SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF
A NORMAL DISTRIBUTION WITH KNOWN VARIANCE!

By Joun W. PraTTr

Harvard Graduate School of Business Administration

1. Introduction and summary. This paper obtains and explores a family of
confidence procedures for the mean of a normal distribution which are, in a
certain sense, more efficient than the usual procedure.

Let X (possibly a sample mean) have a normal density (z; 6, ¢°) with un-
known mean 6, and known variance ¢”. Let R(X) be a confidence region for 6 at
level 1 — a. Let m(R) be the length of R if R is an interval; more generally
for any region R let

(1) () = [ a,

which we will also call the length of R. Then, following [3], we have

By {m(R(X))} = f_/;m()dl?go(x;ﬁ', &) do = fP,,,{oeR(X)} do
(2) ’
=f Po{0 & R(X)} db.

05207

Thus the expected length of the confidence region R(X) may also be interpreted
as the integral over all false values 6 of the probability of covering 6, where the
expected length and the probability are both computed under the true value 6’
Whether we are interested in length or in the probability of covering false values,
we would like to make (2) small.

For a particular 6', we can minimize (2) as follows. Let A () be the acceptance
region of the family of tests corresponding to R(X), that is

(3) XcA(6) ifandonlyif 6¢R(X).
Substituting (3) in (2) gives

(4)  Bolm(R(X)) = [ PolX e A@)} do = fw Po{X £ A(6)} db.

For 0 = 6/, 1 — Pp{X & A(6)} is the power of the test of the null hypothesis
value 0 against the alternative 6'. Thus we see that the expected length of the
confidence region is minimized, when 6’ is the true value, by choosing the test
of each null hypothesis value § which is most powerful against the alternative 0.
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SHORTER CONFIDENCE INTERVALS 575

This gives the confidence interval
(5) min {6', X — £.0} < 0 < max {6', X + £.0},

where £, is the upper a-point (not % a-point) of the standard normal distribution.

Table 1 shows what happens if we guess § = 6’ and use the foregoing confidence
procedure: our expected length will be considerably less than that of the usual
procedure if we guess correctly, but greater if we are wrong by much over
20 (for @ = .05).

Since we do not know the true value of 6, we may prefer to minimize not the
expected length under a particular 6, but a weighted average of this. Consider
then, for some W = 0, the weighted average

(6) fW(ol)Eor{m(R(X))} o’ = /f Po{X £ A(0)}W(8') do’ db,

where the equality follows from (4). If W is interpreted as the prior density of
6, then (6) is the prior (marginal) expected length of the confidence region
R(X), but this interpretation need not be made. The procedure minimizing (6)
also corresponds to a most powerful test of each null hypothesis value 6 against
a certain alternative distribution, as we shall see explicitly in Section 2.

We are concerned with two kinds of question:

(A) If we use the minimizing confidence procedure for some W, what is the
effect of W on the expected length and on the efficiency to be gained by giving
up the usual procedure? In particular, how diffuse does W have to get before
the gain over the usual procedure is small in terms of the weighted average of
the expected length?

(B) Are the minimizing confidence intervals for W more like posterior prob-
ability intervals obtained from the prior W than are the usual intervals? Does
the use of W in selecting a confidence procedure largely eliminate the difference
between confidence intervals and posterior probability intervals?

Specifically, we will introduce a normal weight function W(6") = ¢(6'; 6, , «*)
and obtain the minimizing confidence procedure R.(X), which reduces to (5)
with ¢ = 6, when w = 0 and to the usual procedure when w = o« and is given
by Figure 1 or Table 5 when w = ¢ and @ = .05. Then to answer (A), Table 2

" gives the expected length of the minimizing procedure for « = .05 and various
values of w. Notice that, as w increases, so does the value of § — 6, at which the
minimizing procedure has the same expected length as the usual procedure:
for @ = 40, 6 — 6, can be about 1.50 = 6o before the usual procedure is better;
for w = 20, about 1.6w = 3.2¢; for w = 0, about 2¢ (from Table 1). Table 2
also gives the weighted average (6) of the expected length of the minimizing
procedure. Thus for v = 4¢, the minimizing confidence procedure has weighted
average expected length 1.5% less than the usual procedure, and in this sense
saves 3% of the observations, so that the usual procedure is 97% efficient. For
w = 20, however, the usual procedure wastes more than 10% of the observa-
tions, in the same sense. :
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Fic. 1. Regions for 8 at level 1 — a = .95.

