TESTING HOMOGENEITY AGAINST ORDERED
ALTERNATIVES

By V. J. CrACKO!
Forest Research Institute, Dehra Dun, India

0. Introduction and summary. In a one-way analysis of variance situation
in which the populations are ordered under the alternative hypothesis, one
desires a test that, unlike the usual normal theory F test, concentrates its power
on the ordered alternatives, not on any alternatives. In this paper, two con-
tributions are made. First, under the usual normal assumptions, work by Bar-
tholomew [4], [7] on the likelihood ratio test, when the ordering is complete
under the alternative hypothesis, is extended. By suitable characterization of
the partition which the likelihood ratio induces on the sample space, the likeli-
hood ratio test is shown to depend on incomplete Beta functions and certain
probabilities of the above partitions of the sample space. The major contribu-
tion in this paper is for the case of equal sample sizes, where explicit expressions
for these probabilities are obtained by indicating their relationship to Sparre
Andersen’s [1], [2] results. Second, under the analogous nonparametric assump-
tions and for equal sample sizes, a parallel test based on ranks is proposed and
discussed for stochastic ordering of the populations. The asymptotic Pitman
efficiency of the nonparametric test relative to the test in the normal case is

derived.

1. Statement of the first problem. Consider k independent normal variates
21, X2, *** , Tp With unknown means 6, , 6., - - - , 6; respectively and a common
but unknown variance o°. Let z;; (¢ = 1,2, -+-, k; 5 = 1,2, -+, n;) be in-
dependent observations on the % variables, where x;; is the jth observation
from the ith variable. Let & = 2 11 zi/n: and sf = D r% (x5 — &:)%/ni
denote the sample mean and standard deviation for the 7th variable. We are
interested in testing the hypothesis Hy:6; = 6y = -+ = 6, against H:6; =
0, < -+ < 6 (with at least one inequality strong), where ¢” is unspecified for

both hypotheses. Denote by
(1) fz'[t,e] = (ntft + nt+1it+l —I—- SN + nij)/(nt + Mtq1 + e + nﬂ)

the pooled sample mean of Z;, 441, -+ , T, where s and ¢ are positive integers
withl <t <s=k

2. Estimation of parameters. The MLE’s (maximum likelihood estimates)
for the &’s under H, are well known and are 8] = 63 = --. = 8 = &y . Brunk
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946 V. J. CHACKO

[8], [9] and Constance van Eeden [14] proved that the MLE’s under the alterna-
tive H, are unique and can be formally represented as

(2) 0; = 18X << MiN; <o <1 Fpr ] -

A convenient procedure indicated by Brunk [9] for obtaining the MLE’s under
H; may be described in the following way. If &; < & < --- < &, then §; = .,
= 1,2, -+, k. If & > &4 forsomed (s = 1,2, -,k — 1) thend; = bips
and the means &; and %, are replaced in the sequence &, &, - -, & by the
pooled weighted mean &;,;417 , obtaining an ordered set of only k¥ — 1 quantities
(k — 2 of which are sample means and one is a weighted mean of two sample
means). The value of the weighted mean is then compared with &;_; and &2 .
Then

(1) if &periq) > Fige, the three values &; , £:41 and ;42 are replaced by &(i,iv2
the pooled weighted mean of the three.

(ii) if Fps,i01 < Fiwa , the three values ;1 , &; and %4, are replaced by the
pooled mean Fg;y,i41] -

(iil) if Fipe < Fps,iqy < T then the procedure in either (i) or (ii) above is
carried out.

(iv) otherwise the values are left unaltered.
The new quantities are then compared with the adjacent ones and so on. The
above procedure is continued until an ordered set of monotone nondecreasing
quantities (sample means or pooled weighted means) are obtained. Thus for
each ¢ the MLE §; of 6, is equal to that one of the final quantities to which the
original mean &; contributed. Though the order of combining the means is not
uniquely determined, the above procedure for obtaining the MLE’s gives a
final set of estimates which is unique.

