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1. Introduction and summary. A problem that seems to be of some practical
interest is that of comparing & experimental categories with a standard (or
control) in order to determine if any of the experimental categories are better
than the standard (or control) and if so, to find the best one. We might for ex-
ample be concerned with evaluating several new drugs in relation to a placebo,
or with evaluating several new alloys in relation to some standard alloy. This
problem has been discussed in the non-sequential case in [1] and [2].

In the present paper we will be concerned with a sequential treatment of the
problem. In our notation, the subscript 0 will always refer to the standard (or
control), the subscript ¢ will range from 0 to &, and the subseript j will range
from 1 to k. Let X; be the random variable resulting from a measurement with
the 7th category =,. We will assume the probability distribution of X; is the
same for each ¢ except for a single parameter 6, which might vary from category
to category. The probability density of X; (or the probability of X; = z in the
discrete case) will be denoted by f(x, ;) and this is assumed known, except for
the value of ;. For simplicity, we will suppose that the larger the value of 6,
the more desirable a category is. Let R, denote the relation 6, = 6, = --- =
6 = 6o, and let R, denote the relation ¢y = --- = 0;3 = 0j1u = --- = 6 = 6
and 6; = 6, + A, where A > 0. Let D, denote the decision that none of the ex-
perimental categories is better than the standard (or control) [that is, 8, < 6,
fors = 1,2, --- , k] and let D; denote the decision that = ;is the best experimental
category and is better than the standard [that is, ; = max (61,62, - - -, 6x) > 6.
We will develop a sequential procedure for choosing one of the & 4+ 1 decisions
(Do, Dy, -+, D;) so that the probability of selecting Dy when R, is true is
21 — a, and the probability of selecting D; when E; is true is =1 — g for each
J, 3 =1,2,--- k. First we will treat the case where 6, is known and f(z, 6) is
arbitrary, and then consider the case where 6, is unknown and

f(z, 0) = (2mo”) texp [~ 3(z — 6)*/d.

A rather interesting feature of the sequential procedures that are developed
is that inferior categories can be eliminated before the final stage of the experi-
ment, which tends to decrease the number of measurements required to reach
a decision. An investigation is made (when 6, is known) of the efficiency of the
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SEQUENTIAL COMPARISON WITH KNOWN STANDARD 439

sequential procedure when compared with the corresponding “best’” non-
sequential procedure, which indicates that a substantial saving in the average
number of measurements required to reach a decision is possible with the se-
quential procedure.

2. The sequential procedure when 6, is known. Let X, denote the ath measure-
ment with category =; . We will assume that for each j the measurements {X ;a},
a = 1,2 ... are independent and have the same distribution as X; . Let

Yia = log [f(Xja, 00 + A)/f(Xja, 60)].

Let a and b be two constants with b < 0 < a. We suppose the sampling is
done in the following manner. At the first stage one measurement is taken with
each experimental category. If no decision is taken at the (r — 1)st stage, then
at the rth stage one measurement is taken with each experimental category
which has not been eliminated on any of the first r — 1 stages, where a category
w; is eliminated whenever Doy« < b.

For each r, let M = M(r) denote the integer for which

2 e = s {3 e
for all j for which > 1Yia> bfors = 1,2, .-+, r — 1. [In the discrete case,
if M is not uniquely defined at any stage because max; ( D« ¥;q) is assumed on
a set of s values of j, we can select M by any chance mechanism which assigns
probability 1/s to each of these s values]. We now propose the following pro-
cedure for choosing between Dy, Dy, - -+ , Dy . At the rth stager = 1,2, - -+,

(a) If D i Yua = a, select Dy .
(1) (b) If Dt Yma < b, select Dy.
(¢) f b < D iciyma < a, postpone making a decision, go on to the
(r + 1)st stage of the experiment, and repeat the above procedure.

Let n = the number of stages required to reach a decision using the sequential
procedure (1), and let n; = the smallest integer for which 2l ¥« = @ or
> i, yje = b. Then clearly n < max (ny, ny, --- , m). It easily follows that
the sequential procedure (1) will terminate with probability one, and also that
E(n) is always finite, provided Ply;. = 0] < 1.

