of a 2¢ design has revealed that
there are nineteen essentially different design configurations, fifteen of which permit esti-
mation of the mean, main effects, and two-factor interactions. Two have been previously
discussed in the literature. Two new designs seem to be of practical value. One has var-
iances of (15/32)s2 for main effects and (1/2)s2 for two-factor interactions, and the other
has variances of (7/16)s2 for the main effects, but the interactions have somewhat higher
variances. An incomplete 27 design with 29 runs has been found in which all main effects
and two-factor interactions can be estimated with variance 0.201 ¢2. A modification with 36
runs allows estimates of the main effects with variance 0.138 o2 and of two-factor interaction
with variance 0.190 o2.

13. Limiting Behavior of a Sequence of Density Ratios. SUNARDI WIRJOSUDIRDJO,
Bandung Institute of Technology, Indonesia.

Let the sequence {X,} of random variables have the following properties: (i) X, =
fn(Zy, -+, Z,) where fn is a symmetric Baire function of n variables, and Z,, Z,, --- is
a sequence of independent and identically distributed random variables; (ii) the family
@® of distributions of X; , X3, --- is indexed by 0 ¢ ©, © an ordered set; (iii) @ is a homo-
geneous monotone likelihood ratio family on the o-field @, generated by X;, -+, X» ;
(iv) X, is sufficient on @, . Let 6, < 6., let p{? be the corresponding joint densities of
Xy, -+, X, with respect to some o-finite measure, and R = p{}’ /p§}’ the corresponding
density ratio. The following results are obtained: R, converges to 0 or to « according
as 0 < 6or 2 6. . For 6, < 0 < 6; lim inf R, = O or lim sup R, = « a.e. Py, except pos-
sibly for one value of 0, say 6, . If there is such an exceptional 6y , then lim R, = 0 or «
a.e. Py according as 6 < 6 or > 6, . In the case that {X,} is a sequence of non-central ¢-
ratios, David and Kruskal (Ann. Math. Stat., Vol. 27 (1956), pp. 797-804) have shown
(implicitly) that there exists 6y such that lim B, = 0 or = a.e. Py according as 6 < 6 or
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> 6, . We show that 8 is between 0 and (6, + 6.)/2. Furthermore we show lim inf R, = 0
and lim sup R, = « a.e. Py, .

(Abstracts of papers presented at the Eastern Regional Meeting of the Institute, New York City,
December 27-30, 1961. Additional abstracts appeared in the December, 1961 issue.)

9. Application of the Tandem Test to a Problem of Two Populations (Prelim-
inary report). LEE R. ABrAMSON, Columbia University.

Given two independent random variables with distributions F, and F,, we test H;:
F,=F,,F,=Fy,vs.Hy : F, = F,, F, = F,, where F, and F, are known distributions.
This paper studies Bayes sequential procedures. A tandem test is a sequence of two Wald
tests, the first performed on one of X or ¥ and the second on the other. Restricting our-
selves to decision rules which sample first from one random variable, then from the other,
and then make a decision, a heuristic argument leads to the replacement of the restricted
Bayes decision rule by a tandem test. Using Wald’s approximations (which do not affect
our asymptotic results), we find the risk of an arbitrary tandem test and minimize it for
small ¢, the common cost of sampling. From a result of Chernoff’s (Ann. Math. Stat., Vol.
30 (1959), pp. 755-770), we find that the minimizing tandem test has asymptotically (as
¢ — 0) minimal risk in the class of all decision rules. Moreover, if the Kullback-Leibler
information numbers of X and Y are different, the minimizing tandem test has smaller
asymptotic risk than a Wald test on either X or Y alone. If the information numbers are
equal, the tandem test reduces to a Wald test.

10.'_ The Choice of the Degree of a Polynomial Regression as a Multiple Decision
Problem. T. W. AnpERsoN, Columbia University.

On the basis of a sample of observations, an investigator wants to determine the ap-
propriate degree of a polynomial in the index, say time, to represent the regression of the
observable variable. This multiple decision problem is formulated in terms used in the
theory of testing hypotheses. Given the degree of polynomial regression, the probability
of deciding a higher degree is specified and does not depend on what the actual polynomial
is (except its degree). Within the class of procedures satisfying these conditions and sym-
metry (or two-sidedness) conditions, the probabilities of correct decisions are maximized.
The optimal procedure is to test in sequence whether coefficients are 0, starting with the
highest (specified) degree. The procedure holds for other linear regression functions when
the independent variates are ordered. The problem and its solution can be generalized to
the multivariate case and to other cases with a certain structure of sufficient statistics.

11. Some Confidence Bounds for Determinantal Roots. T. W. ANDERSON,
Columbia University. (Invited paper.)

The main problem considered is to find optimal simultaneous confidence bounds for the
roots of |2, — vZ.| = 0, where =, and =, are the covariance matrices of two multivariate
normal distributions, or equivalently bounds for all ratios of quadratic forms, 2'Z,z/2'Z.x.
It seems reasonable to base the confidence bounds on the smallest and largest corresponding
sample roots, that is, roots of the above equation with sample covariance matrices. The
shortest such bounds are obtained. The method can be applied to other multivariate prob-
lems. It is shown how the bounds on various roots can be used to give bounds on the var-
iances and covariances as well as other relevant functions of the parameters.
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12. The Auto-Covariance of Discrete Pulse Trains. RaLpa H. Bacon, General
Precision, Inc.

Expressions for the auto-covariance as a function of the pulse characteristics, and of
the delay (or shift), and for the variance of the auto-covariance as a function of sample
size, are derived. The Poisson process, and a family of processes related to the Poisson, are
treated as illustrative examples.

13. A Normal Approximation to the Beta and Gamma Distributions. R. R.
BaHADUR, University of Chicago.

Under suitable quadratic or cubic changes in the variable of integration, the incomplete
beta and gamma functions resemble integrals with respect to the normal density function.
The method yields certain normal approximations to the beta and gamma distributions,
together with bounds for the errors of approximation. These results apply, through known
identities, to distributions such as the binomial, negative binomial, Poisson, chi-square,
and F. It will suffice to state here the main result concerning the binomial distribution.

LetB= > ", (:) 2"(1 — z)» ", wherel <k <n,and 0 < z < 1. Writinga = k — 1,b =

n—Fkc=a+b h= (c/ab)}, and a = (6 — b)h/3¢c, let y = (@ — cx)h, and z =
af{(1+3ay)®—1} if @ %0 and z =y otherwise. Let N =1 — &(z), where &(z) =
JLod(t)dt with ¢(t) = (2r)™ exp (—3£2). Let vy = (@' + b — ¢ 1)/12, and & =
A+e)A+a))A+) =1L WithC = 1+ 8N 4+ (1 + a?)1(2x + a22)8(z)], we
then have C — 8 < B < C. We always have 0 < § < 3(a™! + b71)/16, and & = (36a)~! if
b is very much larger than a.

