GAMES ASSOCIATED WITH A RENEWAL PROCESS

By M. M. Sippiqul

Boulder Laboratories, National Bureau of Standards

1. Introduction. Consider a sequence of occurrences of a recurrent event
& for which the intervals, X;, Xz, - - - , are independent identically distributed
non-negative random variables (a renewal process) with common cdf (cumula-
tive distribution function) F(z). Robbins [3] considered games when X; is an
integer-valued random variable. It seems of interest to extend his results to
games when X is not necessarily integer-valued. Thus, for example, {X;} may
denote the lifetimes of similar articles, or the times between accidents of auto-
mobiles insured by a certain company. We will also consider games associated
with a general renewal process where { X} is preceded by another random variable
X, which is independent of {X; and may have a different distribution. Since
the discrete case has been fully dealt with by Feller [1] and Robbins [3], the
emphasis in this paper will be on the continuous case. However, the results will
be presented in a general form which will include all such F(x) which do not have a
Jump at zero. ’

2. Fixed-time games. Let us consider the following game called G. The game
starts at ¢ = 0 when an event has just occurred. At the kth occurrence of the
event &, player A receives an amount ¢(X;) and pays an amount a; . Here ¢(¢)
is a given function which vanishes for ¢ < 0, and a; is a sequence of constants.
For example, A may be a buyer of certain articles. The benefit which 4 derives
from the kth article is a function ¢(X;) of its lifetime, X, and he pays the
price a; for the purchase. An insurance company A pays an amount a; at the
occurrence of kth death (life insurance) or kth accident (automobile or other
accident insurance) and receives premiums and interests which are a function of
time between such occurrences.

Let

T(t) = total amount received by A4 in (0, ];
(1) T:(t) = total amount received by 4 in (X,;, X; + ¢;
U()

Obviously the T.:(¢) have the same distribution as T'(¢). If ET(t) = EU(3)
for all 0 < ¢ < t, we shall say that G is fair for [0, #]; if & = «, we shall say
that G is fasr.

To avoid triviality we shall assume that c(¢) is not a null function. ¢(¢) will

.....

total amount paid by A4 in (0, #].

called realizable if, given a realistic ¢(¢), a sequence {a;} of non-negative con-
stants exists for which G is fair.
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If f(¢) is a function of the real variable ¢ defined on the interval 0 = ¢ < o,
and of bounded variation in the interval ¢ < ¢ < b for every positive a and
every positive b, write

2) '@ = [ et = i [ & ar

when this limit exists. f*(s) will be called the Laplace-Stieltjes transform (LST)
[5, ch: IT] of £(2).
Define

t
0 =[ o(z)dF(z), £¢=0; 0, ift <0
{I]

and write T(¢{) = ET(¢), and so on. Assuming that G*(s) exists for some
$ = 8, where s = o9 + ir9, by arguments similar to those of Robbins [3,
p. 190], we find

(3 T*(s) = G*(s)/[1 — F*(9)].

T*(s) is analytic in the half plane ¢ > ¢ = max (0, o).
Similarly, formally introducing the series

@ A@) = o
we obtain
(®) 0%s) = A(F*(5)).

Hence the following theorem.
THEOREM 1. G is fasr if G*(so) exists, A(y) converges for |y| < F*(c), and

(6) A(F(s)) = G*(s)/[1 — F*(9)].

Further, if G is fair and G*(s,) exists, then A(y) converges for |y| < F*(c) and
(6) holds.

Since, by assumption, F(z) does not have a jump at zero, for real s, F*(s)
is a monotone decreasing function on [0, «] to [0, 1]. It therefore has a
unique inverse F** on [0, 1] to [0, «] which is a monotone decreasing function.
Let

(7 K(y) = G*(F*'(y)), 0=<y=F0).
The condition (6) then implies that
(8) Aly) =K@ -y~

If the Maclaurin’s series expansion of K(y) is given by

(9) K@) = 3 b
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We must have by = 0, as K(0) = G*(0) = 0, and the series converges for
0 =< y < F*(c), as G*(s) is analytic for ¢ > ¢. Thus from (1)-(9) we have the
following corollary.

CoroLLARY 1. For any reward function c(t) for which the LST of G(t) exist,
there is a unique sequence of fees {a;} which makes G fair. The {a;} are given by

an=ij, n=1,2,...

Furthermore, if c(t) is realistic, and D j—1b; = 0, for n =1, 2, --- , the game
18 realizable.

