ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES
IN THE PRESENCE OF PRIOR INFORMATION!

By M. SkiBiNskY? AND L. Cotre

Unaversity of California, Berkeley and Purdue University

0. Introduction. A common formulation of statistical decision problems in-
volves a sample space and a class of probability distributions on this space in-
dexed by a parameter . The loss consequent upon action to resolve the problem
is regarded as a function of . Thus in a sense, to choose a proper action, we must
“know about 6”. Ordinarily, the parameter is not considered to be random.
When this view prevails, the decision rule may be chosen so as to keep the ex-
pected loss from assuming its worst possible value. In many physical problems,
however, certain extreme values of the parameter, though not disallowed com-
pletely, are held by the experimenter to be rather unlikely. Because such prior
information is rarely used to formulate the decision procedure (it may be judged
too crude), experimenters often find they must modify its recommendations to
suit their judgement. Some statisticians may accept this with good grace, but
the existence of such disparity with its attendant misunderstandings provides a
powerful incentive to reformulate the standard procedures so as to allow for a
more efficient and exacting use of prior information. For an interesting general
discussion of basic theories involved here, see De Finetti (1951).

In the first example which follows, we take into account prior information
about the probability of success in a sequence of independent Bernoulli trials.
We are to estimate this probability from an observation on the number X of
successes in n such trials. The conventional estimate is of course X/n. We will
assume below that the probability of success in our trials is the value of a ran-
dom variable ©. This value is what we would like to “know about”. If nothing
is known about the distribution of ®, we can do no better than the usual formu-
lation. We will assume, however, that ® has a distribution which belongs to a
subclass of the distributions on [0, 1] roughly conforming to the type of prior
information that an experimenter might have; e.g., that values of ©® near 0 or 1
are unlikely. If we now regard the binomial distribution to be conditional on 0,
the members of this subclass generate a family of joint distributions for X and
©. With this as background we may view our problem as a special case of con-
ventional prediction theory. In the following paragraphs, we present a general-
ized maximum likelihood principle as applied to this example and investigate a
class of predictors which it suggests. Under appropriate conditions to be dis-
cussed below each of these has a uniformly smaller mean square error than the
conventional estimate.
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540 M. SKIBINSKY AND L. COTE

The second example concerns the mean of a normal distribution with known
variance and is patterned after the first. We find it preferable from the point of
view of readability to present these results at this time in terms of the two given
examples rather than in the more general context that is possible.

1. Inadmissibility theorem. Let n, 8, a, be given; n a positive integer,
0<6<% O0<a<l.

We are concerned with random variables ©, X, the former distributed on the

unit interval, the latter discretely over the numbers 0, 1, - - -, n. We suppose
that
(1) Prob (X =z| 0 = 0) = f(=, 0),
where
‘<n>0x(1—0)"—37 r=0,1,---,n, 0<6<1
flz,0) =\
? z=0orz>0, 0=0

lloro, accordmgasx=n0rx<n’ =1

is the value at = of the binomial frequéncy function with parameters » and 6.
Let » be a c.d f. on the unit interval. We shall write P, to indicate any probability
measure on the domain of ® and X which satisfies (1) and has » as marginal
c.df. for ©; and E, for expectation relative to P, . Let

M, ) ={w:v(l —8) — w6 —0) 21— q.

THEOREM. Let v belong to M(8, a), then for « > 0 and sufficiently small, X/n
s an inadmaissible predictor of © relative to the squared difference loss function, in
the sense that there exists a predictor which is uniformly better over M(8, o). In
factthere exists a mapping & from the range of X to the unit interval such that

EJ((X) — 0)"] < BI(X/n — 0)7,
for all v ¢ M(3, a). We reserve the proof of the above theorem to Section 3.
2. A maximum likelihood method for prediction of ®. We proceed in two

steps.
First we choose corresponding to each z, a c.d.f. v, € M (5, @) such that

(2) P, (X =12) =2 P(X =12z, all v e M(3, ).

