338 EDGAR REICH

zero entries in $m \, \varepsilon \, M$ determines whether or not $m \, \varepsilon \, I$. Now A'(1), A'(2), \cdots is an increasing sequence of subsets of M', which has less than 2^{n^2} elements, so there must be a smallest r, $1 \leq r \leq 2^{n^2}$, such that A'(r) = A'(r+1). To complete the proof we need only show that A'(r) = A' since if $A(r) \subset A(2^{n^2}) \subset I$ then $A' = A'(r) \subset I'$ so $A \subset I$. Thus we need only prove that if $k \geq 1$ and A'(k) = A'(k+1) then A'(k+1) = A'(k+2). Now if $m \, \varepsilon \, A(k+2)$ then m = bc, where $b \, \varepsilon \, A(k+1)$ and $c \, \varepsilon \, A(1)$ so there exists a $d \, \varepsilon \, A(k)$ with b' = d' so $m' = (dc)' \, \varepsilon \, A'(k+1)$ and the proof is complete.

We conclude with three comments. Clearly A'(1) determines whether or not $A \subset I$ so that if A(1) is an infinite set, which is not the case for indecomposable channels, then A(1) may, for the purpose of determining whether or not $A \subset I$, be replaced by any finite $B \subset M$ with B' = A'(1). If $m \in A$ has a state which is periodic with period d > 1 then $m^d \notin I$ and $m^d \in A$ so $A \subset I$. For any A(1), $(A(2^{n^2}))' = A'$.

REFERENCES

- Blackwell, D. (1961). Exponential error bounds for finite state channels. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 57-63. Univ. of California Press, Berkeley.
- [2] Blackwell, D., Breiman, L., and Thomasian, A. J. (1958). Proof of Shannon's transmission theorem for finite-state indecomposable channels. Ann. Math. Statist. 18 1209–1220.
- [3] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [4] FELLER, WILLIAM (1957). An Introduction to Probability Theory and its Applications 1 (2nd ed.). Wiley, New York.
- Wolfowitz, J. (1961). Coding Theorems of Information Theory. Springer-Verlag, Berlin; and Prentice-Hall, Englewood Cliffs, N. J.

NOTE ON QUEUES IN TANDEM¹

By Edgar Reich

University of Minnesota

1. Introduction. Assume that Q_k , $k=1, 2, \dots, m$, is a single server queue where customers are served with an exponential service time distribution of mean $1/\mu_k$. We shall assume that the *j*th customer, C_j , arrives at Q_1 at time t_j , where $\{t_j\}$ are the events of a Poisson process, and λ the number of arrivals per unit time. The queues Q_k are arranged in tandem; that is, after C_j 's service at Q_k is completed he proceeds to Q_{k+1} and joins the queue there. We shall extend a result of our previous paper [1] for the foregoing situation.

Let T_{jk} denote C_j 's waiting time at Q_k , including the duration of C_j 's service at Q_k . The purpose of the present note is to show, using the results of [1], that under "equilibrium" conditions the probabilistic description of the random

Received March 26, 1962.

¹ This work was done with support under Contract Nonr-710(16).

variables T_{jk} , $1 \le k \le m$, (j fixed) is exceedingly simple. In order to automatically bring about the "equilibrium" conditions we shall assume that all the numbers $\rho_k = \lambda/\mu_k$ are strictly less than 1, and that the arrival process $\{t_j\}$ is defined from time $-\infty$ on. To achieve the latter we may take $t_0 = 0$, and then generate $0 < t_1 < t_2 < \cdots$, and $0 > t_{-1} > t_{-2} > \cdots$ as independent Poisson processes. Under the preceding assumptions we shall prove the following in the remainder of this note.

THEOREM 1. For each fixed j, the random variables T_{jk} , $k=1, 2, \dots, m$, are mutually independent. The distribution of T_{jk} is the convolution

(1.1)
$$\Pr\{T_{jk} \le x\} = W(x)^* S(x), \quad 1 \le k \le m,$$

where

$$W(x) = \begin{cases} 1 - \rho_k e^{(\lambda - \mu_k)x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

and

$$S(x) = \max [0, 1 - e^{-\mu_k x}].$$

As usual, let the non-negative integral valued stochastic processes $n_k(t)$, $1 \le k \le m$, be defined as the *state* of Q_k at time t; that is, $n_k(t)$ is the total number of customers present at Q_k at time t, the customer, if any, being served included. The process $n_1(t)$ is of course a birth-death process. The following result was stated as a part of Theorem 4 of [1], and the first proof goes back to Burke ([2], page 259, or [3], page 45).