If there are m distinct estimates obtained by pooling, respectively, the first
{1 means, the next {, means, --- , and the last ¢, means, ¢; > 0,4 +t + --- +
tm = k, and if we set 7o = 0

Ti =t1+t2+"'ti(i=1,2,"',’”’&)

(3)

Tm =k,
then
(4) éfi+1 = é1‘.‘+2 = e = é"i+1 = a-flf.'+1:1‘i+1] (i = 07 1, 27 e, M — 1)
For convenience in notation, denote these m distinct estimates by Z,
(j=1,2,---,m), where &1;; = Fr;_,41,-;1 - Liet the sum of the sample sizes

for the ¢; means in Z¢;) be denoted by N .

3. Criterion for equality of all MLE. To characterize the region in the sample
space where all the & sample means are pooled (i.e., ; = iy for ¢ = 1,2, -+ | k)
we shall prove the following theorem.

TuEOREM 1. A necessary and sufficient condition that all the k consecutive sample
means &1, Tz, + + + , Tn are pooled in forming the MLE 4s

(5) T, > T for 5=1,2,---,k— 1
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Proor. Since the normal distribution is continuous we shall exclude from the
following argument the possibility that £u,;; = Zus foranyj=1,2, --- , k — 1.

Necessity. If all the & means are pooled, then for every ¢,” maxi<,r<:
min;<, < £ = T - In particular, for ¢ = 1, ming <o <k Fu,ep = & - This
shows that p,;; > Tyxforj=1,2,---, k — 1. '

Surriciency. Assume that Condition (5) holds. We have to prove that
b; = Zumfori= 1,2, -- -, k. Notice that by Assumption (5), min; <, < Zp1,e1 =
T, - We shall show that for r = 2,3, -+, ¢, min; <o < &pr,) < £ - The idea
of the proof is to show that.at least one of the terms-on the left hand side is less
than &, . Consider %%, where 2 < r < 7. Forj = r — 1 in (5) we have
T, > T, ie., Z::i N > Tpm Z::} n; . Now

k k r—1 * r—1 k

'; nZ; = j[l,k]‘;l n; — ; n&; < fu,klzl: n; — 5[1,k12_‘{ n; = i[l,klz M.
Thus T < Zpe and min; <, <i £re < & for every r = 2, 3, ---, 7. But
for r = 1 and s = k the value is £y 41 , which proves the theorem.

CoROLLARY 1. A mecessary and sufficient condition for pooling q consecutive
means Tp41, Tp2, * 5 Tptq U8 Tip+1,p+i1 > Tip+i,p+a JOr t=12"--,¢g—- 1L
The proof is similar to that of Theorem 1.

Let us denote the region in the sample space leading to m distinct estimates

Tia1, Zreal s 5 Tiew DY

(6)" X tyatgeeert) -

Let ¢ = U (5. .6,y Where the union is taken over all regions in the sample
space leading to m distinct estimates. Obviously it is a union of <l;1/: i) dis-
joint sets. Let

(7) Pmk = PlXim),

the probability of the set %{,, under the hypothesis H, .
TuroreEM 2. Using the above nomenclature,

(8) Pmi = 2 P(En)P(By)P(By,) --- P(By,),
where

En = [E1 < &g < -+ < Epel
Ti

Bte = ﬂ 1[53[1'5_1+1,J'l > x-{fi_1+1,rj]] (" = 1; 2, ] m)

J=ri_1

and the summation s over the <:cn : i) values corresponding to the disjoint sets

m 512’(",,,) . .