To answer (B), Table 3 gives, for « = .05 and v = o, the posterior prob-
ability of the usual interval and the minimizing confidence interval when the
prior density is normal with variance o® = o’. The X-scale reflects the fact that,
with this prior, the prior (marginal) variance of X is 2¢°. Even for a priori
probable X’s, the confidence level .95 is a poor approximation to the posterior
probability of either interval, though much poorer for the usual interval. Thus,
by using a prior distribution, one can obtain a confidence procedure with prior
expected length substantially less than that of the usual procedure (11% less
in this instance, corresponding to a 23% smaller sample size), but considerable
discrepancy remains between confidence and posterior probability.

In Section 2, we obtain the minimizing procedure and the formulas used in
calculating the tables. Section 3 concerns conditioning on the event that the
confidence region covers the true value of 6. Section 4 consists of remarks, which
are largely independent of Sections 2 and 3.

I am grateful to the referee for a number of suggestions and comments.

2. The minimizing procedure. To minimize (6) for a normal weighting W' =
@(0'; 6, ’), write the inner integral on the right-hand side in the form

f Po{X & A(0)}W(6') dff = [f 1 P30, )05 00, %) iz O

(7
= f o(z; 60, 0" + &) da.
A(0)

The second equality follows from the fact that if X is N(6', ¢°) given ¢’ and
¢’ is N(6o, o), then X is marginally N (6, > + ). Of course the calculation
in no way depends on interpreting the weight function as a prior distribution.
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The right-hand side of (7) is the probability that the test of the null hypothesis
value 6 would “accept” if X were distributed N (6o, ¢* + «°). Accordingly (7)
and therefore (6) are minimized by choosing the most powerful test of each
null hypothesis value 6 against the alternative N (6, , ¢° + ). By the Neyman-

Pearson Lemma, this test ‘“accepts” for
s P {—3(X — 0)"/d"
> k(oy 6o ) 0'2’ 0)2, a) €xp { —%(X - 00)2/(0'2 + w2)},

and hence for

(9) (X — 0)/a — (/") (8 — 60)| < cal(a/w’) (8 — 60)],
where c,(z) is defined in terms of the standard normal cumulative ® by
(10) (24 ca(2)) —®(2 —ca2)) =1 — a.

Clearly co(—2) = ¢a(2), €a(0) = Eaj2, and co(2) = 2 + £ + 0(1) a5 2 — o,
where 0(1) denotes a term approaching 0. Furthermore, z + c.(2) and z — c.(2)
are increasing functions of one another, whence each is an increasing function of
2. A table of 2 + c.(2) as a function of 2z — c.(2) can be read directly from a
table of the normal cumulative, and this yields a table of c.(2) — z as a function
of z. Table 4 was so constructed.

The minimizing confidence region for 0 given by (9) is an interval R,(X)
whose endpoints give equality in (9). For 6, = 0, ¢° = 1, this equation for the
endpoints becomes

(11) X — 0 — &0 = ca(w’6).

