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Summary. In [3], a general model for the reliability analysis of systems under
various preventive maintenance policies is postulated and analyzed. The integral
equations that determine the expected number of failures, the expected number
of preventive removals, and the survival probability function are developed. In
the present paper, a particular model of a system subject to marginal testing is
considered and explicit values of these performance measures are obtained.

Under a marginal testing policy, the system is maintained in operating condi-
tion by replacing all failed components as soon as they fail and, at regular inter-
vals, conducting a test to locate those components which are still operating satis-
factorily but which are expected to fail in the near future. All components located
by this test are replaced.

In this model, it is assumed that a component may be in any one of n + 1
states, 0, 1, -+, n, and, during normal operation, these states constitute a
continuous-parameter Markov process in which state » is the failed state. When
a component enters state n, it is immediately replaced by one in state 0. The
marginal test detects the state and states k, &k + 1, --- , n — 1 are considered
marginal. The test is performed at fixed intervals, and, if a component is found
in the marginal state, it is replaced by one in state 0.

Since this model provides for transitions from any operative state to any other
state, recovery from the marginal state to the good state is permitted, a char-
acteristic which was not allowed in the model of [3]. In addition, a choice of the
level at which the component is considered marginal is permitted. The loss of
generality lies in the assumption that the process is Markovian. As in [3], it is
assumed that there is no dependence between transitions in different component
positions and that every system failure is corrected by the replacement of one
component, so that the problem of determining system performance measures
is reduced to the problem of determining the corresponding quantities for a
single component position.

In the analysis of this model, we shall first analyze the Markov process in
the absence of marginal tests and determine the matrix of probabilities H;;(¢)
that a component is in state j at ¢ given that it is in state 7 at 0, the distribution
function F;(t) of time to failure for a component initially in state ¢, and ®i(?),
the expected number of failures in a component position by ¢, given that the
component is in state ¢ at 0. It is then seen that, with the marginal test performed
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MARGINAL TESTING AND RELIABILITY 755

at intervals of length T and replacement of marginal components, the states
of the component just before successive test points constitute a discrete-
parameter Markov chain. The matrix of transition probabilities p;; for this
chain and the probability P;(r) that the component is found in state ¢ at the rth
test point are determined. Then the expected number of preventive removals
in a component position, U,(t), may be expressed as the sum of the probabilities
of finding the component marginal over all test points before ¢ while the expected
number of failures, U;(t), is expressible in terms of the P,’s and the ®.’s. The
asymptotic values of U,(¢) and U,(t) are determined by the stationary properties
of Markov chains. Finally, the Markovian nature of this model makes it rela-
tively easy to express R(¢; x), the probability of no failure in a component posi-
tion in an interval ¢ following system age z, in terms of the matrices discussed
previously.

1. Assumptions and analysis.

(1) The system is an assemblage of a finite number of components which per-
forms some function.

(2) Associated with a given component, there are a finite number of states,
0,1, - -+, n. (The value of n may vary with different component types.) During
normal system operation, these states constitute a continuous-time Markov
process. If the component is in state ¢ at time ¢, the probability that it enters
state 7, 7 ¥ 4, by ¢t + dt is Q.;dt + o(dt), with Qi; = O for all 4.

(3) A component is initially in state 0.

(4) The component performs its function in the system in states0, - -+ ,n — 1.
When it enters state n, it immediately induces a system failure and is replaced.

(5) There exists a test which identifies the state of a component. States
k,k+1,---,n — 1are considered marginal and are collectively labeled state B.
At fixed intervals of length 7, the test is performed and, if the component is
found in state B, it is replaced by a new one.

Now we proceed with the analysis which determines exact and asymptotic
expressions for U,(¢), Us(¢), and R(t; ). We shall make use of the following
n X n matrices, related to the Markov process defined in Assumption (2).

Derinrrions. H(t) is the matrix of transition probabilities with elements
H ;(t), the probability that a component is in state j at ¢, given that it is in state
iat0,4,j=0,---,n — 1,fort = 0. H(¢) = (0) for ¢ < 0. Q* is the matrix
of probabilities of transition into state j when the component leaves state <.

Q?f=Qij/Qi’ WhereQi=’;)Qik’ 7:7j=07""n—1'

K(¢) is a diagonal matrix of probabilities that a component in state ¢ at 0 makes
a transition out of state ¢ by ¢.

