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Summary. Let £ = (Zy, Z;, - -+ , Z,) denote a p-variate zero mean complex
Gaussian random variable with nonsingular Hermitian covariance matrix
S = EfE = |losl| . The generalized variance of £is of = det (Z¢). The real and
imaginary parts of the complex random variables Z; j = 1, 2, - - - p are taken
to have the special covariance structure described in Goodman [1] and [2] so
that the Hermitian covariance matrix Z; then determines the probability struc-
ture of the random variable £ Let &, &, -+, &, -+, & denote n independent
and identically distributed p-variate zero mean complex Gaussian random
variables with Hermitian covariance matrix ;. The sample Hermitian covari-
ance matrix £; =(1/n)Y ;1 £& = ||8;] is then complex Wishart distributed.
The sample generalized variance of & is 8; = det (£;). The random variable
(2n)78}/ ot is distributed as is the product of p independent x* random variables
with 2n, 2(n — 1), -+, 2(n — p + 1) degrees of freedom respectively.

DerNimioN 1.1, Let £ = (Zy, Zs, -+, Z,) denote a p-variate zero mean
complex Gaussian random variable with nonsingular Hermitian covariance
matrix Z; = Ef€ = |lo4| . The generalized variance of € is o} = det (Z¢).

ComMmENT 1.1. Throughout the paper the real and imaginary parts of the
complex random variables Z;,j = 1, 2, --- p are taken to have the special
covariance structure described in Goodman [1] and [2] so that the Hermitian
covariance matrix Z; then determines the probability structure of the random
variable &.

DerintTiOoN 1.2. Let &, &, -, &, -+, & denote n independent and
identically distributed p-variate zero mean complex Gaussian random variables
with Hermitian covariance matrix Z; . The sample Hermitian covariance matrix
.= (1/n)) ry &% = [8;1]] . The sample generalized variance of £is 8; =det (£;).

TuaeoreM 1.1. The random variable (2n)%8;/qt is distributed as is the product
of p independent x* random variables with 2n, 2(n — 1), .-+, 2(n — p + 1)
degrees of freedom respectively.

Proor. The method of proof is as follows: The characteristic function of the
random variable In [(2n)%8}/03] is computed. The characteristic function of a
random variable which is the sum of p independent In x” random variables with
2n,2(n — 1), ---,2(n — p + 1) degrees of freedom respectively is computed.
The two characteristic functions are compared and seen to be equal. The charac-
teristic function of the random variable V = In [(2n)78}/s1] is
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Yy(t) = E explitV] = E exp [i¢ In [(2n)? §}/03]]

(1.1) o o . . .
= E(2n)%8/ctl" = B1(2n)" | 2 |/| 2 1" = E[2°|A)/| Z)]"

where
A= nig .

The probability density of the Hermitian matrix A is (See Goodman [2])
A7

1.2 A o [ (574
(1.2) pw(d) = sy P [— tr( )]
where

I(Z) =« r(n) -+ T(n — p + 1)|Z™

The density is defined over the domain D, where A is Hermitian positive semi-
definite. From (1.2) one also has formally

05 [ 1arres - (55 )] =70+ i)
R A

cTntit—p41) | 2 |
Now, from (1.1), (1.2), and (1.3)

wo = [ [2 18] pua)

2;mt
CE ()
2“’" PO 4 4t) - T(n 4t —p 4+ 1) | e "
| = | W“’“”I‘(n) T(n—p+ D] Z|"
I'(n) - I‘(n—p+1) '
The probability density function of a x3; random variable is
(1.5) p(v) = (1/2°T(k))o* 6.

From (1.5) one has formally

[ 14 e (- (5 )
(1.4)

(16) [ o dy = 2 1k + 4.
0
The characteristic function of a In x3; random variable is
Yz () = B ™88 = B(ud)" = f v p(v) dv
o

ST gy = 2Tk ) o T(R + 42)
b 2T (k) © T 2Tk Tk

(1.7)
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From (1.7) one has that the characteristic function of the sum of independent
In 3., In xg(n_n , o0, In x§<n—p+1> random variables is

goit (4 dt)-- - T(n —p + 1 +it)
r'(n)---T'(n —p+1) '

(1.8) Yindut- - +1nk} (iepiny (L) =

From (1.4) and (1.8) one observes that

(1.9) Yy(t) = Yingdut - +inxdmepsn (1)

Comment. The distribution of the determinant of a Wishart distributed
matrix is given here for comparison. Let & = (X;, Xo, -+, X,) denote a p-
variate zero mean real Gaussian random variable with nonsingular symmetric
covariance matrix Zp; = Efzfr = |lozsl . The generalized variance of & is
op: = det (Zgp). Let &z, &r, -oc, &g, - , & denote n independent and
identically distributed p-variate zero mean real Gaussian random variables with
nonsingular symmetric covariance matrix Zz; . The sample symmetric covariance
matrix

(1.10) £p = (l/n)él Enker = [zl

is then Wishart distributed. The sample generalized variance of £z is
dn = det ().

The random variable n”(8%:/o%;) is distributed as is the product of p inde-
pendent x’ random variables withn, n — 1, .-+, n — p + 1 degrees of freedom
respectively. (See Wilks [3].)
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