14. Some Basic Theorems of Distribution-Free Statistics I. C. B. BeLr, San
Diego State College and University of Washington. (By title)

A mapping T of @ X R, into R, is a statistic distribution-free with respect to (DF wrt)Q,
a class of cpf’s on R, if there exists cpf Q on B, such that foreach Fin @ (i) T#(-) = T(F,-)
is measurable, and (ii) PrT7! = Pq. Ezample. T1(F™, ) = (§ — pr)oz' and T2 (F», z) =
h[F (1), -+ , F(za)] are DF wrt the power measures of the normals and continuous cpf’s,
respectively. Theorem 1. There exists T DF wrt @ and having cpf @ with Y pie; and ¢F as
its discrete and continuous parts, resp., iff for each F in Q there exists a partition
{Ao(F), Ay(F), --- } of R, with Py nonatomic on 4¢(F) and P (4;(F)) = p:(G = 1). Corol-
lary 2. If Qs a class of continuous cpf’s, then for each cpf Q on R, there exists T DF wrt ©
and having cpf Q. Theorem 3. If {T;} are independent and DF wrt @, then each measurable
g(T1, -+, Tx) is DF wrt Q. Generalizing the given examples one finds Theorem 4.
T(@G.,z) = fls7'(x)] is DF wrt @ = {G,: s ¢ G}, where G is a group of 1-1 transformations
of R, onto R, and @, is a cpf such that Pg, = Pgs™l.

15. Some Basic Theorems of Distribution-Free Statistics II. C. B. BeLL, San
Diego State College and University of Washington. (By title)

A measurable mapping T of R, into R, is a statistic nonparametric and distribution-free
with respect to (NPDF wrt) @, a class of cpf’s on R, , if there exists cpf Q on R; such that
PpT—1 = Pgfor all F inQ. Ezample. T (z1, -+ , Z») = number of z;’s > 0is NPDF wrt Q =
{F*-F(0) =3};and T (21, - -+ , Za) = (21 — 22) (3 — 24)~' is NPDF wrt the normal power
measures. Theorem 1. There exists T NPDF wrt @ and having cpf @ with > p.e; and gF
as its discrete and continuous parts, resp., iff there similar partition {4, 4:, --- } of R,
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and a o-sub-algebra D of the Borels sets B, such that (i) Pr(4:) = p; fori = 1, and (ii)
A, N D is a nonatomic o-ring of similar sets. Corollary 2. If there exists T N PDF wrt @ and
having continuous cpf @, then for arbitrary cpf H on R; there exists V NPDF wrt Q and
having cpf H. Corollary 3. If T is independent of S, which is a sufficient statistic for Q,
then T is NPDF wrt Q. Theorem 4. If {T;} are mutually independent and NPDF wrt Q,
then each (T, ---, T%) is NPDF wrt Q.

16. Zero Crossings of the Gaussian Process. SimeoN M. BermaN, Columbia
University. (By title)

The result of Kac (1943) and Rice (1944) on the expected number of zeros of a con-
tinuous stationary Gaussian process whose spectral distribution function is a step function
with a finite number of jumps is extended to the case of a general spectrum with a finite
second moment. The method of proof used here is based on the work of Prokhorov (1956)
on the weak convergence of measures in function space. A general weak convergence the-
orem for second order stationary processes is developed and applied to the distribution of
the number of zero-crossings.

17. On the Distribution of Bilinear Forms in Normal Variables. THEOPHILOS
CacouLros, Stanford University. (By title)

Classification procedures with normal alternative populations as well as procedures for
comparing distances between p-variate normal populations (cf., Abstract of the author
in the Sept. 1961 issue of the Annals) involve the distribution of statistics which ecan be
reduced to the bilinear from 7' = X’Z-1Y or T* = X '8-1Y, according, as the covariance
matrix 2 is known or estimated by the sample covariance matrix S; each of the p-component
random vectors X and Y has a p-variate normal distribution with covariance matrix =,
E(X) =p#0,E(Y) =»# 0, and the covariance matrix between X and Y is p=, — 1 <
p <1;8is a p X p random positive definite matrix which has the Wishart distribution
W(S | Z, p, n) with n = p degrees of freedom and is independently distributed of X and
Y. The exact density function of T is derived in terms of a double series with terms which
involve the Whittaker’s confluent hypergeometric function. Extending a result of Bowker
(Contributions to Probability and Statistics, Stanford University Press, pp. 142-149, 1960)
concerning the case » = cu(c constant), a representation of T*is obtained in terms of simpler
statistics.

18. Comparing Distances Between Multivariate Normal Populations, II (Pre-
liminary report). THEOPHILOS CAcouLLos, Stanford University.

Let x; be p-variate normal populations with mean p;, ¢ = 0,1, «-- , k, respectively,
and with the same known covariance matrix =. The u; , 7 = 1, , k are unknown and
wois known. Let A%; = (us — #5)' 27 (ui — p;) denote the genemhzed (Mahalanobls) distance
between =; and #; . On the basis of a sample of size n from each r; ,j =1, , k, a pop-
ulation =; is to be selected so that A}; = min (A%, ---, AY). Let d; be the dec1s1on of
selecting =; . Attention is restricted to decision rules whlch are invariant under a sub-
group of affine transformations on kp-space and the symmetric group of permutations of
the sample means #, , - , Z . Then, under certain natural symmetry assumptions on the
loss functions, the followmg unique invariant and symmetric Bayes declsmn rule is ob-

tained: take decision d; if D} = (£; — po)’ =~Y(Z; — po) = min (D}, ---, D}). Incidentally,
a more general result is shown. Theorem. If z, , -+ - , z; are independently distributed with
densities fy, (z), -+, fo, (), respectively, and fo(z) has the monotone likelihood ratio

property in z, 6, then the (unique) symmetric Bayes rule for choosing the smallest pa-
rameter 6; is: choose 0; if the observation z; on X; is z; = min (z;, --- , zx).
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19. Exact Power of Some Tests Based on the Mann-Whitney-Wilcoxon U Sta-
tistic. I. M. CHAKRAVARTI, GEORGE E. Havynam anD F. C. LEoNE, Case
Institute of Technology.

A closed form expression for the distribution of two sample Mann-Whitney-Wilcoxon
U statistic under the null hypothesis has been developed. This has been checked com-
putationally against the recursive definition given by Mann and Whitney. There have
been developed, by the use of similar techniques, expressions for the exact power of the
U test under the alternatives of translation in the exponential population and changes of
scale and location in the rectangular population. The power of the test has been tabulated
for various values of the population parameters by evaluating the exact expression.

20. Applicability of the Extended Method of Parabolic Curves in the Analysis of
Agricultural Data. Recina C. Eranpr, Case Institute of Technology.
(Introduced by Fred C. Leone.)