Kij(t) = 8i[l — exp (—Q#)], 4,j=0,---,n—1, t=0.

=0, t <0.
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Corresponding to each time-dependent matrix, there is a matrix of Laplace-
Stieltjes transforms. In each case, the transform will be represented by the same
symbol as the original matrix with a bar. Thus, we have, for example,

Kii(s) = fo i e " dK () = 8:;Qi(s + Q)7

With these definitions, one obtains, as a special case of Pyke’s Theorem 4.1 [6]
TueoreM 1.1. H(2) ¢s determined by the matriz integral equation,

H(t) = I — K(¢) + [K(t)Q" *H(2), t20

1.1
(1) = (0) t<0

where * denotes matrix convolution, and its transform is expressed
(1.2) H(s) = (I - K(5)Q") (I — K(s)),

where (I — K(s)Q*) 4s non-singular when s > 0.

Now we define F;(t) as the distribution function of time to failure for a com-
ponent in state ¢ at time zero, ¢ = 0, --- , » — 1. Since F;(¢) is the probability
that the component is in none of the states 0, - - - ,» — 1 at time ¢, it follows that

n—1 : n—1

(13) Fit) =1 — ;0 Hij(t) and Fys) =1— Z:,) Hij(s).

Define ®;(t) as the expected number of successive failures by ¢, where the
component in position at time 0 is in state ¢ and no marginal test is performed in
0,#,2 =0, -+ ,n — 1. One then obtains

TureoREM 1.2.
(14) ®:(t) = Fi(t) + ®Bi(t) *Fo(t)
and hence
= _ F’i(s)
(15) &5(8) = —1 — F'O(s) .

PROOF. ®i(f) = D ne1 Fi(k; t), where Fi(k; t) is the probability of at least
k failures in (0, #], given state ¢ at zero. Now

Fi(1;¢8) = Fi(t) and Fik + 1;¢t) = Fi(k; t) = Fo(t),

since each replacement is initially in state O, and the theorem follows.

At this point we focus our attention on Assumption (5) and define p;; as the
probability that the component in position at »T— is in state j, given that the
component in position at rT—T— was in state ¢ (¢ = 0,---, k — 1, B,
j=20,---,k — 1, B). It is clear that this probability is independent of r and
that the sequence of states at time points 7'—, 27—, - - - constitutes a discrete-
parameter Markov chain with & + 1 states and transition probability matrix p.
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We can express p;; in terms of quantities previously derived, as follows:
THEOREM 1.3.

pi; = Hij(T) + Hoi(T) » ®:(T),

(1.6)
i=0,  k—1,j=0,,k—1.
n—1
(1.7) pia = X Hy(T) + Hy(T) s&(D)],  i=0,-- k=1
J=i
(1.8) Dsi = Do, j=0,---,k—1,B.

Proor. For 7, j < k, pi; is the probability that the component in state ¢ at
the beginning of an interval of length T is in state 7 at the end of the interval
or that it fails during the interval, one or more replacements occur, and some
replacement is in state j at the end of the interval. The usual renewal argument
then leads to (1.6). (1.7) arises from the fact that state B is the union of states
k,---,n — 1, and (1.8) is based on the idea that a component in state B just
before a test point is replaced by one in state 0.

Let P(r) = (Po(r), -+, Pry(r), Ps(r)), where P;(r) is the probability of
state 7 at r7—, with P(0) = (1, ---, 0, 0).. Clearly,

(1.9) P(r) = P(0)p" or Pir) = (p)oi.
This completes the preliminaries necessary to the exact expressions for U,(¢)
and Uy(t)
TaHEOREM 1.4.
(1.10) U,(t) = Zl Py(m) = (Zl p"‘)o , T 2t<(r 4+ 1)T.
m= m=. B
r—1 ["k—1
0 = £ [ £ Pms)+ Patmia() |
(1.11) L=
+ EO Pi(r)®;(t — rT) + Ps(r)®(t — rT),

T <t< (r+ 1)T.

Proor. Since the probability of a preventive removal at mT is the probability
of state B at mT —, (1.10) expresses the expected number of preventive removals
after r test points. The expected number of failures in an interval following mT
is obtained by summing the expected number of failures conditional on initial
state ¢ over the probability of initial state 4. Summation over all the intervals
up to ¢ yields (1.11).