By definition of P, and (1), we have for each c.d.f. » on [0, 1] that P,(X = z) =
Ef(z, ®),2 = 0,1, .-, n. But for each z, the likelihood function f(z, -) is
strictly monotone on [0, 1] to each side of a unique maximum at 8 = z/n.
Hence v, defined by

P, (0 =2z/n) = a P(O@=3%)=1—aq, z =< nd,

P, (0 =z/n) =1, nd =z = n— nj,
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P,(@=1—-¢)=1—aq P, (0 =2z/n) = a = n — n,

satisfies (2) uniquely forz = 0,1, --- , n.

For the se¢ond step, we obtain corresponding to each z, a value of O, we shall
call it 85,..(z), whose “a posteriori probability” (given that X = x and that
v, is the “a priori” c.df. of ®) is maximum, i.e., a value § which maximizes the
conditional probability

(3) P(®0=0|X=2)=P,(0=06X=2)/P,(X =u).
The numerator of the right hand side above can be written
(4) P”z(@) = G)f(xr 0)’

and may be interpreted for each fixed x as an ‘“‘a posteriori likelihood of 6.
Clearly, maximizing this is for fixed z equivalent to maximizing (3). In view of
the definition of v, : When « < n4, (4) is equal to of (z, z/n), (1 — &)f(z, 8),
or 0, according as 6 = x/n, § = §, or 0 otherwise. Symmetrically, when z >
n — né, (4) is equal to of (z, x/n), (1 — a)f(x, 1 — 6), or 0, according as

= gz/n, 8 = 1 — §,or @ otherwise. When né6 = « = n — nj, (4) is equal to
f(x, x/n) for § = z/n, and 0 otherwise.

Now let n(z, 8) = f(x, x/n)/f(x, 8) and define 65,.(x) as follows: When
z < né, take it equal to z/n or 6, according as #(z, §) > or = (1 — &)/a.
When > n — nd, take it equal to 2/n or 1 — §, according as (z, 1 — §) >
or £ (1 — a)/a. Whenné £ = n — né, take it equal to z/n. It is clear from
the above description of (4) that for each z

(5) P (0 =bsa(z) | X =2) 2P, (0=0|X=2), alo.

This completes the second step. To find a simple expression for ;.. , we proceed

as follows.
Let b denote the largest integer less than né. It is easy to show that for z =

0,1, ---,b, n(z, 8) is strictly decreasing in z and bounded below by 1. It follows
that
(6) 1/(1 + n(x, 8)) = c(=, 8), say.

is strictly increasing for these z, with ¢(b, §) < }. By the above discussion and
simple considerations of symmetry, 8;.(z) = z/n, when « > c(b, §). For
a < c¢(b, §) on the other hand, if we define a to be the smallest non-negative
integer x such that 5(z, 8) < (1 — a)/a (or equivalently, such that c(z, §) =
a), then

5, a=z=b
éﬂ.a(x)= 1 -4, n—b=zr=n—a
x/n, otherwise.

05, is uniquely optimum in the sense of (5) unless ¢(z, §) = «, for some z < b,
in which case it may be modified at  (and/or at n — z), by replacing its value
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d, there, with x/n (and/or its value 1 — §, there, with 1 — z/n) without af-
fecting the value of the left hand side in (5). It is to be emphasized that the pre-
cise sense in which 6;,,(X) is optimal as a predictor of © relative to the class
M(s, @) is given by (5) and (2). In the following section a comparison is made
between this predictor and the more conventional predictor X/» in terms of
their mean square deviations from ©.

3. A class of predictors for ©. We consider the following class of predictors
for ® which are suggested by the maximum likelihood predictor s .(X). Define
¢;,forj=0,1,:--, b on the range of X by

£i(x) = <1 — 4, n—b=zr=n-—j
x/n, otherwise.

Observe that £; depends upon § although this is suppressed in the notation for
convenience in presentation. The relationship of 65, to the £; follows directly

from the definition of @ in the preceding section. Indeed for j = 0, 1, - -, b,
we have that
(7N 0s,0(x) = £j(x), whene(j —1,8) < a = c(j,8).

We take ¢(—1,46) = 0.
To compare £;(X) with X/n as a predictor of ©, we examine, for v £ M(4, ),
the difference

(8) E[(¢(X) — 0)] — E[(X/n — ©)"] = E,H(0), say,

where we take H;(®) to be the conditional expectation, given ©, of the dif-
ference between the two squares. A simple computation shows that H;(6) =
hj(B) + h,(l - 0), where

b
hi(6) = ; (6 — z/n) (8 + z/n — 20)f(=, 0).