Proor. We notice that the region X(s,,4,,-..,1,» 18 the intersection of the sets
E,, B, B, -, B:,, and that B, is the region in the sample space where
t; sample means are pooled. By definition B, depends on differences between
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the means Z,;_ 11, &;_,42, *** , &, . The event E,, depends only on the differ-
ences between the sums of these means for ¢ = 1, 2, - - - , m. Since the variables
are assumed to be normally distributed, the m -+ 1 events E., By, , By, -+ -,
B,, are mutually independent. Thus P[X(:,t5,---t,)] = P(En)P(B;,)P(B:,)
P(B.,), and, since X is the union of disjoint sets, pmi = 2. P[X(y,19,0 .80
where the summation is over the (7]:1 : }) values corresponding to the disjoint
sets forming X%y .

4. Likelihood ratio test. It has been shown by Bartholomew [4], [7] and
Chacko [10] that the likelihood ratio test at level « consists in observing the
Zs, computing the MLE’s §; (¢ = 1, 2, ---, k) asin Section 2, T} as in (10)
and rejecting the hypothesis Hy when T = C, where

& k
(9) 86 E nil & — Fpul® + .Zlnis? ,

(10) Ty = Enz[é — Zyual’/ss = ENu,l[wu,l — Zpul’/s
and C is determined by

k
(11) a = m; PP [Br(m-vy 12, w21 Z C1.

Here Bi(m-1/2,@i—my21 18 a random variable having the Beta distribution with
parameters (m — 1)/2 and (N — m)/2.

When ¢* is known, the likelihood ratio test at level « is obtained by replacing
ss by o in T, and the Beta distribution by a x* distribution with m — 1 degrees
of freedom.

ReMarks. Bartholomew [6], [7] obtained some results on the power of the
test based on T’ , when ¢ is known. The exact power function was obtained when

= 3 and k = 4. Two extreme cases were considered. First, for equal spacing
of 6’s and second, for the case when all but one of the ¢’s are equal. It was shown
that the power in the latter case is lower than the power in the former case.
Approximate results were also obtained in special cases when k& > 4. The values
of the power functions were compared with the ordinary x” test, which assumes
no prior information regarding the 6’s, and the one-tail regression test, which
assumes that the 0’s are equally spaced. It was shown that the gain in power
compared to the x* test is substantial and that the relative gain increases with
k. The power of the regression test is higher when the 6’s are equally spaced.
But this advantage is counterbalanced by lower power at the other extreme
when all but one of the 6’s are equal and the gap widens with larger values of
k. The results suggested that the likelihood ratio test, for which the rejection
level is constant, could not be substantially improved upon.

In the limiting case, as N — o, k fixed, the power of the test based on T}
is equivalent to the power of the test for known o because o° is then estimated
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with infinitely many degrees of freedom. Thus the results mentioned above for
the case when o was known may be considered as large sample results for the
test based on T .

5. Evaluation of p, . . Attempts to obtain explicit expressions for p,: in the
general case that are valid for unequal sample sizes have so far been unsuccessful.
For k = 5, however, explicit expressions can be derived. See Bartholomew [4}
and Chacko [10].

Evaluation of pm, when the sample sizes are equal to n. Denote the sample
means by Z; (¢ = 1, 2, -+, k). Consider consecutive sums of Z; and let S, = 0,
Si=&+ &+ -+ .

Lemma 1. If H, is true, the probability of pooling any specific q consecutive
means is 1/q.

Proor. There is no loss of generality in assuming that the ¢ means pooled
are the first ¢ means %, , %, - - - , &, . By Theorem 1, we find that the necessary
and sufficient condition for pooling these ¢ consecutive means is &, > Tig
for: = 1,2, ..., ¢ — 1. Equivalently, all the points (5, S;), (j = 1, 2,---,
g — 1) lie above the straight line (0, 0) to (g, S,). ’

The required probability can thus be obtained from a theorem of Sparre
Andersen [1]. The statement of the Theorem is as follows. “If &, %2, - - -, &g
be symmetrically dependent random variables then the number ¢ of points
(4, S;) above the line (0, 0) to (g, S,) has a uniform distribution for ¢ = 0,
1,--+,q9 — 1if and only if P[S;/7 = S,/q] = 0,7 =1,2,---,q — 1”. The
conditions of the theorem are valid in our case and taking { = ¢ — 1 we obtain
the result p;,, = 1/4.