If in an experiment one suspects some kind of smooth systematic trend in uncontrolled
variability, e.g., systematic trend in soil fertility in an agricultural experiment, it may
well be useful to apply curvi-linear regression to remove this trend. The theory for this
problem in the case of the systematic arrangement of treatments: ABCD, ABCD, --- etc.,
was first presented by Neyman (1929) (‘“‘The theoretical basis of different methods of test-
ing cereals’’). A more convenient form (using the method of orthogonal polynomials cor-
rected for the treatments) was given by Hald (1948) (‘“The decomposition of series of
observations’’). Another systematic balance arrangement: ABCD, DCBA, --- etc., is
considered by R. Elandt and tables of orthogonal polynomials for this case are calcu-
lated (not yet published).

If a systematic trend in two directions, e.g., influence of two uncontrolled factors, is
observed, the method of parabolic curves in two-dimensional form can be applied. The
general theory and formulae are given in this paper. The case of an agricultural experiment,
in which the treatments are located systematically in long strips, is considered in detail.
The efficiency of both one-and two-dimensional regression analyses in comparison to the
method of randomized blocks has been investigated for agricultural uniformity trial data.
Also, some results in oil-plant experiments, carried out in Poland, are presented.

21. On a Characterization of the Gamma Distribution (Preliminary report).
TroMas S. FERGUSON, University of California at Los Angeles.

Under certain conditions, or perhaps none at all, if X and Y are independent random
variables, and if the sum X + Y is independent of the ratio XY, then both £X and +Y
have gamma distributions, with a common scale parameter. R. G. Laha, Ann. Math. Stat.
(1954) pp. 784-787, has demonstrated such a characterization of the gamma distribution
under the conditions that X and Y be identically distributed with a finite second moment.
The author proves this characterization under the conditions that X and Y be positive
random variables with continuous densities on the positive real axis. A connection between
this characterization of the gamma distribution and a similar characterization of the
normal distribution is mentioned.

22. Fiducial Method: Its Consistency and a Suggested Modification. D. A. S.
Fraser, Stanford University.

D. V. Lindley (J. Roy. Stat. Soc., Ser. B, Vol. 20 (1958), pp. 102-107) and D. A. Sprott
(J. Roy. Stat. Soc., Ser. B, Vol. 22 (1960), pp. 312-318) have proposed some consistency
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criteria for fiducial probability distributions, and in these terms have investigated con-
sistency for Koopman-Darmois models with a real variable and a real parameter. In this
paper, the consistency is investigated without the Koopman-Darmois restriction and is
found to hold if and only if the parameter is essentially a location parameter. Also, if
fiducial distributions are to have a frequency interpretation and to satisfy consistency
requirements, then the range of validity can be extended from the location parameter
models by a suggested modification to the fiducial method of derivation.

23. On Solving a Markovian Decision Problem by Linear Programming. Mar-
SHALL FREIMER, Institute for Defense Analyses, Cambridge, Mass.

For a non-discounted Markovian decision process, Howard (Dynamic Programming and
Markov Processes, Wiley, 1960) derived the recurrence equations

N
W'l‘g"max(qg"'zpf,-”i) i=1)27°":N;

k i=1
for the average gain per stage g and the expected value »; of being in state i, (¢} is the ex-
pected immediate return, and p{-'; is the transition probability). Howard solved this problem
by an iterative scheme. The solution can also be obtained by minimizing g subject to v, +
g — Z}V_l piiv; = ¢} all 4, k. The dual of this linear programming problem is to maximize
p P} q"subject toPi 2 0,2 P} = Dk PtPtj ,and D ;. Pi=1. P?may be interpreted
a8 the probability of being in state ¢ and using decision k. Considering just this dual prob-
lem, we can show that for any 7 only one P is positive. Similar results hold for the dis-
counted process. For this case everything but the direct proof that only one P¥ > 0 can
be found in d’Epenoux (Revue Francoise de Recherche Opérationnelle, No. 14, 1960, pp.

3-15).

24. A Comparison of Minimum Variance Regression Coefficients with Weighted
Least Squares Regression Coefficients. Gene H. GoLus, Space Technol-
ogy Labs, Inc. (Introduced by Ernest M. Scheuer.)

Let y = ®« + ¢ where & is an n X p matrix of known constants and of rank p; « is a
vector with p components which is to be estimated; and ¢ is a random vector of n compo-
nents with E(e¢) = 0 and covariance matrix =. The minimum variance estimate of « is
o* = (#'Z79)719’'2"1y. Sometimes Z is not known or =1 is not easily computed and con-
sequently, « is estimated by its weighted least squares estimate & = (®'W&)~'®'Wy where
W is an n X n positive definite matrix of weights. Then given the eigenvalues of F'SF
where F'F = W and using the matrix inequalities of Kantorovich, Wielandt and Schopf,
it is possible to determine attainable inequalities which compare the covariance matrix
of «* with that of &, and the generalized variance of «* with that of & This extends results
of T. Magness (Ann. Math. Stat., to appear).

25. Statistical Method for the Mover-Stayer Model. Lo A. GoopmaN, Univer-
sity of Chicago. (By title)

The mover-stayer model can be described as follows: Let there by a finite number, I,
of states with n; individuals in state < at time zero (i = 1, --- , I). Each of the n; individ-
uals is either a ‘“stayer’” or a “mover’’. The stayers in state 7 remain with probability one
in that state at time ¢ =0, 1, - .- , T'; the state transitions of each moveratt =0, 1, --- , T
can be described by a Markov chain with (unknown) transition probability matrix M. Let
8; denote the (unknown) proportion of the n; individuals who are stayers (; = 1, --- ,I).
Estimators of the parameters M and s; were presented by Blumen, Kogan, and McCarthy
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(The Industrial Mobility of Labor as a Probability Process, Ithaca, N. Y., Cornell University
Press, 1955). In the present paper, we develop several modifications of their estimators,
and derive alternative (more direct) estimators, including maximum likelihood estimators
based on the data from the n = Zn; series observed at t = 0, 1, --- , T. The accuracy of
the various estimators is compared; e.g., it is shown that the Blumen-Kogan-McCarthy
estimators are not consistent, while the estimators recommended herein are. The asymptotic
variances of the estimators are computed. In addition, tests of various hypotheses con-
cerning the mover-stayer model are developed; e.g., we present a test of the null hypothesis
that s; = 0.

26. Tests Based on the Movements in and the Comovements between m-De-
pendent Time Series. LEo A. GoopmaN, University of Chicago.