REeMARK 1. If the LST of G(t) does not exist for any finite s, we can still find
a sequence {a;} which will make G fair for [0, )], where % is an arbitrary positive
number. We simply set dT'(t) = 0if ¢t = 4, and the theorem applies with G*(s)
replaced by

ol

Gs(s) = j0+0 e*'c(t) dF(t).

The analogue of Robbins’ Corollary 2 [3, p. 192] is
CoROLLARY 3. G s fair of and only if

[ o) ar@) = 3 a0, 0

IIA

t

IIA

®,

where H,(t) = F,(t) — Fny1(t) is the probability of exactly n occurrences in the
interval (0, ).

3. A continuous version of the Petersburg game. A continuous analogue of
the Petersburg game [1, ch. 10] may be described as follows. We consider a Pois-
son process where the events are occurring at the average rate of \,0 < A < «,
per unit time, and at the kth occurrence A receives an amount exp (»Xi).

We have
(10) dF(t) = Ne™Mdt, c(t) = €, if ¢ = 0,

and zero if ¢ < 0. We note that Ec(X;) = o« if » = A. A straightforward cal-
culation gives A(y) = y(1 — »y/N) 7' — y)7, ie,,

et n, if v = A,
11 = A i = no__
(11) =2 /) O =1 e
@/ —1
The game is realizable if v = —\. Also,
T@t) = U(t) = M + %, if v =,

12
(12) =M =NV =1 =N =N i =

It is interesting to compare this game with the classical type of game asso-
ciated with a Poisson process. Here, F(t) and ¢(¢f) are given by (10) and the
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game is played until the event occurs n times. The interesting case, of course,
is when E¢(X;) = o, ie., when » = \. The problem is to find the total fee,
e, , to be paid by 4, so that

(13) plimasw {[¢(X1) + - -+ + ¢(Xa)]/ea} = 1.

Writing @ = A/», and assuming 0 < a =< 1, we have the common distribution
of C(Xi)
(14) dP(t) = at*'dt, ifl=<t=< »;0,if¢ <]1.

Let S, denote the numerator in (13). Applying Theorem 3 of Gnedenko and
Kolmogorov [2, p. 57], we have (13), if and only if,

(15) limpee [fn(8)| = 1

uniformly in every finite interval of ¢. Here ¢,(¢) is the characteristic function
of S./ex — 1 and is given by ¢.(8) = {P*(—1t/en)}"e ™. ‘

A series expansion of ¢,(f) shows that no solution exists for 0 < ¢ < 1; and
fora =1

e, = nlogen

satisfies the condition (15). This comparés with Feller’s [1, p. 237] solution of
the Petersburg paradox, where he obtains the solution e, = n log; n, when Xj is
integer valued, Pr (X; = n) = 27", n = 1,2,---,and ¢(n) = 2"

4. Fixed-time games with a general renewal process. We consider a general
renewal process [4, p. 245] {Xo, X1, Xz, -+ }, where {X}7- is a renewal
process which is preceded by another non-negative random variable X, which
is independent of { X}, and has cdf B(z). For example, the game may be started
at some arbitrary time origin which does not necessarily coincide with the oc-

currence of an initial event.
Let F,(z) denote the cdf of X; + -+ + X, and K, () that of

Xo+ X1+ -+ + X
Then
(16) K,.(x) = BsF,(x)

where % denotes the convolution of two cdfs.

In addition to the random variables introduced in (1), introduce To(¢) ob-
tained from T;(f) by setting ¢ = 0. Then T,(¢), T:(¢), - -+, have identical
distributions, but T'(f) may have a different one.

In this case, we obtain

arw = | *dTo(t — w) dB(w) + (0 dB(),
a7 t
aTo(t) = fo dTo(t — u) dF(u) + e() dF ().
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Thus writing

(18) dGy(t) = ¢(t) dB(t),

and assuming that G7(s) and G*(s) both exist for some s = s, we find
(19) T*(s) = G*(s)B*(s)/I1 — F*(s)] + G (s).

Also

(20) U*(s) = B*(s)A(F*(8))/F*(s).

Thus, if g is associated with this process, we have the following theorem.
THEOREM 2. G is fair if G*(s0) and Gi(so) ewist, A(y) comverges for

lyl < F*(e),
where ¢ = max (0, a), and if
(21)  A(F*(s)) = G*(s)F*(s)/I1 — F*(s)] + GI(s)F*(s)/B*(5).
Further, if § is fair and G*(so) and G7 (so) exist, then A(y) converges for
lyl < F*(c)

and (21) holds.
If we set B* = F* so that GF = G*, we have Theorem 1. Hence, Theorem 1

may be considered a corollary of Theorem 2.
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