From the properties of c.(z) it follows that the solutions 8.(X, ») and 8.(X, )
of (11) are increasing functions of X and:

(12) Qa(x) w) = _éa(_xy w), Qd(gaﬂ ’ w) = 07
(13) O (x,w) =2+ £ +0(1) as z— o,
(14) Ba(z, 0) = [o"/(" + 2)](x — £a) +0(1) as z— o,

Table 4 and (11) yield z as a function of 8. or 8, . From this, one can obtain
8. and 0. as a function of z. Alternatively one can use

(15) B(x — fa(z, 0)) — B((1 + 20 Nal®, ) —2) =1 — a,

which follows from (10) and (11). The corresponding equation for 8. is not
needed because of (12). For arbitrary 6, and o°, the minimizing confidence
interval R,(X) has endpoints 8y + ¢8.((X — 8)/0, w/c) and

0o + 00.((X — 60)/0, w/a).

Table 5 gives 0.0s(z, 1) and 8.05(z, 1) and thus gives R,(X) for o’ = o¢*, a =
.05. The posterior probabilities of Table 3 follow immediately from Table 5 and



578 JOHN W. PRATT

the fact that if X is N(0', ¢°) given 6" and 6’ is a priori N(6, ") then 8" is a
posteriori N((¢* 4+ «*) (¢’ + &’X), (6> + & *)) given X.

This section concludes with the evaluation required for Tables 1 and 2 of
the expected length and weighted average expected length of E.(X). For con-
venience we take 6, = 0 and ¢° = 1 henceforth. Substituting the acceptance
region (9) into (4) then gives ‘

Eo{m(Ru(X))) j Pu(|X — 0 — o] < ca(w™)} db
(16)

- wzfpo,{lx — W — A < ca(A)} A

Letting w* + 1 = @, this may be written

Eo{m(Ro(X))} = & [: [B(ar — 6 + V) — B(ar — 6 — caW)] dr

(17)

o [ 166 — 0 = eh) = Glar = 0 + ca)

— Glan + 0+ ca(V)) + G(ar + 6" — c(N)] dn,

where G = 1 — & is introduced to make the integrals of the individual terms
finite. Expression (17) was evaluated by using a piece-wise linear approximation
to co(A) and the relation

(18) fw G(2) dz = ¢(u) — uG(u) = L(u),

say. Raiffa and Schlaifer [4] have tabled the function L(u), because it is the
unit-normal linear-loss integral [% (z — w)e(z) dz.
As 6 — « we have

0+ (o8 + 1)t

orz T o(1),

(19) Eo{m(R.(X))} = 2

since, by (13) and (14), asx — o,
4+ (o8 + 1)k
—wga T

The weighted average of (17) was evaluated by using a piecewise quadratic
approximation to (17).

For » = 0, the minimizing interval Ro(X) is

min (O;X - Ea) = 0 = max (O;X + 55!);

then, by (4) or direct computation, we have the following formula, from which
Table 1 was computed:

(21) Eofm(Ro(X))} = L(—6 — £2) + L(0 — &)

(20) m(Rw(x)) = éa(x) w) - Qa(x)w) =2
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3. Conditioning on coverage. It can be argued that one is really interested in
short intervals when the true value is covered but not necessarily otherwise,
and similarly in small probability of covering false values conditional on the
true value being covered. The basic relation between expected length and prob-
ability of covering false values continues to hold when both are conditioned on
coverage [3]. In the problem at hand, the conditional density of X given that
0" e R(X) is just (1 — &) "(z; 6, ¢°) for those = such that 6’ ¢ R(x) and 0
otherwise, so (2) becomes

Ev{m(R(X))|6 e R(X)}

= (1 — a)_lf / d&o(.’l), 0/, 0'2) dx
0'eR(z) YO0eR(z)

(22)
= (1~ &) [ Pe{oc R(X), 0 ¢ R(X)) do

_ fPo,{aeR(X)lo'eR(X)}do.

Unfortunately the method of minimization used earlier no longer applies, but
one can still use (22) to calculate the conditional expected length of B,(X) just
as (2), in the form (4), was used at (16).