This paper presents methods for deriving tests for trend in an m-dependent time series
X = {X;, -+, X7} and tests of independence between an m,-dependent series X and an
ms-dependent series ¥ = {Y1, ---, Yr}. A test for trend in X is presented based on the
series W = {W,, --- , Ws} where W; = f(Xas4+i — X:),f(a) =1ifa>0,f(a) =0if a <0,
and S = T/3. (Assume 7T divisible by 3 and that X:s,.; — X has a continuous distribution.)
This test is a modification of the Cox-Stuart test (Biometrika, Vol. 42 (1955), pp. 80-95)
for 0-dependent series. Tests of independence between X and Y are presented which elim-
inate the primary effects of trends in X and Y, and which are based on the series U =
{Ur, - ,Ups}and V = {Vy, .-+, Vp_i}, where U; = f(X4s — Xi), Vi = f(Yiys — Yo),
and k is a fixed integer. These are generalizations of tests proposed by Goodman (Bio-
metrika, Vol. 46 (1959), pp. 525-32) and by Goodman and Grunfeld (J. Amer. Stat. Assn.,
Vol. 56 (1961), pp. 11-26) for 0-dependent series. Various properties of these tests are
studied; e.g., it is shown that the statistic appropriate for testing the null hypothesis of
independence between X and Y when min [m; , me] = 0 is asymptotically equivalent (under
the null hypothesis) to the statistic appropriate when m; = ms; = 0. Various measures of
dependence between X and Y are also discussed, and confidence intervals for these measures
are presented.

27. The First Two Movements of the Reciprocal of a Positive Hypergeometric
Variable. ZAkkuLA GOVINDARAJULU, Case Institute of Technology.

The random variable X is said to have a positive hypergeometric distribution if X takes
. - M\(N - M N N-M = vee
on the value m with probablllty(m)( n — m)/[(n ) — ( n )], m=1,2, , n.

In sampling without replacement from finite populations many situations do arise in which
one should know the expected value and the variance of 1/X. Stéphan (see Ann. Math.
Stat., Vol. 16 (1945) pp. 50-61) considers this problem and obtains expressions for the
moments of 1/X in the form of infinite series, which do not yield computational ease. Let
a(N, M, n) = Y m‘(%)(lz - %)/(ﬁ) i=0,1,2, and b;(N, M, n) = E[m~|N,
M,n,m>0]=a;(N, M, n)as(N, M, n), i =1, 2. The a;(N, M, n), ¢ = 0, 1, 2 have
been computed directly. Using these values, the mean and the variance of 1/X have been
computed to eight decimal places for N = 2(1)20; M = 1(1)N, n = 1(1)M. n need go only
to M, since for each N, the mean and the variance of 1/X are symmetric in M and =.
These computations will be extended up to some large values of N, M and n. Recursion
relationships among a;(N, M, n), ¢ = 0, 1, 2 have been noted. Formulae for E[(m + 1)~!
| N, M, n,m>0], E[(n —m + 1) | N, M, n,m> 0], E[{(m + 1)(m + 2)}7* | N, M, n,
m > 0], E[(n — m)~1 | N, M, n, m < n] have been derived. Various lower and upper
bounds for b;(N, M, n), ¢ = 1, 2 have been obtained.
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28. Nonparametric Life Test Sampling Plans. SaanTI S. Gupra, Stanford Uni-
versity and Bell Telephone Laboratories.

Assuming only that the lifetime (failure) distribution F(¢) has a monotone increasing
failure rate, sampling plans are developed which accept a lot on the basis of a truncated
life test only if lower bounds on a speclﬁed quantile or the mean life are established at a
prescribed confidence level P*. If ¢ and u° denote respectively, the specified lower bounds
on the quantlle of order ¢ and the mean of the distribution, then if the experiment time
tis 2¢3(> u) one can use lower bounds on F (¢) to derive the smallest sample size n. Under
these plans, the decision to accept can take place only at the end of time ¢ and only if the
number of fallures does not exceed a given acceptance number c. For given ¢, P*, q and the
ratio A = t/¢3, the required sample size is the smallest positive 1nteger n which satisfies
the inequality I1_q—_g* (¢ + 1, » — ¢) > P*. A similar inequality gives n for the case when
the interest is in estabhshmg p = w. Operating charactenstlc functions of these plans are
studied. It is shown that the sampling plan for ¢, = ¢5is the same as the one for establishing
the same quantile of an exponential distribution.

29. A Sequential Selection Procedure for the Best Population (Preliminary re-
port). IRwiN GurrMAN, McGill University.

Consider a set of k£ populations and suppose there is a member of the set which is defined
as best in a certain sense (e.g., Ann. Math. Stat., Vol. 31 (1960), p. 1216). A sequential pro-
cedure is described for which there is probability of at least 8, say, of isolating the best
population. The proofs depends on a multiple comparison type argument (Tukey, 1954,
“Multiple Comparisons’’, Statistical Research Group, Memorandum Report, Princeton
University). It is proved that the procedure terminates with probability one. Various il-
lustrative examples are given (binomial, normal, exponential), and for particular cases,
the use of different sample sizes is discussed.

30. A Generalized Queueing Model. VinceEnT Hopason, Florida State Univer-
sity. (Introduced by Ralph A. Bradley.)

Consider a single-server queueing system differing from the classical model in that an
idle server is not continuously inspecting the system so that service will recommence as
soon as a unit arrives. Instead inspections occur at discrete instants and the intervals
between successive inspections when the server is idle are statistically distributed. We in-
vestigate a system in which arrival times are exponentially distributed and service and
inspection times are generally distributed; by an obvious extension of Kendall’s familiar
notation this is the generalized E;/G/G/1 model. Some connections with the classical
theory are discussed.

31. The Moments of a Variate Related to the Non-Central ¢. D. HocBEN, R. S.
Pinkaam AND M. B. WiLk, Rutgers—The State University. (By title)

Suppose that a random variable W, normally distributed with mean 6 and variance 1
is independently distributed of a random variable X2 which is distributed as chi-squared
with n degrees of freedom. Then, the random variable , with non-centrality 0 and » de-
grees of freedom, is defined by @ = W/(W? + X2)i. The probability density function for
Q is obtained by transforming the joint density of W and X to polar coordinates and in-
tegrating. Then, closed form analytic expressions and recurrence relations for the raw
moments of @ are obtained from the application of two derived lemmas. A table of nu-
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merical values of the first four central moments and cumulants for 38 values of @ from 0@
to 10 and 36 values of n from 0 to 100 is given with a discussion of the computation and
interpolation procedures. Also, there is a discussion of possible applications of the table of
moments.

32. An Approximation to the Distribution of Q (a Variate Related to the Non-
Central ). D. HoaseN, R. S. PInkaam anp M. B. WLk, Rutgers—The
State University. '

If W is distributed as normal with mean 6 and variance 1 and Z? is distributed inde-
pendently as chi-squared with n degrees of freedom, then the random variable Q, with
non-centrality § and n degrees of freedom, is defined by @ = W/(W?* + Z*)}. The probability
integral of Q is implicitly defined by that of the non-central ¢, but the existing tables of the
non-central ¢ are not extensive. The purpose of the present paper is to propose as an ap-
proximation to the distribution of Q, the distribution of a linearly transformed beta variate.
The approximation is obtained by equating the first two central moments of @ to the first
two central moments of the linearly transformed beta and then solving for the unknown
parameters of the beta-distribution. The accuracy of the approximation is discussed for
several values of n and 0. The results provide a useful approximation to the probability
integral of the non-central ¢.