To evaluate pax in general for m > 1 we shall introduce the following defini-
tions.

i) T.(z= 10,1, ---, k) form a convex sequence if and only if the sequence
of differences Ts4y — T: (¢ = 0,1, -+, k — 1) is nondecreasing.

(ii) The largest convex minorant path of the set of points (7, S;)
(G=0,1,---,k) is the convex polygonal path from (0, 0) to (¥, Si) with only
points (7, S;) as vertices and such that none of the points (j, S;) lie below the

polygonal path.

(iii) Thelargest convex minorantsequence of thesequence S; (= 0,1, --- , k)
is that of the values T'; of the polygonal path in definition (ii) at the points
j’: O) 1, ,k

TuaeorEM 3. For given sample means & , &, +++ , Tx, »

(a) The largest convex minorant sequence of the sequence S; (7 =0,1, --- , k)

is Ty = 0and T: = 6 + b +---+ 6:(4 = 1, 2,---, k) where
b; (1 =1,2,---, k) are the MLE n the domain [ £ 6 < --- < 64,

(b) The number of distinct estimates m 1is the number of -equalities
S¢= T;(’i= 1,2, ,k)

Proor. From Theorem 1, it is clear that a necessary and sufficient condition
for all the estimates to be identical is that all the points (7, S;) (=1,2, ---,
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k — 1) lie above the line joining (0, 0) to (k, Si), i.e., T; = jZux - Taking
successive differences of T';, we obtain 6; = Zy x(7 = 1,2, - - - , k). The number
of equalities S; = T: (z = 1, 2, ---, k) is only one, namely, for the suffix .

Consider the case with m distinet estimates &e1 , e, * * * 5 1ol - Lhe largest
convex minorant sequence is obviously the polygonal path joining the m + 1
points (0, 0), (71, S+), -*, (Tm, Ss,) With the remaining points lying above
this polygonal path. Forming the sequence 7'; and taking successive differences
we obtain the MLE. The number of equalities S; = T corresponds to the

values ¢ = 7, 72, -+, Tm and the value is m, which proves the Theorem.
DsrintTIoN. In a particular m partition (¢, &, -- -, tn) of k& corresponding
to the estimates s, Fiey1, - * » Zie1 let B; denote the number of estimates of

type 4, that is the number of estimates obtained by pooling ¢ sample means.
Notice that in a particular m partition many of the f’s will be zero, that
0 < B; < [k/j], the largest integer in (k/7), and that

(12) 2. B =m,

i=1
k

(13) Zlim = k.

Two m partitions will be defined to belong to the same class if the 8’s of one are
a permutation of the 8’s of the other.
TaroreM 4. Using the above nomenclature,

k
(14) pne = 2 IL(BD7,

where the summation is over all the different classes giving m distinct estimates.
Proor. The result is immediate from Theorem 3 and the following Theorem
of Sparre Andersen [2], which we shall state in our notation.
TurorEM A. (Sparre Andersen). Let the random variables &, T2, -+, T
be symmetrically dependent and let the joint distribution satisfy

P[Si/i = S/l = 0, 1<i<jsk

Let Hy, be the number of equalities S; = T: (¢ = 1,2, -+ , k — 1). Then for m =
0,1,2 ---,k—1

k
PH, = m] = 2 gz“”‘(ﬁil)"‘,

where the summation is over those values of By, Bz, -+ , B from the set of values
0,1,2, ---,kforwhichfp+ B+ -+ B =m+ land fp + 26 + -+ +
By = k.