Conditioning on coverage, of course, makes no difference to the expected
length of the usual procedure, which has constant length, and it turns out to
make little difference to the expected length of R.,(X) and virtually none to
the weighted average or efficiency. Specifically, for 6, = 0 and ¢° = 1 (which
we assume hereafter for convenience) and a = .05, the expected length of R, (X)
conditional on coverage is smaller than the unconditional expected length by
about .02 for § = 0 and v < 2, while it is larger by .11, .07, .04, .02, and .01 for
large 8 and w = 0, 1, 2, 3, and 4 respectively. The approach to the values ob-
taining for large 6 is fairly rapid, but not rapid enough to make the weighted
average larger conditionally than unconditionally. The formula which applies as
6 — oo, obtained from (13), (14), and (20), is

Eef{m(R.(X)) | 0 ¢ Ru(X)}
= 2(0" + 2)7[0 + (" + )& + (1 — &) Tp(£a)] + o(1),

where « is now arbitrary. This is to be compared with (19).

Eyfim(R,(X)) | 6 e Ro,(X)}, which we will denote temporarily by E(8, w),
is discontinuous at § = 0, w = 0, and E(0, 0) itself depends on the test of 6 = 0
corresponding to Ro(X), which has not mattered previously. We have

E(0, 0) = 28 + (1 — @) (L&) + o(£) — 20(81a)] a8 @ — 0,
E(8,0) > 2.+ (1 — @) 'L(%.) as 6—0.

(23)

(24)

The weighted average of E(6, w) approaches the second limit as w — 0. The
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first limit, which is slightly smaller, is the value of E(0, 0) if the test of § = 0
corresponding to B.(X) is equal-tailed at level « for w = 0 as it is for all w > 0.
The second limit is the value of E(0, 0) if the test corresponding to Ro(X) is
one-tailed at level « for § = 0 as it is for 6 # 0. The test corresponding to (5)
as given (with 6 = 0) never rejects 6 = 0.

It should be emphasized that, while conditioning on coverage makes little
difference to the expected length of RB,(X), it has not been proved that R,(X)
minimizes the weighted average expected length conditional on coverage.
Indeed it does not in the case w = 0, @ < 4, provided regions which are not
intervals are permitted. This may be seen as follows. The version of Ro(X) of
minimum expected length conditional on covering 0, when 6 = 0, is the one
corresponding to an equal-tailed level « test of # = 0 and hence covering 0 if
and only if |X| £ &. . Alter the acceptance regions for § = 0 by including all
values of X with |X| > £. and removing some values of X with |X| £ &..
For |X| = &, this never adds points to Ro(X) and sometimes removes points,
0 it must reduce the expected length conditional on covering 0. The weighted
average must also be reduced, since all the weight is at 0. (If &« = £, Ro(X) con-
sists of the point 0 alone for |X| = . and hence already has expected length 0
conditional on covering 0.)

4. Remarks. :
4.1. The effect of varying a. For w = 0, the efficiency (as in Table 2) of the
usual interval increases as o decreases, being, for instance .65 for « = .10 and

.82 for a = .99 ([3], Table 1). This presumably gives some idea of the effect
of varying o even for w = 0.

4.2. The effect of changing the measure of size or reparameterizing. If length is
replaced by any other measure of size, the minimizing procedure for a given
weighting function W remains the same [3]. Changing the measure of size,
therefore, does not change the posterior probabilities of Table 3. It does, how-
ever, change the expected lengths of Tables 1 and 2; in particular, it changes
the efficiency of the usual procedure with respect to the minimizing procedure.
Of course, changing the weighting function W changes the minimizing procedure
and, therefore, changes everything.

It follows that if 6 is transformed monotonically to a new parameter u, then
the minimizing procedure for W is transformed into the minimizing procedure
for the transformation (by the rule for densities) of W, regardless of the measure
of size, and Table 3 transforms properly. The expected length comparisons of
Tables 1 and 2, however, apply to that measure of size in u which corresponds
to length in 6.