Thus, the H; are polynomials in 6 each of which is symmetric about 6 = 1. In
addition, for j =0, 1, --- , b, H;(§) <0, when 6§ < 6§ =1 — 4, and >0, for
sufficiently small § > 0 (e.g. whenever 0 < § < 4[1 — (1 — 5)*]). Note that
Hy(0) = &%, while H;j(0) =0, j =1, 2, ---, b. These properties are readily
verified and have as an immediate consequence that the largest value attained
by (8) for any v € M (6, @) is

(9) a maX0§o<3 H,‘(ﬂ) + (1 - Ol) maX;séoé% Hj(e).

The first term above is positive and the second, is negative. The theorem of
Section 1 follows immediately. Clearly, any one of the predictors £;(X) is uni-
formly better over (5, a) than X/n relative to the squared difference loss
function provided only that « is sufficiently small.

Recall from (7) that for an arbitrary fixed o, 0 < a = ¢(b, §), we have
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05, = &;, for some integer j, 0 < j < b. By the preceding paragraph, it follows
for any such a, that for an o' > 0 and sufficiently small, 8;,.(X) is uniformly
better over 9M(8, a’) than X/n relative to the squared difference loss function.
For example, as exhibited by the tables described in the following section,
when n = 30 and & = .35, 0.35,.40(X) = &(X) is uniformly better over 91(.35,
.22) than X/30, but it is not uniformly better than X/30 over the larger class
91(.35, .40). Thus, although 85, .(X) is always optimal over 9 (3, ) in the sense
of (5) and (2), it need not be uniformly better than X/n over all of this class.
On the other hand, we have by (7) that when « > 0 is sufficiently small,

b5,0(X) = £o(X)

and is in addition, by the results of the preceding paragraph, uniformly better
over 9M(3, &) than X/n. Thus, b;,, itself qualifies as an example of ¢ in the theo-
rem.

Forj =0,1,---,b — 1, the properties described above for H; continue to
hold if we replace H;(6) by the difference ¢;(6) = H;1.(6) — H;(68). But then,
for the same reason,

Supyem s, {B[(£:(X) — 0)%] — E,[(£n(X) — 6)7])

(10)
= a MaXo<o<s gj(ﬂ) + (1 bl a) maxXs<o<i g,~(0).

Thus we have as a coincident and more explicit development of the theorem in
Section 1 the

ExTENsioN THEOREM. For any j = 0, 1, - -+, b and a > 0 sufficiently small,
each predictor (except the last) in the sequence

Ei(X); £i+l(X); Tt Eb(X): X/n

is uniformly better over M(3, a) as a predjtor of © than the one which follows,
according to the squared difference loss function.

For each fixed 3, the class 9 (3, @) increases monotonically with «. Hence it is
clear that the largest “sufficiently small” o for which the above theorem will
hold cannot decrease as j increases. For example, again considering the case
n = 30,8 = .35, we find after consulting the tables described below that b = 10
.and (correct to four decimal places) this largest « is .0000 for j = 0, 1, 2; .0001,
j = 3; .0005, j = 4; .0030, j = 5; .0141, j = 6; .0514, j = 7; and .1381 for
j=28,9,10.

4. Numerical computations. Computations carried out with Fortran 704 for
n < 50 and & < 1 indicate that for j = 0, 1, -- -, b, H; is monotone on [0, 3]
to either side of a unique maximum which occurs at 0 if j = 0 and is otherwise
in (0, 8). On [8, 3], it either decreases monotonically to a unique minimum at
0 =  (this occurs for n < 6) or else it is monotone to either side of a minimum
in (5, ) (and it then has a relative maximum of negative value at 6 = 3). It
follows that

Supo<o<s H ;(0)



TABLE FOR BINOMIAL EXAMPLE3

n 6 J BG, &) a(j, o) (g, 8)
10 .25 0 .0058 .0698 .0533
' 1 .1379 . 2424 .3264
2 .2270 .4825