The only point to note is that we are counting the number of equali-
ties S; = T: (s = 1, 2, --+, k) with a view to obtaining m estimates. Thus
Pmi = P[Hy = m — 1].
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COROLLARY. Let x1, %2, * ++ , Zx be random variables satisfying the condition of
Theorem A ; then the probability of the region in the sample space defined similarly
to Xy 98 also given as in Theorem 4.

The proof of Theorem A given by Sparre Andersen is rather lengthy and is
based on fairly general assumptions. It may be of interest to give, under the
assumption of normality, an alternate proof of Theorem 4 based on a simple
combinatorial argument.

AvLTERNATE PROOF OF THEOREM 4. Using Lemma 1 and Equation (8),

m

pas= = [[1 1] P80,

s=1 U

where the summation is over the (:?, : 11) values corresponding to disjoint sets

giving m distinct estimates. For all the cases in a class with values 8, , 8:, - - - , B,

71 1/t; = [If= 7. Hence the probability of the region determined by a
class is

k
[III z"""] >0 P(E,),

where the summation is over all the cases in the class. To evaluate this sum, we
notice that this is the conditional probability for the class given that the pooling
of the samples has occurred. We may examine the problem in the following
manner. Consider a population of m things belonging to & groups such that
B; of them belong to the 7th group (elements belonging to the same group are
assumed to be indistinguishable), and such that 8 + 8 + -+ + B = m.
They could be arranged in m!/B;! Ba! - -- Bi! distinguishable orders. But the
total number of ordering is m!. Thus the probability of an ordering with 8,

62, ) ﬁk is Hl:a:I (Bi!)—l- Thus
k
pma = 2 II (B:) 757,

where the summation is now over all the classes.
ReMARKs. It is well known that

> g(—l)"r"‘(ﬁiz)“ =0

where the summation is over all the classes. In terms of p. ., the above equa-
tion will be D 5y (—1)™Pmi = 0. Since D by Pmi = 1 we conclude that,
under H,, the probability of an even number of distinet estimates, and the
probability of an odd number of them, are both 3.

Numerical computation of P, . To use Theorem 4 we have to enumerate all
the classes and the corresponding §’s for fixed k.and m. We need a method of
listing all the partitions of k into m parts.
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Begin with an initial partition having unity for each of the first m — 1 elements
and k — m — 1 as the last element. To obtain a new partition from a given one,
pass over the elements of the latter from right to left, stopping at the first ele-
ment & which is less by at least two units than the last element. Without altering
any element to the left of h, write h 4+ 1 in place of % and every element to the
right of h except that the last element is taken so as to give the sum k. Con-
tinue this procedure until we reach a partition in which no part differs from the
last element by more than one unit. For example, if £ = 6 and m = 3, then the
classes are

1 1 4

1 2 3

2 2 2
11 11 11 225
Ps =52t 33138~ &

REmARKs. It may be stressed that the proof of Theorem 2 involves the as-
sumption of normality. Although we have proved Theorem 3 under the as-
sumption of normality, the same proof holds for any continuous distribution
where the estimation procedure in Section 2 is valid. In particular, it holds for
populations belonging to the exponential family, since, as Brunk [9] has shown,
the estimation procedure is valid. The alternate proof of Theorem 4 is based on
Theorem 2 and hence depends on the assumption of normality. But Theorem 4,
as stated in the corollary to the Theorem, is valid under more general conditions.

6. The second problem. A rank analogue of the standard one-way analysis
of variance test was proposed and discussed in 1952 by Kruskal and Wallis
[12]. When the sample sizes are equal to n, following the method in [12] and [13],
we propose and investigate in this section a test similar to the test proposed in
Section 4 for normal samples, with ranks replacing the original observations.
The rank test is proposed only for the case of equal sample sizes since the theory
is based on Theorem 4 which is valid only for symmetrically dependent random
variables. ‘

Let k independent random samples of equal size n be drawn from % univariate
populations with unknown cumulative distributions F;(z = 1, 2, ---, k) re-
spectively. To avoid the problem of ties we assume that each F; is continuous.
It is desired to test the hypothesis Hy:F, = F, = .. = Fj against the alterna-
tive that the populations are stochastically ordered, i.e., F1 = Fg = --- 2 Fi
with at least one inequality strong.