33. Variance Components in Two-Way Classification Models with Interaction.
CHANDRAKANT H. Kaprapia, University of Georgia ANp Davip L. WEEKs,
Oklahoma State University.

In minimum variance unbiased estimation it is desirable to have a minimal sufficient
statistic for the family of distributions under consideration. In this paper, a minimal
sufficient statistic is exhibited for the Balanced Incomplete Block design and the Group-
Divisible, Partially Balanced Incomplete Block design with two associate classes. In ad-
dition, the distribution of the components of the minimal sufficient statistic is found and
pairwise independence of the components investigated. A method of computing the min-
imal sufficient statistic is given in the case of the B.I.B. design and is based on quantities
normally computed when an analysis of variance table is to be formed. The quantities
calculated in an Analysis of Variance omit one of the components in the minimal sufficient
statistic.

34. Theory of Queues with a Single Server. Tarsuo KawaTa, Catholic Uni-
versity.

Considering a queue system with a single server and first come-first served discipline,
suppose that {ra}, (0 < 70)n = 0, 1, 2, --- are arrival instants of successive customers,
Xn=7Tn— Taa(n = 1) and Y, are interarrival times and service times required by customers
respectively and {X.}, {Ya} are independent as a whole, each being a sequence of random
variables identically distributed. Set Z, = Y, — X., Sa = 2.1 Z) . Continuing the pre-
vious work (Bull. Inst. Internat. Stat., Vol. 38, 1961) we shall discuss the function G(y) =
YR Fiy), Fa(y) =P(S1>0,---, 81> 0,y > 8)(k > 1), F1(y) = P (8 < y) which
is well defined if EZ, < 0, and is the limit distribution of the waiting time of customers
except a constant factor. We shall discuss the existence of moments of G(y). For instance,
if X, has the characteristic function regular in some upper half-plane which includes the
whole real line and E|Y|™+1 < «, then the absolute moment of G (y) of mth order is finite.
Also the limit distribution of interdeparture times is found.
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35. On the Estimation of the Probability Density. M. R. LEADBETTER, Research
Triangle Institute AND G. S. WaTson, University of Toronto.

Estimators of the form f.(z) = (1/n) X_fu1 8a(x — %:), of a probability density f(z)
are considered, where , , - - , z, is a sample of n observations from f(z). The properties
of such estimators are discussed on the basis of their mean integrated square er-
rors, E[f (fa(z) — f(z))* dz] (M.L.8.E.), and also on the basis of various pointwise con-
sistency criteria. The corresponding development for discrete distributions is sketched and
examples are given in both continuous and discrete cases. The definitions and results are
analogous to those of Parzen for the spectral density.

36. Averages of Correlated Observations. RaAY H. LEE AND ARTHUR YASPAN,
Autometric Company.

Let the random variables z, , - -+ , z» each be an unbiased observation of the same quan-
tity £. An ‘““average’’ of z, - - - znis defined to be an unbiased linear combination of z; - -+ %,
and an ‘“‘optimal average’’ to be an average with minimum variance. When the observations
are independent and have the same variance, the optimal average is the arithmetic mean;
when they are merely independent, the optimal average is that for which the weight ap-
plied to an observation is proportional to the reciprocal of its variance. In this paper, a
solution is obtained for the case of a set of observations with arbitrary intercorrelation.

37. Some Sample Function Properties of a Process with Stationary Independent
Increments. S. S. MrTrA, University of Idaho.

This paper investigates the sample function behavior, for large values of ¢, of a general
additive stochastic process X (¢) based on assumptions concerning the Lévy Measure of
the process. The author calls attention to two indices 8 and 6’ defined respectively by 9 =
sup {a 2 0: |[y|~* Re ¢ (y) > 0as y — 0} and 6’ = inf {« = 0: [y|~* Re ¢ (y) — = as y — 0}
where ¢ (y) is the exponent of the characteristic function of X (1). The author proves:
()0 =<0’'=<2; (i)t VsX(t) >0a.8.a8t— », provided a < min (1, 8); (iii) if the process
is symmetric about zero and 6 > 1, then lim inf | X (n)] — 0 a.8. a8 n — «; (iv) lim sup
tUs|X (¢)] — « a.s. provided a > 0; (v) if 6’ < 1, then ¢~ 1e|X(t)] — », provided
a> 6'/(1 — 0'). In particular, if X (¢) is a subordinator, i.e., the corresponding Lévy meas-
ure is of the form [} udv(u) < », »(— «, 0] = 0, then some other interesting properties
are noted. Defining 8’ = inf{a = 0: y~2¢° ({ — e) dv(r) = » as y — 0.} the author proves
that 1 > & = min (1, 9) and that for every a > &', t-1/8X () — « a.s.

38. Estimation of the Spectrum II. V. K. MurpHY, Stanford University.

In this paper the author extends the results of his previous paper entitled “Estimation
of the Spectrum?’’ (Ann. Math. Stat., Vol. 32 (1961), pp. 730-738) to the case of a Stationary
Vector process using a different approach.

39. Partially Duplicated Fractional Factorial Designs. M. S. PaTeL, Research
Triangle Institute and Purdue University. (By title)

In this paper are given two-level fractional factorial designs in which some of the treat-
ment combinations (runs) are duplicated. As is well known, the duplicated runs provide
an unbiased estimate of error variance and more pricise estimates of the effects. Designs
of this type were suggested by C. Daniel at the 1957 convention of the American Society
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for Quality Control and were discussed in detail by O. Dykstra, Jr. (Technometrics, Vol. 1,
No. 1, pp. 63-75). In all the designs that are given, estimates of the main effects and the
two-factor interactions are obtained with lesser number of runs than that required by the
corresponding designs given by O. Dykstra. Finally the designs are arranged into blocks
to give the corresponding block designs.

40. Asymptotic Bias and Variance of Ratio Estimates in Generalized Power
Series Distributions and Certain Applications. G. P. Patir, McGill Uni-
versity.

A discrete probability distribution which forms a generalization of some important
discrete distributions like the Binomial, Poisson, Negative Binomial and Logarithmic
Series and their truncated forms is introduced. It is called the ‘‘generalized power series
distribution (gpsd).”’ In this paper we suggest what we call the ‘Ratio Method’’ for estima-
tion of the parameter of the gpsd and investigate properties and study certain applications.
The method is applicable not merely for estimating the parameter, but also for its integral
powers. The performance of the method is investigated, in particular, in case of truncated
Binomial and truncated Poisson distributions and correspondingly certain recommenda-
tions are offered.

41. A Sequential Procedure for Selecting the Population with the Largest Mean
from & Normal Populations with a Common Known Variance (Preliminary
report). EDwARD PAuLsoN, Queens College, New York.