.35 0 .0036 .0896 .0133

1 . 0864 .2199 .1576

2 . 2897 .3097 .3677

3 .3439 .4859

.45 0 .0023 .0962 .0025

1 .0556 .2196 .0508

2 2312 .3404 .2017

3 .4225 4544 .3842

4 .5599 .4873

20 .25 0 .0000 .0068 .0032
1 .0003 .0173 .0531

2 .0044 .0341 .1901

3 .0331 .0710 .3554

4 .1515 .4650

.35 0 .0000 .0268 .0002
1 .0002 .0549 .0051

2 .0025 .0867 .0338

3 .0182 .1376 1173

4 .0837 .2191 . .2528

5 L2477 .2649 .3860

6 L2472 .4719

.45 0 .0000 .0447 .0000

1 .0001 .0802 .0003

2 .0015 .1130 .0029

3 .0107 .1570 .0162

4 .0478 .2154 .0600

5 .1448 .2865 1527

6 .2767 .3624 .2802

7 .3984 .4333 .3983

8 .4982 .4746

30 .25 0 .0000 .0013 .0002
1 .0000 .0026 .0048

2 .0000 .0042 .0299

3 .0001 .0068 .1021

4 .0010 .0119 .2236

5 .0060 .0226 .3528

6 .0287 L0470 4477

7 .1062 4944

.35 0 .0000 .0113 _.0000

3See Section 4 for definitions of table headings.
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n 8 J B3, 9) a(j, 9) c(j, 8)
30 .35 1 .0000 .0196 .0001
. 2 .0000 .0271 .0011

3 .0001 .0374 .0065

4 .0005 .05625 .0261

5 .0030 .0757 .0757

6 .0141 1125 .1644

7 .0514 1704 2772

8 .1464 .2522 .3826

9 .2480 .2292 .4579

10 .1381 .4954

.45 0 .0000 .0282 .0000
1 .0000 .0442 .0000

2 .0000 .0566 .0000

3 .0000 .0716 .0002

4 .0003 .0908 .0010

5 .0017 .1160 .0044

6 0076 .1489 .0159

7 .0268 .1910 .0456

8 .0759 .2419 .1050

9 .1703 .2087 .1954

10 2724 .3567 .3002

1 .3649 .4119 .3947

12 .4450 .4655 .4619

13 .56311 .4958

which must be positive, is attained at § = 0 when j = 0 and otherwise is at-

tained in (0, §), while

max; <o <3 H ;(0)

which must be negative is attained either at 6 = 5 or at § = %. Strictly identical
remarks also hold if H;(6) is replaced by ¢g;(6),7 =0,1,---,b — 1.
The table exhibits for a few selected values of », 6§ and for j =0, 1, ---,

b — 1, the largest value of « for which the predictor £;(X) is uniformly better
(over (3, a)) than £;41(X), according to the squared difference loss function,
i.e. This is the value of e, call it B(j, 8) for which the right hand side of (10)
is zero. In the column adjacent is listed for j = 0, 1, - - - , b, the largest value of
a for which the predictor £;(X) is uniformly better over (3, a) than X/n,
according to the squared difference loss function, i.e. this is the value of e, call
it &(j, 8) for which the expression in (9) is zero. Also tabulated (last column)
+are the values of ¢(j, §) given by (6). By (7), these exhibit the values of « for
which £;(X) is precisely the two step maximum likelihood predictor 8s, of

Section 2.
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6. Example. Suppose it is known a priori that a certain coin manufacturing
process is such that each time a coin is produced, there is at least an even chance
that its probability of landing heads when tossed in some prescribed manner,
will lie between .45 and .55. Suppose we toss such a coin ten times in an effort
to “predict” the value of ® that it has. We may ask whether the standard esti-
mate X/10 (X = number of heads in ten tosses) is admissible. The answer is no.
For the unconditional distribution of X is given by our prior information, to be
induced by a member of 91(.45, .50), and £ is a predictor that is uniformly better
than X/10 over this class. Indeed, for n = 10, &(4, .45) = .56, so that £&(X)
is uniformly better than X /10 over the larger class 91(.45, .56). Prior informa-
tion which is more precise may yield an estimate uniformly better than either
£(X) or X/10. If it is known a priori that ® will at least four out of five times on
the average lie in the indicated interval, i.e. that the distribution of X is induced
by a member of the smaller family 917(.45, .20), then £(X) is a uniformly better
predictor of ® than &(X), &(X), or X/10.