THEOREM A. The sequence of departure instants from Q_1 constitutes a Poisson process. If a departure occurs at t = u then $n_1(u + 0)$ is independent of the sequence of past departure instants.

As an immediate corollary of Theorem A we note that the arrivals at Q_k , $k = 1, 2, \dots, m$ are Poisson processes, each with λ happenings per unit time. The processes $n_k(t)$ are all birth-death processes with birth rate λ , and respective death rates μ_k . This implies (1.1) by the classical result for queues with exponential service time and Poisson arrivals (see e.g. [3], page 41, Theorem 12). Furthermore, by Jackson's theorem ([2], page 262) $n_k(t)$, $1 \leq k \leq m$, are mutually independent for each fixed t, and

(1.2)
$$\Pr\{n_k(t) = r\} = (1 - \rho_k)\rho_k^r, \qquad r = 0, 1, 2, \cdots.$$

Hence, so far as waiting times of customers C_j , j > 0, are concerned there would be no change if we restricted arrivals to t > 0, with the initial condition that $\{n_k(0)\}$ are mutually independent, and distributed as in (1.2).

2. Proof of Theorem 1. For the special case m=2, Theorem 1 becomes Theorem 5 of [1]. Thus, in fact, the pair of random variables T_{jk} , $T_{j,k+1}$ is independent for each k. We shall start from the beginning, however, proving the more general Theorem 1 directly by the method used in [1].

Let us introduce the following additional notation.

 s_{jk} = duration of C_j 's service period at Q_k

 t'_{i} = instant at which C_{i} departs from Q_{1} (upon completion of service)

$$\tau_j' = t_j' - t_{j-1}'$$

Consider the state $n_1(t_j'+0)$ which C_j leaves behind at Q_1 upon departure. Since this state is the number of customers (Poisson arrivals) who have appeared at Q_1 while C_j was waiting to be served we may consider $n_1(t_j'+0)$ to be determined by a random device a-posteriori to observing T_{j1} , T_{j2} , \cdots , T_{jm} , according to the law

$$\Pr \{n_1(t_j' + 0) = r \mid T_{j1} = \alpha_1, T_{j2} = \alpha_2, \dots, T_{jm} = \alpha_m\}$$

$$= e^{-\lambda \alpha_1} (\lambda \alpha_1)^r / r!, \qquad r = 0, 1, \dots.$$

Hence, for any complex number z,

(2.1)
$$E[z^{n_1(t_j'+0)} \mid T_{j2} = \alpha_2, T_{j3} = \alpha_3, \cdots T_{jm} = \alpha_m]$$

$$= \int_0^\infty e^{\lambda \beta(z-1)} d_\beta \Pr\{T_{j1} \leq \beta \mid T_{j2} = \alpha_2, T_{j3} = \alpha_3, \cdots, T_{jm} = \alpha_m\}.$$

Let us introduce the probability spaces $\Omega_j = \{\omega\}, j = 0, \pm 1, \pm 2, \cdots$, consisting of elementary events $\omega = (\tau'_j, \tau'_{j-1}, \tau'_{j-2}, \cdots; s_{j2}, s_{j-1,2}, s_{j-2,2}, \cdots; s_{jm}, s_{j-1,m}, s_{j-2,m}, \cdots)$. The measure on the finite dimensional subsets of Ω_j is defined so as to be consistent with the fact that τ'_i has an exponential distribution with mean $1/\lambda$, and s_{ik} has an exponential distribution with mean $1/\mu_k$, and consistent with the fact that the components of ω are mutually independent. This measure is extended to the Borel field \mathfrak{F}_j generated by the finite dimensional subsets in the usual way.