In order to find asymptotic values of U,(t)/t and U(t)/t, we shall use the
limiting values of P(r) as r becomes large. These limiting values were expressed
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by Mihoc [4, pp. 114-116]" in terms of the matrix I — p as follows:
k—1 —1

(1.12) m = Py() = D; (Z D; + DB)
=0

where D; is the cofactor of (I — p).;, i.e., the determinant obtained by striking
out the 7th row and 7th column from I — p, and D; # 0 for some 3.
THEOREM 1.5.

(113)  limw [U,(+T) /rT] = 73/T,
(1.14) Jim U8 _ 1 [lf r: ®:(T) + 75 (BO(T)].

PR 1 TLi=

Proor. In this limiting case, the expected number of removals of either type
per unit time is equal to the expected number of removals per maintenance
interval divided by the length of the maintenance interval.

In order to formulate an expression for the reliability function, RB(¢; z), it is
necessary to define the following.

DEFINITIONS.

(1) Py(r, y) is the probability that the component in position at time T 4 y
is in state ¢, where ¢ = 0, --- ,n — 1 and y < T. Thus, P(r, y) isann X 1
matrix.

(2) p:j(y) is the probability of state 7 at »T + y, given state ¢ at rT'—, where
i=0,+-+-,k—1Bj=0---,n—1landy < T.p(y) isann Xk + 1
matrix.

(3) Si(m, r, y) is the probability of state z at (r + m) T+ and no failure in
the interval (+T + y, 7T + mT], where 2 =0, --- ,k — 1. Sisa k X 1 vector.

(4) g;; is the probability of state j at 7T 4 T4 and no failure in (»T, 7T + T1,
given state ¢ at rT+, where 4,7 = 0, --- k£ — 1. q is a k X k matrix. ¢;;(y) is
the probability of state 7 at »T + T+ and no failure in (rT + y, rT + T,
given state ¢ at #T + y, where¢ = 0, --- ,n — 1,7 =0, -+, k — 1. q(y) is
a k X n matrix.

Now we shall express these matrices in terms of quantities previously derived
and then proceed to formulate R(¢; x).

By the reasoning of Theorem (1.3), it may be seen that

(1.15) pii(y) = Hi(y) + Hoi(y) * Bi(y),
i=0,...,k—]_,j=0,...,n_1’

(1.16) pzi(y) = poi(y)
and, as in (1.9),
(1.17) P(r,y) = P(r)p(y) or  Pir,y) = (PP(¥))oi.

2 This reference was obtained from Richard Barlow [1] who credits Professor J. Gani
with bringing it to his attention.
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From the definitions of ¢;; and ¢:;(y), and the fact that, at #T + T, any com-
ponent in state k, - -- , » — 1 is replaced by one in state 0, it is evident that

n—1

(1.18) gn = Huo(T) + ,;k Hi(T), i=0,-,k—1,
(1.19) gi; = Hii(T), i=0,-,k—1,j=1,---,k—1,
(1.20) gan(y) = Ho(T — y) + gHa(T -y, ©=0-,n—-1,
(1.21) 0i(y) = Hi(T —y), i=0,---,n—1,j=1,---,k—1.

Finally, it is clear from the definitions that

(1.22)  S(1,r,y) = P(r,y)a(y)

and

(1'23) S(m) 7, y) = S(m - 1) 7, y)q = P(T, y)q(y)qm—l’ m > 1.

Taking into account this preliminary analysis, we can now express R(T'; z) as
follows:
TaeoreMm 1.7. If y + 2 < T,

n—1

(1.24) R(z;rT +y) = ;o Pi(r, )1 — Fu(2)],

k—1

(1.25) R(mT + z;rT + y) = Zo Si(m,r, )l — Fi(z +y)], m =1
Ify+22T,y<T,z<T,

k—1
{1.26) R(mT 4+ z;7T +y) = Zo Si(m+1,r,y)[1 —Fi(z+y—T)1.

Proor. If there is no test point in an interval, then the probability of no failure
in that interval is the summation over 7 of the probability of no failure conditional
on state 7 at the beginning of the interval multiplied by the probability of state ¢
at the beginning of the interval, which yields (1.24). If one or more test points
occur during an interval, then the probability of no failure is obtained by
summing over ¢ the probability of no failure up to the last test point and state
% at this point, times the probability of no failure between this point and the end
of the interval, conditional on state ¢ at the test point. Noting that,if y + 2 < T,
there are m test points in the interval mT 4 2, while, if y 4 2z = T, there are
m -+ 1 test points, we obtain (1.25) and (1.26).