6. Inadmissibility theorem, normal example. Let n, a be given as before,
but now take 6 to be any fixed positive number. Again we are concerned with
random variables @, X. This time we suppose both to be distributed on the line
and such that

(11) mxgu@=ow3fﬂ@mm,

where
f(z, 0) = (\/2””)—1 —(1/2n) (z—nb)2

is the value at « of the density function of a sum of n independent normal ran-
dom variables each with mean 6 and variance 1. Let » be a c.d.f. on the line and
write P, , E, with conventions analogous to those of Section 1. Let (3, o) =

{v: »(8) — »(—8 — 0) = 1 — o}. Then the theorem of Section 1 continues
to hold precisely as worded (excepting only that now the mapping £ is to the
line) and with changes in definition as noted above. Proof is deferred to Section 8.

7. Maximum likelihood predictor. By (11) and using Fubini’s theorem we
have

mmgn:mmxgu@=fEm%@m.

Again, we proceed in two steps.
First we choose corresponding to each real z, a c.df. v ¢ M(s, o) such that
(12) E, f(z, ®) = Ef(z, 9), all v ¢ M(5, ).

For reasons strictly analogous to those of the binomial example (see Section 2),
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v, defined by
P, (0 = z/n) = q, P, (0 =4dsgnz) =1—a |z| > ns
P, (0 =z/n) =1, le = nj,

satisfies (12) uniquely for all z.
For the second step, we obtain a value 0, call it 8;,(z), as before, which maxi-

mizes
P,(®=0|X=2) =P,(0 = 0)f(r,0/E.f(z, ©).

Again, we need only maximize the numerator of the right hand side. In view
of the definition of », : When |z| > n8, the numerator is of (z, z/n), (1 — a)f(z,
8 sgn z), or 0, according as § = z/n, § = & sgn z, or otherwise. When |z| < n3,
the numerator is f(x, x/n), when § = z/n and 0, otherwise.

Now f(z, z/n) /f(z, 8 sgn z) = exp [(1/2n)(x — nd sgn x)°] which is bounded
below by 1. Hence if we define

dsgnz, mo= |z = ns+ (2nlog (1 — a)/a)}, 0<a<t
05,0(x) = { \a/n, otherwise, “s3
z/n, all z, ‘ 1Za=1l,

then (5) with appropriate changes in definition as given above, continues to
hold.

8. A class of predictors for ©. Again we consider the obvious class of pre-
dictors for ® which is suggested by 0;,, . We define £, for each real r > 0, by

£(z) = dsgnz, nd=|z|]=nG+r)
T \a/n, otherwise,

(again ¢ is suppressed in the notation for convenieznce in presentation), and ob-
serve that & «(z) = &(2), when a = 1/(1 4 €™ %), r > 0. We examine the
difference

(13) El(&(X) — 0)°] — E[(X/n — ©)"] = EH.(0), say
for » ¢ M(8, &), and by elementary computations find that
H.(0) = h.(6) + h.(—0)

where
o+r \
hr(o) = (n/27r)%/; (6 _ x)(a + T — 20)e—n(x—0) /2 dz
so that
S+r
H.(0) = (2n/1r)9f‘s (5 — £)[(5 + ¢) cosh (n6t) —26 sinh (not)]e ™+ gz,

Thus, the H, are continous functions of 6, symmetric about 6 = 0. In addition
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for each r > 0, H.(8) < 0 when |6] < §, H,(6) > 0, for all § sufficiently large
in absolute value, and H,(8) — 0, as 6 — «. These properties, which are read-
ily verified, show that for any fixed » > 0, the largest value attained by (13)
for any v £ M(5, ) is

« MAX|g|>s HT(O) -+ (1 - a) maxe| <s HT(O).
In view of the above remarks, this is negative for @ > 0 sufficiently small and

the theorem referred to in Section 6 follows. Analogous to the binomial example,

we have the following immediate
ExTENSION THEOREM. For any ro > 0, we have that for all sufficiently small
a > 0, that if ry, r: are any numbers such that

O<nrn<r=sn,

then £.,(X) is uniformly better over M (8, a) as a predictor of ® (according to the
squared difference loss function) than either &.,(X) or X/n.
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