By Theorem A, $n_1(t_j' + 0)$ is independent of \mathfrak{F}_j . On the other hand, T_{jk} , $2 \leq k \leq m$, is a random variable on $(\Omega_j, \mathfrak{F}_j)$, because T_{jk} , $2 \leq k \leq m$, is completely determined by the history of arrivals at Q_2 up to and including t_j' , and by specifying the numbers $s_{i\gamma}$, $-\infty < i \leq j$, $2 \leq \gamma \leq k$. Hence $n_1(t_j' + 0)$ is independent of the vector $(T_{j2}, T_{j3}, \cdots, T_{jm})$. Therefore the left side of (2.1) is constant as a function of α_2 , α_3 , \cdots , α_m . But the right side of (2.1) is a Laplace transform. By the uniqueness of the inverse Laplace transform it follows that

Pr
$$\{T_{j1} \leq \beta \mid T_{j2} = \alpha_2, T_{j3} = \alpha_3, T_{jm} = \alpha_m\}$$
 is constant as a function of α_2 , $\alpha_3, \dots, \alpha_m$.

Thus,

(2.2)
$$\Pr \{ T_{j1} \leq \beta_1, T_{j2} \leq \beta_2, \cdots, T_{jm} \leq \beta_m \}$$

$$= \Pr \{ T_{j1} \leq \beta_1 \} \Pr \{ T_{j2} \leq \beta_2, \cdots, T_{jm} \leq \beta_m \}.$$

By reapplying the argument leading to (2.2), in turn, to the sets of queues

 $(Q_2, Q_3, \dots, Q_m), (Q_3, Q_4, \dots, Q_m), \text{ etc., we finally obtain}$

$$\Pr\left\{T_{j1} \leq \beta_{1}, T_{j2} \leq \beta_{2}, \cdots, T_{jm} \leq \beta_{m}\right\} = \prod_{k=1}^{m} \Pr\left\{T_{jk} \leq \beta_{k}\right\}$$

as was to be shown.

Finally, it should be mentioned that if the waiting times are defined so as *not* to include the service times, that is, as the quantities $T_{jk} - s_{jk}$, the question of mutual independence of these quantities for $k = 1, 2, \dots, m$ is apparently an open problem.

REFERENCES

- [1] Reich, Edgar (1957). Waiting times when queues are in tandem. Ann. Math. Statist. 28 768-773.
- [2] SAATY, THOMAS L. (1961). Elements of Queueing Theory. McGraw-Hill, New York.
- [3] TAKÁCS, LAJOS (1962). Introduction to the Theory of Queues. Oxford Univ. Press, New York.

A NOTE ON THE RE-USE OF SAMPLES¹

By DAVID R. BRILLINGER²

London School of Economics and Political Science

There are situations in statistical estimation in which the basic underlying distribution is invariant under some family of transformations. In this note a theorem similar to the Blackwell-Rao Theorem is proved demonstrating that this additional structure can sometimes be exploited to improve an estimator.

THEOREM. Consider a random variable x, sample space X, σ -algebra $\mathfrak X$, probability measure $P(\)$. Suppose that G is a set of measure-preserving transformations for the measure P, i.e. P(gA) = P(A) for all A in $\mathfrak X$, g in G. Let $\mu(\)$ be a measure of total mass 1, defined on a σ -algebra $\mathfrak G$ of subsets of G. Let $\phi(x)$ be an estimator such that $\phi(gx)$ is $\mathfrak G \times \mathfrak X$ measurable.

(i) If $\phi(x)$ is an unbiased estimator of θ then,

$$\gamma(x) = \int_{a} \phi(gx) \ d\mu(g)$$

is also an unbiased estimator of θ .

(ii) If $\phi(x)$ takes values in a k-dimensional space and has an associated real-valued, convex, bounded from below loss function $W[\phi(x)]$, such that $W[\phi(gx)]$ is $\mathfrak{G} \times \mathfrak{X}$ measurable then, $R_{\phi} \geq R_{\gamma}$ where R is the associated risk function, and in particular the ellipsoid of concentration of γ is everywhere

Received May 15, 1962.

¹ Part of this research was carried out while the author had the support of a Research Training Fellowship of the Social Science Research Council.

² Presently at Bell Telephone Laboratories, Murray Hill, N. J. and Princeton University.