Let X;;t=1,2,--- ,k;j =1,2, ---) be independent observations from normal popu-
lations II; with means m; and common known variance o2, and let myy) S mpp) < -+ S mpy
denote the ranked means. Let S(i,7) = > 3-1X:s , let D = log,[(k — 1)/a], let A = 242D/A,
and let Ny denote the largest integer contained in 24 /A. A sequential procedure with which
inferior populations are eliminated as the experiment procedes is proposed so that the
probability is =1 — « of selecting the population with the greatest mean whenever mp) —
Mmk-1) = A, where A and « are preassigned. Procedure: At the first stage of the experiment,
take the vector observation (X1, Xa1, +++ , X#1). Eliminate any population II; for which

Xa S max{Xu,Xu, -+, Xu} — A + A/2. After the (r — 1)st stage (r = 2,3, --- , No)
suppose that ¢(r) = t populations I, , I;, , --- , II;, have not been eliminated. Then at
the rth stage take the vector abservation (X;,,, Xisr, +-+ , Xi;r). Eliminate any category
o, A =1,2, ---,¢t) for which S(%\,r) < max{S(@#.,7r), -, 8¢:,r)} — A+ rA/2. The

experiment is terminated when all but one population has been eliminated, in which case
the one remaining population is selected. If more than one population remains after the
Noth stage, then at the next stage take one measurement from each remaining population
and then terminate the experiment by selecting the population with the largest cumulative
sum.

42. Shorter Confidence Intervals for the Mean of a Normal Distribution with
Known Variance (Preliminary report). Joun W. Prarr, Harvard Uni-
versity.

In “Length of confidence intervals,”” J. Amer. Stat. Assoc., Vol. 56 (1961), 54967, the
expected length of a confidence interval was shown to equal the integral of the probability
of covering false values, and a method was given for minimizing average expected length.
If the average is computed with respect to an extreme weighting function, the minimizing
procedure may be very non-standard, even in simple problems. The present paper concerns
the mean u of a normal distribution with known variance when the weighting function is
also normal. The minimizing procedures (which include the usual procedure as a limiting
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case) are computed compared with one another as to efficiency, and compared with Bayesian
methods using the normal weighting function as a prior distribution.

43. General Limit Theorems for Spacings. FrRANK ProscHAN, Boeing Scientific
Research Labs anp RonaLD PykE, University of Washington.

Let X; < X3 < --+ < X, be the ordered observations of a sample of size n from an abso-
lutely continuous distribution function F. Set Dp; = X; — X1 and Dy = (n — ¢ + 1)Dgs
fori = 2, --- , n. For a given function g, consider the sum V, = D>_ i3 g(D%:). Under weak
assumptions on the functions g and F, it is shown that V, has the same limiting distribution
as does 27 {g(ramYs) + (Yi — 1) (0 — 1)71 257 G(j/n) (1 — j/n)} where ra = (1 — a)/
F'(F-'(a)), G(@) = (d/da)E[g(Yire)] and Yy, Y2, ---, Y., are independent random
variables, each having the exponential distribution function; 1 — e=*. The classical
Lindberg-Feller Central Limit theorem is then applied to this latter sum, to prove asymp-
totic normality of V, . Generalizations of these results to the case of higher dimensional
functions ¢ are also described. Of particular importance, is the 2-dimensional case, V, =
D kg imis1 g(Dui , D3;) which has many applications to hypothesis testing in Reliability
Theory, and to the comparative study of various test procedures by means of Asymptotic
Relative Efficiency. The methods used in obtaining these limit theorems are used also to
provide simple proofs of the corresponding theorems for D,; , thereby generalizing results
of Darling (Ann. Math. Stat., Vol. 24 (1953), pp. 239-253) and L. Weiss (Ann. Math. Stat.,
Vol. 29 (1958), pp. 310-316).

44. On the Order of an Entire Characteristic Function. B. RAMACHANDRAN,
Catholic University.

It is known that the order of an entire characteristic function (c.f.) cannot be less than
unity, unless the function itself is identically equal to one (P. Lévy). Also, a necessary
and sufficient condition for a c.f. to be entire, of order one and of exponential type is that
the corresponding distribution function (d.f.) be ‘“finite”’ (G. Pélya). We here investigate
necessary and sufficient conditions for a d.f. to have (i) an entire c.f. of given finite order
greater than one, and (ii) an entire c.f. of order one and of maximal type. We also note
in this connection that there cannot exist an entire c.f. of order one and of minimal type.

45, Mulﬁvaﬁate Hierarchical Designs. S. N. Roy axp J. N. Srivastava, Uni-
versity of North Carolina.

Consider a multivariate problem involving, say, p variables z,, 22, -++ , Z, and n ex-
perimental units. In many situations, because of cost and other considerations, it may not
be worthwhile to study each characteristic with the same intensity, and hence each experi-
mental unit may not be studied on all characteristics. A mvltivariate hierarchical design
is such that the n units are divided into p mutually exclusive and exhaustive sets D, ,
D;, --- , D, ,such that on the set D; , only the characters z, ,zz, --- ,z;(j =1,2, -+ , p)
are observed. Such designs have been introduced in this paper, and the corresponding
theory of testing of linear hypothesis on the populations means, and of testing the usual
kind of hypotheses on the population dispersion matrix have been developed.

46. Asymptotic Relative Efficiency of Massey’s Test for ¢ Samples ¢ = 2. Y. S.
Satag, University of North Carolina.

Let X:;,i=1,2, -+ ,¢;5=1,2, --- ,n;be N = >_i_ n;independent random variable,
and let F;(z) be the c.d.f. of X;; . Further, let Z,, Z,, --- , Z, (h = 2) denote the p;th,
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(o1 + p2)th -+« (o1 + p2 + --- + pa)th quantiles of the combined sample (p; > 0) and for
convenience, let Zy = — 0, Z;,; = «. Denote by M;,, the number of observations from the
1th sample which lie in the interval (Z;-, ,Z:),t =1,2, --- , h+ 1. Then under Hy : F1(z) =
Fy(z) = :--= F.(z), Massey has shown that the asymptotic distribution of
Xia = Doim 2oitt (Mo — pmi)?/pmi , (phsr = 1 — Y 1-1 ps) is & chi-square with k(c — 1)
d.f. In this paper, we show that when the hypothesis Hy : F;(z) = F(z + N—16;) holds,
where F (z) is a continuous c.d.f. with a continuous derivative f(z), the limit distribution
of X3 as ng — © such that n;/N — p; > 0 is noncentral chi-square with h(c — 1) d.f.
and non-centrality parameter, Ayga = (Dt [f (ce) — F(ce—1)2/pe) (O %m1 pi (8; — 8)?) where
6= ¢apibs,c1,c2, - ,chare the respective quantiles of F(z) and f(co) = f(cas1) = 0.
A comparison is made of this test with other non-parametric tests and expressions for a.r.e.
are obtained for specified choices of F(z).