CoroLLARY 1.7.1. If y + 2 < T,

n—1

(1.28) lim B(z; 1T + y) = ;) (=p(y))d1 — Fu(2)],
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k—1
(2g) RO+ T +y) = F (@AW~ File + )
m = 1.
Ify+2=2T,
k—1

(1.30) Lim R(mT + 27T +y) = ; (=p(»)a(»)q™) 1l — Fi(z +y — T)].
These relations follow immediately when r goes to infinity in (1.17, 23, 24,
25, 26).

2. Examples. As a simple example of the explicit computations involved in
analyzing this model, consider a component with which three states, 0, 1, and 2,
are associated and suppose transitions always occur from one state to a higher
one, i.e. 0 to 1,0 to 2, or 1 to 2. A new component is in state 0, state 1 is mar-
ginal (i.e., k£ = 1) and state 2 is failed. Let Qu = A\, Qo2 = Az, and Qi = \g,
and all other @;; = 0. Then

M
Q*=<° >\1+>\2>,
0 0

1 — Ao
8 A S
—H(s) - sS4+ M+ N (s+>\1+>\2)(3+>\3) by (1.2)
s y (1.2),
0 S + )\3
and
— ()t M Ngt o~
H(t) =(° e vy W ¢ al t20
0 e—lat
— 1 _ SN M Nt _ —OpRAgt
Fo(t) =1—c¢ W —— [e ¢ 1,

and Fy(¢) = 1 — ¢ ™ by (1.3).

)‘3()‘1 + )\2) >\l(>\3 — )\2) —(\1+Ng)E
Golt) = t— 1 — O by (24),
o(t) M O F M2 [ ¢ 1 by (24)
—_ M — oM T M 1 — —(\+Ag) T
P 1 >\1+>\3[1 ¢ ]>\1+)\3[ ¢ ]
1 M 1 — -(Mﬂa)T] M 1 - e"()\1+)\3)1']

TN N M+ As
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by (1.6), (1.7), and (1.8). In this case p" = p, and Pi(r) = po;, so that, by
(1.10),

@1) U,@t) = m_ﬁ—lxs [1 — T PT<t<(r4 DT.
Us(t) = r®(T) + ®o(t — rT)
_ As(A1 - Ag) {_ M(As — Ag)
(2.2) Mt N M+ )2

'{1‘[]_ — 6_()‘1+)‘3)T] + [1 _ e—()\1+).3)(t—,-1)]}
rT <t < (r+ 1)T by (L11).

Furthermore, from Theorem 1.5,

. Up(rT) . N [1 _ e—(x1+xa)r:|
(2.3) }'1-32 rT - M+ A T ’

MJM0=Mm+m»_Mm—m»F—w”M“]
ta ¢ M+ M+ N2 T ’

In order to derive an expression foy R(mT 4 z; rT + y), we require the
matrices p(y), ¢, and q(y).

(24)

M —(A\1Hhg) M —(\1+hg)
1 — -2 1 — 1y A 1y 11HA3)y
v vy v
p(y) = \ \
1 — 1 1 — —(\1+\3) 1 1 — —\1+M3)
NE N T T nlt—e L

by (1.15) and (1.16); by (1.18),

_ _ M T _ A3 — A —(x,+x2)r)
1= () <>\1+>\2—x36 N — N

and, by (1.20),

qu(y) M T _ M =N —orhaan
a(y) = i) MER=—N o Mt N—N

e
For this case, we have, from (1.17),
P(r,y) = P(0,y)

2.5) M o A
= —_ — 1+H73) 1 I YT 2.F))
(1 o Ehverviial "])’
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and, from (1.23),
So(m, 7, y) = {(1 M- e“““*’”])

T NN
( M oMY Az — Ag e—()\1+)\2)(1‘*y))
)\1+)\z—)\3 )\1"‘)\2—)\3

(2.6)

+ (ﬁ 1 — e—(m+xa)y]) ( e—xa(r_,,))}

{ M eMT _ Az — A2 e—(x1+x2)r}m_l
M4 —XN Mt A—N )