The proposed test procedure.

Step 1. Replace each observation z;; by R;;, its rank in the overall sample.
Let R; = (1/n) X2 Rsj, N = nk.

Step 2. Formally operate on the R’s as if one were obtaining normal MLE’s
and replace the R’s by a set of nondecreasing means or pooled means in exactly
the same way as was done for the #’s in Section 2. Notice that pooling is very
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much simplified for the R’s since the sample sizes are equal. Following our
previous notation let us denote the final distinet set of m quantities thus ob-

tained by Ry, By, < -+ 5 Risyg - The test statistic proposed is

12n N+1
(15) b= yw+D oy [R“’ __]
and the test rejects H, for large values of the statistic.

THEOREM 5. Let Ry, Ry, -+, Ry be the mean ranks of k samples. The test
defined with the critical region Hk = C, where C s determined by
k

(16) @ = 2, pniPlin-1 2 C]

and xa_y is a random variable having the x° distribution with m — 1 degrees of
freedom, s, for large n, approximately a level o test of H, .

Proor. We notice that I, is the H of Kruskal and Wallis [12] for m samples
with sample sizesnt; (j = 1, 2, - - -, m). Kruskal [13] proved that if H, is true
the random variables n(12*)[R; — (N + 1)/2]/N},i = 1,2, - - - , k have asymp-
totically a degenerate symmetric multivariate normal distribution and that the
distribution of H; is approximately a central x* with m — 1 degrees of freedom.
Now apply the corollary to Theorem 4 and the proof is immediate.

Asymptotic Pitman efficiency. Restricting ourselves to translation alternatives
we shall study the asymptotic Pitman efficiency of the nonparametric test based
on H; relative to the test based on T} in the normal case with equal sample sizes.
The method of proof is mainly an adaptation of the results of Andrews [3].
We shall follow Andrews in introducing the following assumptions.

AssumprioN 1. Let H, specify the hypothesis that for each ¢ = 1,2, --- , k,
Fi(z) = F(zx — Ai/n*), where F is an arbitrary continuous distribution and
A = A = --- 2 Ay = 0 with at least one strict inequality.

Assumprion 2. Let F possess a continuous derivative f(z) except, perhaps,
on a set of F' measure zero.

AssumprioN 3. Let

[: 2 dF (z) — [[_ z dF(x)] = g%
exist.

Lemma A (Andrews). If Assumptions 1 and 2 hold and if for any real number b

11‘1_1’101° [: nt [F (:c + %) — F(x)] dF (z)

exists and s finite, then the Kruskal-Wallis H based on k samples has asymp-
totically a noncentral x* distribution with the noncentrality parameter

(17) A = 12 [ [ 1) dF<x>]% > (a - B,
where A = Y iy Ai/k.
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_We shall use the result proved by Andrews that the limiting distribution of
R,, R,, ---, R, under H, is multivariate normal with the same covariance
matrix had the hypothesis H, been true. Consider

Ay = U2/NN + D] (B — [V + /20

The limiting distribution of H; is noncentral x* with m — 1 degrees of freedom.
To compute the noncentrality parameter, we should obtain expressions for the
limiting means. Following the same procedure as Andrews, the noncentrality
parameter is

(18) ¥ = 12] [ @) P @) | 3 Ny Buy - 31,

where Ay, is defined for the A’s analogously to (1) and & = D ¢, Ai/k.
DzriNITION. Let p, () represent the probability of the region X(:,,s,.--,m)
under the hypothesis H,, .
The limiting power of the test based on H; can be represented as

2 pns(0)Pia (") 2 €,

where the summation is for all the (:1, : 11) regions X(s ¢, ¢, and for m =

2,3, -,k

Consider the test based on T . Applying the results of Andrews, it is easy to
show that under Assumptions 1, 2 and 3 the statistic 7%, in the region
X(t1.43.---,tm, has asymptotically a noncentral x* distribution with noncentrality
parameter.