4.3. Direct comparison with posterior probability intervals. If 6 is a priori normal
with mean 6, and variance «’, then it is a posteriori normal with mean

(o’X + ¢°00) /(" + o°)

and variance «’¢’/(w’ 4 ¢°). From this, various posterior probability intervals
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can be obtained, the shortest for a given probability having as midpoint the
posterior mean.

One might attempt to answer question (B) by direct comparison of the usual
confidence procedure and the minimizing procedure R.(X) with a posterior
probability interval. For each of the confidence. procedures, the posterior prob-
abilities of the two tails are unequal, as well as va,rymg This means there is no
natural posterior probability interval for comparison, so the interpretation of
any such comparison is problematical. In addition, even when a posterior prob-
ability interval has been chosen, it seems to me harder to assess discrepancies
in position than in posterior probability. Accordingly, it seems to me most
natural and meaningful to compare the probabilities of coverage, as in the first
two lines of Table 3. Nevertheless, the usual procedure, the minimizing proce-
dure, and the shortest interval with posterior probability 1 — « are given in
Figure 1 for « = .05 and w* = ¢” and in Table A for arbitrary « and w. In Table
A, R,(X) is given only approximately. This approximation, which is derived
in Section 2, becomes exact as w — 0 but poor as w— <. In both Figure 1 and
Table A, we have taken 6, = 0 and ¢° = 1 for convenience.

4.4, One-sided problems. A weight function can also be used to select a one-
sided confidence procedure, with length replaced by a measure which becomes
zero when the confidence bound liés on the wrong side of the true value, as seems
appropriate in one-sided problems [3]. This avoids the difficulties connected
with unequal tails and the question of whether to condition on coverage (be-
cause the measure does so automatically, in effect). However, for the present
problem, or any other with a monotone likelihood ratio, the minimizing one-
sided procedure is just the usual one. This means that (a) the discrepancy
between posterior probability and confidence is greater for the minimizing one-
sided procedure than the minimizing two-sided procedure, but (b) one must
look at the two-sided problem to see whether this discrepancy is reduced by
using the minimizing procedure in preference to the usual procedure.

4.5. The usual procedure takes into account only the sample information,
which is a proportion «’/(w® + ¢°) of all the information if W is prior informa-
tion. From this point of view it is perhaps surprising the usual procedure is as
efficient as it is. The explanation lies in the nature of the task set, which places
complicated restrictions on what is permitted. In fact, it is not obvious one can
make any use of prior information for this task: in the one-sided problem, for
instance, one cannot.

4.6. If the weight functlon W represents one’s prior judgment, then

w I0—00|g2

is surprising and w'|6 — 6| = 3 is astonishing, so that it would be astonishing
if any of the large expected lengths in Table 2 pccurred. A similar remark applies
to Table 3.

4.7. In testing problems, the use of a weight function to select a procedure can
essentially eliminate any difference between the actions or working conclusions
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of “orthodox” and “Bayesian” statisticians, though not the difference in their
interpretations of data as evidence. In confidence theory, however, the use of a
weight function does not eliminate the difference, because there the interpreta-
tion is paramount and posterior probability distributions are not ordinarily
confidence distributions.

4.8. Prior probability of coverage. It is worth noting, however, that the prior
expected value of the posterior probability of coverage is exactly 1 — « for any
confidence procedure R(X) having exact level 1 — « for all values of the parame-
ter 8. In fact, regarding 0 and X as jointly distributed random variables, we have,
for any system of regions R(X),

(25) E(P{6 ¢ R(X) | X}) = P{0 e R(X)} = E(P{6.e R(X) | 6}),

that is, the prior expected value of the posterior probability of coverage equals
the prior (marginal) probability of coverage, which equals the prior expected
value of the confidence level. Thus if R(X) has confidence level

Pl0eR(X)|6 =1—a

for all 4, then each of the three quantities (25) is 1 — «, in particular, the prior
expected value of the posterior probability of coverage is 1 — a.
By the same token, if R(X) has posterior probability of coverage

PoeR(X)|X} =1—a

for all X, then again each of the three quantities (25) is 1 — «, in particular’
the prior expected value of the confidence level is 1 — «. All this is true in any
problem, for arbitrary 6 and X (not necessarily real), and remains true if
“ge R( X)n

is replaced by

“r(0) e R(X)”
throughout, i.e., if we are only interested in making statements about some func-
tion of 4. In this specific sense, then, a confidence region is an approximate pos-
terior probability region and vice versa. .