Finally, if y + 2 < T, we have from Theorem (1.6)
R(z;rT + y) = {1 —_M 1 — e"()‘l“"‘a)”]}

M+ N
M gz A — N g )z}
2.7 e g e B2 1HA2
(27) {xl+x2—>\a N Wy W

AL o~ (g) —N3z
+ {——)\1 ey [1 e ”]} {e })
R(mT + z;rT + y) = So(m, 1, y)

(2.8) ) M ghe M — N e‘“‘“’)(’ﬂ’)} m>1
VRS W M — N ’ -

andify +22T,y<T,z2< T
R(mT + 21T + y) = So(m + 1,1, )

(2.9) . { M ehED M — N e—(x1+x2)(z+y—r>}
M+N—N MAA—XN

where So(m, r, y) is given in (2.6).

~ Since these expressions are independent of 7, nothing new is introduced by

taking the limit as r goes to infinity.

As a second example of the applicability of this model, suppose there are n + 1
states, 0, - - - , n, associated with a component and transitions take place from
one state to the next higher. Let Q; 1, = A for ¢ = 0,---,n — 1, all other
Q:; = 0. This implies that the (distribution function of time from state 0 to state
k, i.e., to the marginal state, is T'x(\t), while the distribution function of time
from entering the marginal state to state n, failure, is T',_x(At). This seems to be
a reasonable model for monotonic component parameter drift, with a choice of %
corresponding to a choice of the parameter value at which the margin is set.
We have

Qi = dija, Ki() =851 — ™, ¢ 0

)\f—i' A =(—i+D) P < 4
Hi(s) ={0 6+ ’ :;j by (1.2),

v
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and

© = (At)" M i<j,t20.
H; i> 7.

By@&J%D=1—€“Z£TWM’=n4Mmem
Fi(s) = (M (s+M))"7,

A )mn—i
s+ A )

and by (1.5),

®i(s) = —<s i k)n—i = "g; (

x n
1‘C+Q

Thus, ®i(t) = 2 =1 Tma_i(M).
To reduce ®;(tf) to a finite sum, note that
dBi(1) _ s O™ AV Gy ,
@ N A fmn —1i—1)! n ga exp {a'At},
where a = &7", Integrating,
n—-l (t+1)r
®i(t) == + Z -1 — exp{ (1 — a")At}l.

By (1.6),
pi; = [[jmi(AT) — Tjsu(AT)] + [IV(NT) — Fj+1()\T)]*;1 Tun—i(AT),

i=0,---,k—1,
=i, ek — 1.

= [[(AT) — Tja(AT)] # ; Crnei(AT),
i=0,---,k—1,7=0,---,7 — 1,

and by (1.7)
Dip = 2{[111—1'()\71) — Timn(AT)] + [T;(ANT) — T3 (AT)] *"g I‘mn~i(>\T)}a

i=0,-,k—1,
while, by (1.8), ps; = po; - Explicitly,

—\T n—1

€ —Hr 7- . .
pif=77§a( ? exp{a)\T}, 1’).7=07"')k_1)
—)\T n—1

—n—-za_ﬂ' xp {a\T}, j=0,---,k—1,
r=0
k—1

pm=1—Zop,-j, i=0,---,k—1,B.
J=

Now the exact and asymptotic values of U,(¢) and U;(¢) may be determined
by direct application of (1.9-1.14) and the reliability function R(¢; z) from
(1.15-1.30).

II

Y2y
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For example, suppose n = 3. This leaves us with the choice of setting % equal
to 1 or 2. We shall determine lim,.., [U,(rT)/rT] and lim,..[Us(£)/{] for both
values of k. We find

M1 _ 3t 1. 3
CBo(t)=§—§[1—e*“(cosg)\t+§;sm§)\t):|,

2 e 3

®i(t) = 3 T3¢ My

and for k = 1,

A,

1 _ tH
Pw = Pso =§[1 + 2¢ *)‘Tcos%)\T],

Doz = Psp = —g—[l — T cosng],

2
while for £ = 2,
1 _
Poo=ppo—-§_1+2e%” ‘sz]
1T ._m< 3 y . 3
pol—pm—g-_l e cos2>\T 3 s1n—2—>\T
p93=p33=§ l—e_w'( 8! )\T+3*s1n3§)\T):|,
1 —IAT 1 st
pm=§ 1—e¢ cos )\T+3 s1n—>\T
pu=-;; 1+26_*”cos§>\T:|,
D1s =% 1—¢ ™ (cos3 )\T—3*sm§>\T>:|