We will now determine the constants ¢ and b as functions of o and 8. Let
P(D:| R,) denote the probability of choosing D; when R, is true. By symmetry,
P(D;| R;) is independent of 7,5 = 1,2, - -+ , k. Since the probability of coming
to a decision is one, we have

1 — P(Do|Ry) = Z;P(Dj,Ro)

=
k T

gZP[Z Yia = a for some r < ooIRo].
j=1

a=1
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Also
1— P(D;|R;) =1 — P(D:|Ry)

k
= P(Dy | Ry) + 2 P(D, | Ry)

éP[Z Y« = b forsome r < |R1]

a=1

k r
+ZP[Zymza for some r < « [Rl:l,

8=2 a=1

—a

Now it is well known (see [3]) that P[Daei yj« = aforsomer < » | R < e,
P[> uitha < b for some 7 < o |Ry] = ¢, and "P[D_nei Yoa = a for some
r < » |Ry] < ¢ fors > 1.In order to satisfy the requirement that P(Do | Ro)
=1 — aand P(D;| R;) = 1 — B, we therefore determine a and b so that ke * S«
and & + (k — 1) * < B. Among all pairs (a, b) which satisfy these two in-
equalities, we will select the pair which minimizes the upper bound for the ex-
pected number of measurements required to reach a decision when R; is true.

First let
co = E(Y1e | Ro), a = E(y1a| R), N = keoB{a(k — 1)[eo — (k — el

and A = min (1, \*). We assume that E(y;.) exists and Ply;. = 0] < 1, which
together with the standard inequality £ log X < log E(X) when P[X = 1] <1,
implies that ¢; > 0 and ¢, < 0. Now using the upper bound given in (3) in the
next section, it is a straightforward matter to show that the required pair (a, b)
is given by a = log [k/Ae] and b = log [8 — (k — 1)Ae/k].

3. The efficiency of the sequential procedure (6 known). Let 7' = the total
number of measurements required by the sequential procedure (1) to reach a
decision. In this section we will attempt to give some indication of the efficiency
of the sequential procedure by finding upper bounds for E(T' | Ro) and E(T | R;),
and then comparing these bounds with the sample size required for the com-
parable optimum non-sequential test. The comparison will be carried out ex-
plicitly only for the case f(z, 6) is the normal probability density function with
a known standard deviation. However because of the central limit theorem one
would strongly suspect that for small values of A the comparison is valid for a
general f(x, 6) subject to some mild restrictions.

It is easy to see that T < D_%_, n, . Therefore

B(T) 5 Y Bn), BT |R) S B R,

E(T|R;) = E(T|R) SE(m|R) + (k—1)E(n: | Ry).
Neglecting the excess over the boundary, it is obvious that
E(ny| Ry) = E(ny| Ro) = b/co
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and E(n; | R)) = a/ci. We now find that

(2) E(T|Ry) = kb/co,
(3) E(T|R;) = a/es+ (b — 1)b/co .

We now consider the special case f(z,8) = (2re) exp {—1l(z — 60)/0)]}
For simplicity, take 6 = 0 and ¢ = 1. Then for the sequential procedure,

Yo = A(Xwa — 4/2)
E(a | Bo) = —8%/2,  E(y|Bi) = 4%/2, and X = gla(k — D]

Now we discuss the non-sequential procedure for choosing between Dy, Dy, - - - ,
D, based on N measurements with each experimental category. Let
Fj= D25 1X,u/N,let Toy = max (&1, To, -+, &) letw =1 — (1 — )",
and let A, be defined by the equation (2r)7*f % exp (—t'/2) dt = p. Consider
the procedure

() If £ < NN, select D, .
(b) If Zp = AN, select Dy .

It is a straightforward matter using the methods of [2] or [4] to show that (4)
is optimum in the following sense: among all non-sequential procedures based
on N measurements with each experimental category for which P(D, | Ry) =
1 — o and for which P(D; | R;) has the same value for each j,7 = 1,2, -+ , k,
the procedure given in (4) is best in that it maximizes P(D; | R;).