47. On the Set of Distributions Induced by a Ratio Statistic. Kenzo Seo, Colo-
rado State University.

Let f1, --- ,frbe aset of probability density functions. We define a vector-valued statistic
r(z) by r(z) = (r(z), --- , re(z)) where r:(z) = fi()/[f1i(z) + --- + f(z)]. The distribu-
tions P, , -+ , Pyinduced by r may be characterized as follows: If x is any measure to which
all P; are absolutely continuous, then the derivatives p; = dP;/du satisfy p:(t)/
[P1@) + - + @), t = (1, -+, tx) a.e. (P1+ -+ + Pyi). A k-decision problem may
be characterized in terms of the distributions P, , --- , Py . Suppose that the set f1, --+ , fa
and the set g1, -+, gx induce identical distributions P, , ---, Py . Then the problem of
selecting the true density of a random variable from among the {f;} and the parallel problem
of selecting from among the {g;} may be considered equivalent, since there is a one to one
correspondence between the Bayes rules for the former problem and the Bayes rules for
the latter.

48. On the Time of First Birth. S. N. SingH, Pennsylvania State University.
(By title)

A probability distribution of the time of the first complete conception (a conception re-
sulting in completed pregnancy) to a couple after marriage has been derived under the
following assumptions. (a) The number of cohabitations during any time-interval (0, ¢)
follows a Poisson distribution P(M¢); (b) cohabitations are independent and P:, the
probability that a cohabitation results in a conception, is constant; (¢) conceptions are
independent and P, , the probability that a conception is complete, is constant and (d)
A = MP1P; follows a type III distribution. Following Neyman, ‘“‘Contribution to the theory
of 2 test,”” Proceedings of the Berkeley Symposium on Mathematical Statistics and Proba-
bility (1949), pp 239-273, a procedure to find the B.A.N. (best asymptotically normal)
estimates of the parameters is outlined. The distribution has been applied to data, suitably
modified, on the time of first birth from Singh, Demographic Survey of Banaras Tehsil,
India (1956).

49. Analysis of Fractionally Replicated Asymmetrical or Symmetrical Factorial
Designs, I. J. N. Srivastava, University of North Carolina. (By title)

In this paper, a general theory has been developed for analyzing a fraction obtained
from any general asymmetrical or symmetrical factorial experiment. The development of
the theory has been pushed up to the stage of evaluating the matrix which we have to invert
for solving the normal equations. The special techniques for inverting such a matrix are
discussed in the second paper.
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50. Statistical Methods in Reliability Demonstration. ALEXANDER STERNBERG,
JorN S. YourcHEFF, AND SIDNEY DEMSKEY, General Electric Company.

This paper presents the statistical methods which have been developed and utilized
effectively to provide a thorough reliability demonstration program for satellites and space
vehicles. The analytical, temporal, and monetary tradeoff parameters are fully explored
and integrated to develop the necessary reliability test and evaluation program for adequate
reliability demonstration. Reliability values and associated confidence estimates, project
development schedules, and equipment and testing costs are the specific parameters con-
sidered in the establishment of an optimum testing program. Such a testing program pro-
vides for demonstrating the reliability objectives for any desired confidence level relative
to a specified mission time. ‘

51. On Sampling with Replacement: An Axiomatic Approach (Preliminary re-
port). Ricaarp C. TaeuBeR, C-E-I-R, Inc. anDp JorN C. Koop, North
Carolina State College.

When sampling finite populations, probabilities enter into sampling problems only in
the process of selecting the units to be observed, and not in connection with the unit char-
acteristics to be measured. Thus, in examining the criteria which may be applied to deter-
mine bestness in an estimator, the criteria developed for infinite populations, for the most
part, are not applicable to samples from finite populations. Only consistency (by and large)
and minimum mean square error (and their more restrictive counter-parts: unbiasedness
and minimum variance) survive. Further, the classical approach of determining criteria
for which one can develop classes of estimators is not germane to sample surveys. In sample
survey theory the converse is true, i.e., classes of estimators are developed in some sys-
tematic, physically-realizable manner, and then criteria are applied to determine bestness
within each class. As one possible method of obtaining classes of estimators, this study has
applied the axiomatic approach developed earlier by Koop to formulate seven classes of
estimators when sampling with replacement and with arbitrary selection probabilities.
Estimators are derived whose coefficients satisfy requirements that the estimator shall be
unbiased, and the weights be independent of the variate values under observation.

52. Bivariate Limiting Distributions of Maxima. Henry TEICHER, Purdue Uni-
versity.

Let Xp = (Xm, Xm),n = 1,2, --- denote a sequence of independent identically distrib-
uted random vectors with common ¢.d.f. F (z, y) and define Un; = aaj(Maxigign Xij — baj)
where ba; and a.; > 0 are suitable norming constants, j = 1,2, n = 1,2, --- . Employing
a result of M. Sibuya (Ann. Inst. Stat. Math., Vol. 11, No. 3, 1960), the class of proper
limiting distributions for (Ua1, Uas) is obtained.

53. Percentile Points of Order Statistics from a Uniform Distribution. JouN S.
WaiTE, General Motors Research Labs. (By title)

Let Zin S Zan S -+ Tan be an ordered random sample from a uniform (0, 1) distribution.
The distribution of the ith order statistic is then Prob [zin S y] = Fin(y) = Li(¢,n — 1+ 1),
where I, (p, q) is Karl Pearson’s incomplete Beta function ratio. Tables of the Pth per-
centile points of z(Z, n) are given for n = 1, (1), 50;¢ < n; and P = .1%, .6%, 1.0%, 2.5%,
5%, 10%, 25%, 50%. These tables may be used in plotting observed data on probability
graph paper using for the probability p; corresponding to yia , the ith largest sample value,
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the median of z;, . Confidence intervals-about the plotted empirical distribution function
may be obtained using other percentile points. These tables may also be used to find points
on the operating characteristic curves of simple sampling plans. For example the AQL
(95% acceptance point) for sample size = n, rejection number = 4, is the 5% point of
z(z, n).

(Abstracts of papers to be presented at the Eastern Regional Meeting of the Institute, Chapel Hill,
April 12-14, 1962. Additional abstracts will appear in the June, 1962 issue.)

1. Linear Estimation and the Analysis of Gamma Ray Spectra. BErNARD S.
PasTERNACK, New York University Medical Center.

Gamma ray spectroscopy is a relatively recent technique which utilizes radioactivity
counters for the assaying of a mixture of gamma-emitting radionuclides with minimum
sample alteration. This paper is concerned with a method of obtaining best estimates, in
a statistical sense, of the amount of each radionuclide present in the mixture. It should be
most useful in situations involving low levels of activity—i.e., near the limits of detection.
Such problems arise and are of importance, for example, in the determination of radio-
activity in the environment and in neutron activation analysis. Since extensive computa-
tions are required when more than a few isotopes are involved, the full potential of the
estimation procedure suggested requires access to a modern digital computer programmed
for handling problems of linear estimation and, in particular, weighted least squares. The
solution proposed yields best linear unbiased estimates of these unknown amounts, which
also have the property of being best asymptotically normal. In other words, as the counting
time increases the estimates approach the true amount of activity of the isotopes with a
limiting distribution that is normal, and such that for any given time interval of counting
the variances of these estimates are minimal.

