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zero entries in m & M determines whether or not m ¢ I. Now A’ (1), A'(2), - - is
an increasing sequence of subsets of M which has less than 2" elements, S0
there must be a smallest r, 1 = r = 2™ such that A'(r) = A'(r + 1). To com-
plete the proof we need only show that A (r) = A’ since if A(r) € A(2™) c I
then A" = A’(r) € I' so A < I. Thus we need only prove that if k¥ = 1and
A'(k) = A"(k + 1) then A"(k + 1) = A'(k 4+ 2). Now if m ¢ A(k + 2) then
m = be, where b ¢ A(k + 1) and ¢ & A(1) so there exists a d ¢ A(k) withd" = d’
som = (d¢) & A'(k 4 1) and the proof is complete.

We conclude with three comments. Clearly A’(1) determines whether or not
A c I sothat if A(1) is an infinite set, which is not the case for indecomposable
channels, then A (1) may, for the purpose of determining whether or not A C I,
be replaced by any finite B < M with B' = A'(1). If m ¢ A has a state which
is perigdie with period d > 1 then m? ¢ I and mé ¢ A so A ¢ I. For any A(1),
(4(2"))
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NOTE ON QUEUES IN TANDEM!

By Epcar RricH
Unaversity of Minnesota

1. Introduction. Assume that Q. , k = 1,2, --- , m, is a single server queue
where customers are served with an exponential service time distribution of mean
1/uz . We shall assume that the jth customer, C';, arrives at @, at time ¢; , where
{t;} are the events of a Poisson process, and A the number of arrivals per unit
time. The queues @ are arranged in tandem; that is, after C'/’s service at @y is
completed he proceeds to Q.1 and joins the queue there. We shall extend a result
of our previous paper [1] for the foregoing situation.

Let T, denote C;’s waiting time at @ , ¢ncluding the duration of C,’s service
at Qi . The purpose of the present note is to show, using the results of [1], that
under “equilibrium” conditions the probabilistic description of the random
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variables Ty ,1 < k < m, (j fixed) is exceedingly simple. In order to automati-
cally bring about the “equilibrium”’ conditions we shall assume that all the num-
bers py = N/u; are strictly less than 1, and that the arrival process {¢;} is defined
from time — « on. To achieve the latter we may take {, = 0, and then generate
0<ty<tg<---,and 0>t >ty > --- as independent Poisson processes.
Under the preceding assumptions we shall prove the following in the remainder
of this note.

TaEOREM 1. For each fixed j, the random variables Ty, k = 1,2, -+, m, are
mutually independent. The distribution of T j, is the convolution

(1.1) PriTp <z} = Wx)*S@), 1=<k=<m,

where

A—pg)z
b

8
v
=

1 —
W(x)={0 pk;<0

and
S(@) = max [0, 1 — ¢ ™.

As usual, let the non-negative integral valued stochastic processes (%),
1 = k = m, be defined as the state of Q, at time ¢; that is, ny () is the total num-
ber of customers present at @ at time ¢, the customer, if any, being served in-
cluded. The process n; (¢) is of course a birth-death process. The following result
was stated as a part of Theorem 4 of [1], and the first proof goes back to Burke
([2], page 259, or [3], page 45).

TueorEM A. The sequence of departure instants from @ constitutes a Poisson
process. If a departure occurs at t = u then ny (u + 0) <s tndependent of the sequence
of past departure instants.

As an immediate corollary of Theorem A we note that the arrivals at @y,
k=1,2,---,m arePoisson processes, each with A happenings per unit time. The
processes 7 (f) are all birth-death processes with birth rate A, and respective
death rates u; . This implies (1.1) by the classical result for queues with expo-
nential service time and Poisson arrivals (see e.g. [3], page 41, Theorem 12).
Furthermore, by Jackson’s theorem ([2], page 262) n,(t), 1 = k = m, are
mutually independent for each fixed ¢, and

(1.2) Pr {nk(t) = ’l‘} =(1- Pk)Pz ) r=20,1,2,---.

Hence, so far as waiting times of customers C; ,j > 0, are concerned there would
be no change if we restricted arrivals to ¢ > 0, with the initial condition that
{nx (0)} are mutually independent, and distributed as in (1.2).