(19) N = 2% NuplBay — A/
1=

TuroreM 6. If the distribution function F satisfies Assumptions 1, 2 and 3,
then the asymptotic Pitman efficiency of the test based on Hj relative to the test
based on T, for equal sample sizes, is

(20) 122 [ [ : #(z) dF(x):r.

Proor. Let us fix the level of significance at «, and the limiting power at 8.
From (18) and (19), to obtain the same limiting power we should have

> oo (0) Phia(N®) 2C] = 2 pri(8) Plxns (A7) Z CI.

Thus \? = AT for every 1, &, - - - , tm . To have the same alternative we should
have A;/n = Af/(n*)*. Thus, foreach &, &2, *+ , tm,

lim 2% = 126} [ f_: (@) dF(x):r,
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which is a consequence of the theorem of Andrews and which shows that the
relative efficiency of the test based on Kruskal-Wallis H compared to the classical
F test is independent of the number of samples considered.

REMARKS. If F' is the normal distribution, then the value of the relative
efficiency is 3/x. If F is the uniform distribution, then the value is 1.

Relationship to other tests. When k = 2 the test discussed in this section is the
same as the one-tail test of Wilcoxon [16]. Jonckheere [11] suggested a distribu-
tion-free test analogous to the one-tail regression test in the normal case when
the means increase by a constant amount, and hence, appropriate when such
specific knowledge regarding the means is available. The results proved by
Bartholomew [7] indicate that the test based on H; should show larger power
than Jonckheere’s test when there is considerable variation in the differences
between consecutive means. Whitney [15] proposes a test for £ = 3 that is
analogous to a normal-theory test one might consider when, under the alterna-

TABLE 1
Table of Pm.k
k
m
3 4 5 6 7 8 9 10
1 .333333  .250000 .200000 .166667 .142857 .125000 .111111 .100000
2 .500000 .458333 .416667 .380556 .350000 .324107 .301984  .282897
3 .166667  .250000 .291667 .312500 .322222 .325694 .325519  .323165
4 .041667 .083333 .118055 .145833 .167882 .185417  .199427
5 .008333  .020833 .034722 .048611 .061863 .074219
6 .001389  .004167 .007986 .012500 .017436
7 .000198 .000694 .001505 .002604
8 .000025 .000099 .000240
9 .000003  .000012
10 .000000
TABLE 1I
Five per cent and one per cent values of T, for equal sample sizes n
k=3 ‘ k=4 k=135 k=6

”n
5% 1% 5% 1% 5% 1% 5% 1%
2 .687 .878 .590 787 .518 .708 .461 .641
3 .455 .665 .392 .575 .345 .506 .308 .453
4 .337 .522 .292 .447 .258 .391 .231 .348
5 .267 .427 .233 .364 .206 .318 .184 .282
6 .221 .361 .193 .307 .170 .268 .153 .237
7 .189 .312 .165' .265 .146 .231 .131 .205
8 .164 .287 .144 .223 .128 .203 115 .180
10 .131 .222 .113 .188 .102 .164 .092 .145
16 .081 .140 .071 119 1064 .103 .057 .091
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tive hypothesis, any two of the population means are equal. The test based on
H; is likely to be more efficient when the differences between consecutive means
are nearly equal. There is a reduction in power through using the test based on
H; instead of the test based on 7. But the former, although valid only for
equal sample sizes, has the compensating advantage of being independent of
the assumption of normality.

7. Tables of p,,» and tail distribution of 7. Table I gives the values of
Pm for equal sample sizes and k = 3, 4,---, 10. Table II gives the 5 percent
and 1 percent values for the test statistic 7% .
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