For a fixed value of «, the value of P(D; | R;) for the procedure in (4) is a
monotonically increasing function of N. We now have to find N = N(a, 8) so
that the additional restriction P(D; | R;) = 1 — B is satisfied. Since

P(D;|R;) = P(Dy|Ry) = Pl& = max (&, &, -, &) and & > AN | Ry,
we can apply Bonferroni’s Inequality, and we get
Pl#s > NN |R] — (k — DP[#H < &|Ri] < PID;| R}
< Pl& > AN Ry
If we now determine N so that P[& > N,N ¥ | Ry =1 — B, we find
(6) N = (A + Np)"/A°

Using (5) it can be shown that the value of N given by (6) is a good approxi-
mation to the value of N(e, 8) required in order to have P(Dy |Ry) = 1 — «
and P(D; | R;) = 1 — B when « and g are fairly small. Equally important, how-
ever, is the fact that the value of N given by (6) is conservative from the stand-
point of comparing the sequential procedure with the non-sequential procedure,
since the true value of N(a, B8) is actually somewhat greater than the value
given by (6).

We are now in a position to make a numerical comparison between the se-
quential and the non-sequential procedure, and this is done in Table I.

(4)
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TABLE I

Values* of kN and the corresponding upper boundsfor E(T | Ro) and E(T | R;) for the normal
distribution with untt variance

a B k kN Upper bound Upper bound
for E(T | Ro) for E(T | R;)

.05 .05 2 26 15 15
5 79 32 38

10 178 62 71

.01 .05 2 36 12 17
5 102 32 38

10 224 . 62 71

.05 .01 2 37 21 21
5 108 48 54

10 239 94 103

.01 .01 2 48 21 21
5 136 48 54

10 293 94 103

* All values are multiplied by A2.

4. A sequential procedure for the normal distribution when 6, is unknown.
We now consider the situation when 6, is unknown and the random variables
{X4 are normally distributed with means {6;} and a common variance o°. Al-
though our primary concern is with the case when o° is known, some remarks
will be made at the end of this section for the case ¢° is unknown.

A sequential procedure will be given which is similar to that of Section 2. Let

N = min {1, [8/a(k — 1)1}, let @’ = log [k/eN]and b’ = log [8 — (k — 1)Na/k].
Let
Zia = log [exp {— (40") 7 (Xja — Xoa — 4)*/exp {—(40") (X ja — Xoa)}]

= A(Xja — Xoa — 4/2)/25".

A category w; is rejected if at any stage Y aZia = V. The sampling procedure
used is the following: at the first stage, one measurement is taken with the
standard (or control) category and one with each of the k experimental categories
while at the rth stage one measurement is taken with the standard (or control)
and one measurement with each experimental category that has not been
eliminated during the preceding r — 1 stages. For each r let M’ = M’(r) be the
integer for which Y o Zyra = max; (2w Z;a) for all j for which =; has not
been eliminated in the preceding » — 1 stages. The sequential procedure now
follows: at each stage r, r = 1, 2, -+, if DoniZywa = @, select
D, if Dons Zara =V, select Dy, while if b < D i Zya < @/, go on to
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the (r + 1)st stage of experimen‘@,tion and continue this procedure until a
decision is reached. Exactly as in Section 2, it follows that P(Dy | Ry) = 1 — «
and P(D; | R;) = 1 — B. Although we are now not able to find any upper bound
for E(T | R;) which is not too crude to be useful, it seems likely that the effi-
ciency of the above sequential procedure when compared with the corresponding
nonsequential procedure is close to the efficiency of (1) in relation to (4).

We conclude with a few remarks about the situation where ¢’ is unknown. We
will suppose that an estimate s° of o* is available, where fs*/¢ has the x” distribu-
tion with f degrees of freedom. This estimate might result from past experience,
or might be based on a preliminary sample. We now note that the sequential
procedure just given can still be used if ¢* is replaced by s, a’ is replaced by

a = {No/k]™" — 1}f/2
and b’ is replaced by

b= —{8 — (k — L)Na/kI™ — 1}f/2,

where N = min {1, [8/a(k — 1)]}. If this is done, then for the resulting sequential
procedure

1 — P(Dy|Ry) = E[k exp (—as’/e”)] = k[l + 2a/f"* = Na £ o

and in the same way 1 — P(D; | R;) < 8.
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