4.9. Definitions of Bayesian shortness. The confidence procedures discussed
here and in [3] are “Bayes shortest” in the sense of minimizing the (prior) ex-
pected length of the confidence interval. This would be appropriate for a Baye-
sian faced with the task of producing a confidence interval, with a loss of utility
proportional to the length of the interval realized. (From the Bayesian point of
view, of course this task is very artificial, specifically the requirement that the
probability of coverage given 6 be at least 1 — « for every 6.)

Starting from the concept of “shortest” in the sense of Neyman (= “most
selective” or “most accurate”), Borges [1] calls a confidence procedure “sub-
jectivtrennscharfe” if it minimizes

(26) [, Peloc RCOIW() 0o
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for every 6. This is equivalent to the concept under discussion here, as is indi-
cated at (6) and shown generally in another paper [3], which also discusses
more fully the relation between shortness in the Neyman sense and ordinary
length.

TABLES
a = .05. X is N(8, ¢®), ¢ known. Usual confidence interval has length 3.92¢.
Among confidence intervals R(X) at level 1 — «, R,(X) minimizes the

weighted average of E¢{m(R(X))}, where m(R) is the length of R and the
weighting of 6 is N (6, w?).

TABLE 1
Ee{m(R(X))} for R(X) minimizing Eo {m(R(X))}
GO = O o| 1| 2| 3| 4| 5 ’ 6 | 7] 8
o 1Ey{m(R(X))} 3.33|3.45 (3.8 | 4.68 | 5.65 | 6.65 ‘ 7.64 | 8.64 | 9.64
TABLE 2

o By{m(R(X))} and its weighted average
Eff. = efficiency of usual procedure with respect to R.(X) = (wtd. ave./3.92)2

w_llo—ool
\——— o | 1| 23| a5 ] 6| 7| s |V gm

w/o \\ Ave.

0 3.33.13.33|3.33|3.33|3.33|3.33|3.33|3.33|3.33|3.33 .72

1 3.35(3.44|3.75|4.24 | 4.87 | 5.563 | 6.20 | 6.86 | 7.53 | 3.45 i

2 3.46 | 3.65 | 4.14 | 4.756 | 5.41 | 6.08 | 6.74 7.41 | 8.08 | 3.71 .89

3 3.62 | 3.76 | 4.15 | 4.64 | 5.18 | 5.72 | 6.27 | 6.81 | 7.36 | 3.78 .93

4 3.72 (3.8 |4.09| 4.47 | 4.8 | 5.33 | 5.78 | 6.22 | 6.67 | 3.86 .97

® 3.9213.92(3.92|3.92|3.92(3.92|3.92|3.92|3.92|3.92|1.00

TABLE 3
Posterior,probabilities for usual interval and R.(X)
Prior N(6,, 02). X is marginally N (6, , 2¢%)

231X —00) .......| 0 .5 1.0 1.5| 2.0|2.5/3.0(3.5|4.0|4.5]5.0
Inside in- usual .994 | .988 | .962 | .898 .780‘ .607 {.409 |.233 |.109 |.042 |.013
terval Ry(X) | .980 | .964 | .928 | .918 .930 |.947 |.962 |.974 {.982 |.989 |.993
Left tail usual .003 | .012 | .038'| .102 | .220 |.393 |.591 |.767 |.891 |.958 |.987