2. Testing of Hypotheses Connected With a Certain Class of Patterns in the
Population Dispersion Matrix. S. N. Roy aAnp J. N. Srivastava, Univer-
sity of North Carolina.

In many multivariate experimental situations encountered in psychometrics, econo-
metrics, etc. background considerations suggest that the population dispersion matrix has
a certain pattern, and this leads to the problem of testing the hypothesis that such a matrix
does have the given pattern. On the other hand, we can sometimes assume that the popula-
tion dispersion matrix has a certain pattern, and, on this model we have the problem of
testing for linear hypotheses. In this paper, it has been shown that for a certain wide class
of patterns, these problems are related to certain Linear Associative Algebras. Using the
properties of such algebras, likelihood ratio tests have been given for each of the two kinds
of hypotheses mentioned above. In this connection the use of the stepdown procedure as
an alternative approach has also been indicated.

3. The Distribution of Incubation Periods in a Birth-Death Process. G. TREVOR
Wirriams, Johns Hopkins University. (Introduced by Allyn W. Kimball.)

We describe a stochastic model which mimics many of the characteristics of infectious
diseases. Assume that an inoculum of n organisms follows a homogeneous birth-death
process with parameters A and u. Place an absorbing barrier at N, the number of organisms
required to elicit a defensive response from the host. In those cases where the process actu-
ally reaches this upper barrier, the first-passage time will be called the incubation period, ¢.
We find that £~ log N/(A\ — u), (N — «) and further, that the frequency function of ¢
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falls into a well-behaved asymptotic form about this mean. For most diseases one expects
even the inoculum to be rather large if there is to be an appreciable probability of infection.
Hence we let n — « while letting 4 — X in such a way as to hold the probability of infec-
tion p = 1 — (u/A\)" fixed, since p is a physically significant quantity. The distribution of
the incubation period then comes out explicitly in terms of a Bessel function, with p as a
parameter that determines the shape. For p = 0, it is a Fisher-Tippett distribution and
it is relatively insensitive to changes in p. The model is shown to have many properties
that agree with commonly accepted empirical descriptions of infectious disease phenomena.

(Abstracts of papers to be presented at the Western Regional Meeting of the Institute,
Albuquerque, New Mexico, April 19-20, 1962. Additional abstracts will appear in
the June, 1962 issue.)

1. Estimating the Parameters in the Model y;;x = a; — b; + eix . AARON S.
GorLpMAN, Los Alamos Scientific Laboratory.

Given the model y;jx = a; — b; + e;jx wheret =1,2, -+ ,n,5=1,2, .-+ ,m,k=1,2,

-, t, yijx is an observed random variable, e;;x is a random variable with mean 0 and vari-
ance o2, and a; and b; are parameters, then the best estimates of a; and b, and their errors
are found. Also the computing techniques are presented for m 4+ n < 1000 so that accuracy
in the results are obtained for as many digits as in the given data. The case when data are
missing is also given.

2. Games Associated with a Renewal Process. M. M. Sippiqui, Boulder Labs.

Consider ‘a sequence of occurrences of a recurrent event E for which the intervals X, ,
X,, --- are identically distributed non-negative random variables (a renewal process)
with common distribution function F (z). Robbins (these Annals, Vol. 32 (1961), pp. 187-
194) considered games when X, is an integer-valued random variable. In this paper his
results are extended to games when X, is not necessarily integer-valued. A continuous
analogue of the Petersburg game is also presented. Games associated with a general re-
newal process are also considered where X, , X, , - - - are preceded by another independent
random variable X, with distribution function B (z).

(Abstracts of papers not presented at any meeting of the Institute.)

1. A Mathematical Theory of Pattern Recognition. ARTHUR ALBERT, Massa-
chusetts Institute of Technology. (By title)

Let X, and X, be (unknown) disjoint subsets of a Hilbert space H, such that the convex
hulls of X, and X, are a positive distance apart. Suppose that samples are drawn inde-
pendently and at random from X, U X, . After the nth sample, Z, , it is required to guess
whether Z, came from X, or X; . After each guess, we are told whether we were right or
wrong. In this paper, a decision procedure is exhibited, having the property that the proba-
bility of making an error on the nth trial converges to zero with increasing n. Furthermore,
the guessing rule used on the n 4 1st trial depends on the past data only through the rule
used on the nth trial, the value of Z, , and whether or not the guess about Z, was correct.
The application to pattern recognition problems of a dichotomous sort is immediate when
we identify X, and X, with two classes of patterns which are observed in temporal suc-
cession. The rules for membership in X, and X, are not known, but we (or a machine)
are/is told to which class each pattern belongs, after making a guess about that pattern.
As the ““training period’’ increases, errors are made with ever decreasing frequency.
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2. A Simple Randomization Procedure. MARTIN SanpeLivs, Sandelius Statis-
tiska Byra, Sweden. (By title)

The paper describes a randomization procedure consisting in distributing a deck of cards
into 10 decks using random digits and repeating this step with each deck consisting of 3 or
more cards. One random digit is used for randomizing a deck of 2 cards. This procedure
is called the multistage randomization procedure or MRP. A recursive formula is given
for the expected number of random digits required by MRP for the randomization of n
different symbols. As measure of the efficiency of a randomization procedure applied to n
different symbols the quantity (logie n!)/(Expected number of random digits required) is
used. It is shown that it is possible to construct a randomization procedure which on un-
limited repetition gives an efficiency which is arbitrarily close to 1. Using a family of upper
bounds on the expected number of random digits required by MRP it is shown that MRP
is asymptotically efficient. The efficiency of MRP is compared with the efficiencies of two
onestage randomization procedures.

3. A New Design for Experiments with Mixtures (Preliminary report). HENRY
ScHEFFE, University of California at Berkeley. (By title)

A ‘‘simplex-centroid” design is proposed for mixture experiments (Scheffé, JRSS,
Ser. B, 20 (1958), 344-360). If z; denotes the proportion of the sth component (¢ =1, --- , q),
the factor space is the (¢ — 1)-dimensional simplex > {z; = 1, z; = 0. The new design
consists of the following 2¢ — 1 points of the simplex: its centroid, and the centroids of all
the lower-dimensional simplexes it contains (including the g vertices). A regression equa-
tion expected to beuseful withthis designisn = D ¢ i@ + X i< Bii%iZi + 2 i<i<i BijiliZiTe
+ -+ 4 Bi2-..¢%1%2 * + - T, . This is the same as that usually used with factorial experiments
in ¢ factors each at two levels (each z; = -1 and —1), except for the lack of the term 8o,
which can here be absorbed into the linear terms. A natural correspondence, depending on
which components are present and absent, may be set up between the points of the new
mixture design and the 2¢ — 1 points of the complete factorial experiment design left after
deletion of the point (=1, —1, --- , —1). The analogy immediately suggests designs and
regression equations for the addition of process (i.e., non-mixture) variables to the mixture
variables, each process variable being at two levels, and how one might try to fractionate
these designs.