2. Proof of Theorem 1. For the special case m = 2, Theorem 1 becomes
Theorem 5 of [1]. Thus, in fact, the pair of random variables T'j. , T'; x4 is inde-
pendent for each k. We shall start from the beginning, however, proving the more
general Theorem 1 directly by the method used in [1].
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Let us introduce the following additional notation.

s; = duration of C’s service period at Qx

t}/ = iI}sta,nt at which C; departs from @; (upon completion of service)

TP = b — i

Consider the state n;({; + 0) which C; leaves behind at @; upon departure.
Since this state is the number of customers (Poisson arrivals) who have appeared
at @, while C; was waiting to be served we may consider n, (¢; + 0) to be deter-
mined by a random device a-posteriori to observing T, Tj2, + -+ , T'jm , accord-
ing to the law

Prin(ti +0) =7 |Ta =01, Tip =z, ** » Tim = atm}
e a)/rl, r=0,1,---.

Hence, for any complex number z,

E[znl(ti’+0) l sz = az, Tj3 = oz, - ij = am]
(2.1) ® e
=-{)‘ )\6( l)ngI‘{ BlTJ =a2)Ti3=a3)”',ij=a’m}'
Let us introduce the probability spaces Q; = { wh,7=0,=41, 42 .. consist-
ing of elementary events w = (77 , Ti, Tis , tt 3 8j2, 8j—1,2, Si—2.2, *°° 3

Sjm, Sj—1,m > Sj—a.m s ***). The measure on the ﬁmte dimensional subsets of Q; is
defined so as to be consistent with the fact that r; has an exponential distribution
with mean 1/X, and sy has an exponential distribution with mean 1/ , and con-
sistent with the fact that the components of w are mutually independent. This
measure is extended to the Borel field &; generated by the finite dimensional sub-
sets in the usual way.

By Theorem A, n;(t; + 0) is independent of ;. On the other hand, T,
2=<k=m,isa random variable on (Q;, F;), because T'jz, 2 = k = m, 1s com-
pletely determined by the history of arrivals at . up to and mcludmg ¢ , and
by specifying the numbers s;y, —© <7 = 7,2 = v = k. Hence n, (& + 0) is
independent of the vector (Tjs, Ty, - -+ , T'im). Therefore the left side of (2.1)
is constant as a function of az, ag, -+, an . But the right side of (2.1) is a
Laplace transform. By the uniqueness of the inverse Laplace transform it fol-
lows that

Pr{Tu £ B8|Tio=a, Tis = as, Tjym = am} is constant as a function of as ,
Og y **° 30y .
Thus,
Pr{le =B, Tp=B, - s Tim = 5m}
(2.2)
_Pr{ ﬁl}Pr{ B2;"'nyméBm}-

By reapplying the argument leading to (2.2), in turn, to the sets of queues
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(@, Qs, -+, Qu), (@,Qs, -+, Qm), ete., we finally obtain

Pr{Tu =B, T =B, , Tim = B} = kIIlPr{Tjk = Bl
as was to be shown.

Finally, it should be mentioned that if the waiting times are defined so as not
to include the service times, that is, as the quantities T — sj , the question of
mutual independence of these quantities for k¥ = 1, 2, --- , m is apparently an
open problem.
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A NOTE ON THE RE-USE OF SAMPLES!

By Davip R. BRILLINGER?

London School of Economics and Political Science

There are situations in statistical estimation in which the basic underlying
distribution is invariant under some family of transformations. In this note a
theorem similar to the Blackwell-Rao Theorem is proved demonstrating that
this additional structure can sometimes be exploited to improve an estimator.

TaEOREM. Consider a random variable x, sample space X, o-algebra X, prob-
ability measure P (). Suppose that G is a set of measure-preserving transformations
for the measure P, i.e. P(gA) = P(A) for all A in X, g in G. Let u( ) be a measure
of total mass 1, defined on a o-algebra G of subsets of G. Let ¢ (x) be an estimator
such that ¢ (gz) is § X X measurable.

(i) If ¢ (z) is an unbiased estimator of § then,

1(@) = [ #lg) aue)

is also an unbiased estimator of 6.

(ii) If ¢(x) takes values in a k-dimensional space and has an associated
real-valued, convex, bounded from below loss function Wi (x)], such that
Wie(gx)] is § X & measurable then, Ry = R, where R is the associated risk
function, and in particular the ellipsoid of concentration of v is everywhere
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