Thus, for k& = 1, we find from (1.12) that
3
[1 + 2P gos = AT] Tp = g [1 P A AT] ,

2
while, for k = 2,

mo

wl»—

1 1 — e—a)T
1"0 e,
3 _pr 3t 1. 3 ’
1—e¢ cosixT—:—)’;sma)\T
3
R 3 ot 3
,.-1=11 e (cossz 3s1n2)\T)
81 _ i 3 1. 3 .\’
1 - (oos—-AT §s1n§)\T
tH
1 — 27 cog 3 AT + 7
T =
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Using (1.13) and (1.14) we arrive at the results that, for k = 1,

UP(TT) _ 2 [ _ 3* :I
lim —ﬁ:’ 1 e COSEAT 5

r->00 rT

. U2 1 —pr 3t 1. 3

];l_m ; _§ 37 1—e¢ cosEAT+—§51n§)\T ,

and for k =
o, —AT 3_% —a\T
thp(rT)=L 1 —2e o;)s2>\T+e } ’
roo T 3T _w( 3 1.3 )
1—e¢ cosi)\T—g—%sm—z-xT
. 1 — 2¢ ™7 cos i% AT + 7

lim U, (%) _A_ 3 i 2 '

o L 3 9T _ )

! 1 — ™ (cos %)\T ?}* sin —3— AT)

3. Conclusions. A plausible model of a system maintained in operating con-
dition by immediate replacement of failed components and periodic marginal
tests has been formulated and analyzed. Explicit expressions for the expected
number of failures, the expected number of preventive removals, and the survival
probability, both exact and asymptotic values, have been obtained. These quan-
tities may be used to evaluate the expected cost of maintaining a system and to
optimize both the level (k) of a marginal test and the interval (T') between tests.

For example, suppose the cost of maintenance is a linear function of the number
of failures, the number of preventive removals, and the number of tests, i.e.
for each component position,

C(t) = CiNy(2) + ColNo(1) + Cult/T],

where N,(t) is the number of failures by ¢, N,(¢) is the number of preventive
removals by ¢, T is the maintenance interval, C;, C, , and C,, are the costs of a
failure, a preventive removal, and a test, respectively. Then

E{C(D)} = CUs(t) + CoU,(2) + Cult/T],

where, for any given value of k¥ and T, U,(¢) and U,(¢) are expressed by (1.11)
and (1.10).

In some cases, it is known in advance that a system will be used only for some
specified length of time. Then it is desirable to find those values of & and T which
minimize E{C(¢)} for that length of time. In other situations, it is intended
that the system be used indefinitely and the figure to be minimized is the asymp-
totic expected cost per unit time, i.e.,

’
t—>0 t->°° -»oo t T
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where, for given k and T, lim,. [U;(¢)/#] and lim,.. [U,(¢)/¢] are given by
(1.14) and (1.13).

As a specific example, consider the I'; distribution of time to failure discussed
at the end of Section 2. For this particular model, we have a choice of setting &
equal to 1 or 2 and setting T at any value from 0 to «. (The value « corresponds
to no marginal testing at all.) For &k = 1, we have

3 3
lim E’{g@} = _C [1 — T (cos 3 AT + ?% sin% AT):I

t>0 t E
20y (1 _ o7 40 8 Cn
37 (1 e cos 5 AT )+ T

For k = 2, we have

lim E{g(—t)-}
t->0 14
1 — 2¢ P ¢os 3—é AT + ¢
_ O 20, — 3¢, 2 + Cn
T3 9T l_ _W< 3 1. 3 T
1—6, cosa)\T—?}sm—z—)\T

Clearly, for T = o, i.e., no marginal testing, lim,.., E{C () /t} = C;\/3.

The two functions of T above have minima less than C/\/3 whenever C,/C; +
3Cn/2C; < 1/2 or Cp/Cy + 3Cw/Cy < 2/3, respectively. Thus, given the values
of €y, Cs,and Cyn , and X, it is possible to find those values of T which minimize
the cost function for each value of k. Comparison of the two minimum costs then
indicates the optimal choice of k. Similar computational methods could be used
for other special cases of the general Markovian model.
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