Ry(X) | .010 | .034 | .072 | .082 | .070 |.053 |.038 |.026 |.018 |.011 |.007

Right tail usual | .003 | .001 | .000 | .000 | .000 |.000 |.000 |.000 |.000 {.000 |.000
Ry(X) | .010 | 002 | .000 | .000 | .000 |.000 (.000 |.000 |.000 |.000 |.000
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Godambe [2] defines a “Bayes shortest” confidence procedure-as one such
that, for each z, the interval has maximum posterior probability among intervals
of the same length. He shows such a procedure is ‘“‘admissible” in the sense that
no other procedure both (i) has intervals as short for every « and (ii) has prob-
ability of coverage, given 6, as great for all § and greater for some. (Condition
(ii) would lead to greater marginal probability of coverage and hence to greater
posterior probability of coverage given z for some x, which is impossible by (i)
and Godambe’s definition of Bayes shortest.)

In the present situation, with a normal prior, the confidence procedure mini-
mizing the prior expected length of the interval is not Bayes shortest in God-
ambe’s sense, since the interval is not symmetric around the posterior mean for
every = (as may be seen from its behavior as £ — «. See also Table 5.) In fact,
there is no confidence procedure having level exactly 1 — o for all § which is
Bayes shortest in Godambe’s sense, at least if « < .5 and the prior variance o’
is sufficiently small. For suppose that (8(X), 8(X)) is Bayes shortest in God-
ambe’s sense and, for convenience, that 6y = 0 and ¢° = 1. Then

HO(X) + 9(X)] = 'X/(o + 1),
the posterior mean. If the procedure has level at least 1 — @, then 8(X) =

TABLE 4
0.05(2)
c.05(2) satisfies ®(z + ¢) — ®(z2 — ¢) = .95, where & = unit normal cdf

z 0 .02 .04 06| .08 .10 .12 .14 .16 .18 .20
c.o5(2) — 2 1.960 1.940| 1.921| 1.903| 1.886| 1.870| 1.854] 1.839| 1.825| 1.811| 1.798
z .20 .25 .30 .35 .40 .45 .50 .60 .80 | 1.00 ©
c.o5(2) — 2 1.798 11.770 1.745( 1.724| 1.707| 1.693( 1.682| 1.665/ 1.650] 1.646| 1.645

TABLE 5

Endpoints of R.1(X)

Endpoints are 0o + 0',@,05((.’” - 00)/0‘, 1) and 6, + 0'9,05((.’0 - 00)/0’, 1)
0.05(x, 1) satisfies c.os(8) = = — 28 or equivalently ®(z — 8) — ®(39 — z) = .95.
8.05(z, 1) = —8.6(—=, 1) satisfies c.0s(§) = 20 — z or equivalently ®(30 — =) —
& — 8) = .95.

z =.4 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

8.0z, 1) z—1.645 |—1.245 [—1.046 [—0.849 |—0.660 |—0.485 (—0.332 |—0.199 |—0.083 (+-0.020

z 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

8 0z, 1) .020 114 .201 .282 .360 434 .507 577 .647 715 .783
z 4.0 4.2 4.4 24.4

B.05(z, 1) .783 .850 | .918 [3(z — 1.645)
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X + £, . Therefore
(27) 8(X) = [2°X/(o" + 1)] — 8(X) = [(&" — 1)/(" + 1)]X — &

For o =< 1, it follows §(X) < 0 for X = 0; and 8(X) < 0 for X < 0 since
0(X) = X — £ . Thus (X) < 0 for all X. Similarly 8(X) > 0 for all X.
Hence for § = 0 the probability of coverage is 1. For «* > 1, (27) and a similar
inequality for 8(X) give

(28)  Pof8(X) > 0> 9(X)} = Pof|X| = [(o" + 1)/(o" — 1]}

The left-hand side is the probability of coverage if § = 0, while the right-hand
side exceeds 1 — a if (&’ + 1)£./ (0 — 1) > &4 . Thus (8(X), 8(X)) cannot
have level exactly 1 — a at 0 = 0 if 0 < (§a + £a)/(E1a — £a)-
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