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0. Summary. In recent years the study of sequential procedures which are
asymptotically,optimum in an appropriate sense as the cost ¢ per observation
goes to zero has received considerable attention.

On the one hand, Schwarz (1962) has recently given an interesting theory of
the asymptotic shape, as ¢ — 0, of the Bayes stopping region relative to an a
priori distribution F, for testing sequentially between two composite hypotheses
0 < 6, and 6 = 6. concerning the real parameter 6 of a distribution of exponential
(Koopman-Darmois) type, with indifference region the .open interval (8;, 62).
(An example of Schwarz’s considerations is described in connection with Figure
4.) One aim of the present paper is to generalize Schwarz’s results to the case
where (with or without indifference regions) the distributions have arbitrary
form and there can be more than two decisions (Sections 2, 3, 4). In this general
setting we obtain, under mild assumptions, a family {8} of procedures whose
integrated risk is asymptotically the same as the Bayes risk. (In fact, extending
Schwarz’s result, a family { 8.} can be constructed so as to possess this asymptotic
Bayes property relative to all a priori distributions with the same support as F,
or even with smaller indifference region support than F.) Procedures like our
{d.} have already been suggested by Wald (1947) for use in tests of composite
hypotheses (e.g., the sequential ¢-test), but his concern was differently inspired.

At the same time, we show how such multiple decision problems can be treated
by using simultaneously a number of sequential tests for associated two-decision
problems.

A second aim is to extend, strengthen, and somewhat simplify the asymptotic
sequential design considerations originated by Chernoff (1959) and further de-
veloped by Albert (1961) and Bessler (1960) (Section 5). Our point of departure
here is a device utilized by Wald (1951) in a simpler estimation setting, and which
in the present setting amounts to taking a preliminary sample with predesignated
choice of designs and such that, as ¢ — 0, the size of this preliminary sample tends
to infinity, while its-ratio to the total expected sample size tends to zero. The
preliminary sample can then be used to “guess the true state of nature’” and thus
to choose the future design pattern once and for all rather than to have to
reexamine the choice of design after subsequent observations. (In Wald’s setting
the only “design’ problem was to pick the size of the second sample of his two-
sample procedure.) The properties of the resulting procedure can then be inferred
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706 J. KIEFER AND J. SACKS

from the considerations of Sections 2, 3, and 4, where there is no design problem
but where most of the work in this paper is done; using Wald’s idea, we thereby
obtain procedures for the design problem fairly easily, once we have the (non-
design) sequential inference structure to build upon. The family {57} so obtained
has the same asymptotic Bayes property as that described above for the family
{8} of the non-design problem. Furthermore, a family {6¥*} can be constructed so
that, like {4} in the non-design problem, it is asymptotically Bayes for all a priori
distributions with the same support. The value of the asymptotic Bayes risk of
such a family is closely related to the lower bound which was obtained by Cher-
noff et al for the risk function of certain procedures, and which gives another form
for the optimality statement.

The role of the sequential procedures considered by Donnelly (1957) and
Anderson (1960) for hypothesis testing with an indifference region is indicated
at the end of Section 1. Asymptotic solutions to the problem of Kiefer and Weiss
(1957) are given.

An Appendix contains proofs of certain results on fluctuations of partial sums
of independent random variables, which are used in the body of the paper.

1. Introduction and comments on related work. Chernoff (1959), whose work
initiated the design investigations mentioned in the summary, has also given
an introductory heuristic discussion which motivates these considerations. We
therefore omit such a discussion, mentioning only the differences between the
present and previous work.

As mentioned in the summary, most of the effort in the present paper is devoted
to generalizing Schwarz’s results. Since we no longer have his exponential type
structure, it is not possible to obtain the concise proofs and elegant characteriza-
tions that he obtains. It should be noted that Chernoff’s and Albert’s papers can
be regarded as considering, inter alia, this (nondesign) problem without indiffer-
ence region, if one allows only one design in their treatments. The first of these
considers finitely many states, while the latter obtains e-optimum families of pro-
cedures for tests of hypotheses containing infinitely many states. (Albert men-
tions an indifference region in the early part of his paper, but does not consider
it in the domain of his risk function in the later part, so that his procedures are
really e-optimum only for the problem without indifference region.) Bessler also
congiders finitely many states, but infinitely many experiments.

Since we cannot invoke the monotone likelihood ratio structure to obtain
Schwarz’s simple asymptotic reduction of a hypothesis like 8 = 6; to one like
0 = 6,, we use compactness and appropriate continuity in Section 2 to reduce
the problem to one involving finitely many states. The final argument used to
obtain optimality (Theorem 1) reduces the consideration to that of testing be-
tween two simple hypotheses, and a comparison with known properties of the
Sequential Probability Ratio Test (SPRT). When we introduce an indifference
region in Section 3, this comparison must be made with a Bayes sequential test
between two simple hypotheses with a single indifference state.
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In the absence of compactness of the space of states of nature, Remarks 1, 2, 3
and 5 of Section 2 state the compactification assumptions we require. Albert
also uses a compactification device in this case, but his is associated with the type
of maximum likelihood (ML) argument development used in ML consistency
proofs by Wald (1949) and by Kiefer and Wolfowitz (1956). Our development,
which is in terms of Bayes procedures (as is Schwarz’s), seems somewhat simpler
to us; Albert remarks on the possible complexity of procedures using ML esti-
mates in this way, on page 798 of his paper. (Asymptotic relations between Bayes
and ML procedures in simpler contexts are well known.)

The optimality results of Chernoff, Albert, and Bessler are all stated in the
non-Bayesian language of our Corollary to Theorem 1, while Schwarz’s results
are obtained in the Bayesian terms of Theorem 1 itself. (Although Schwarz’s dis-
cussion is mainly in terms of shapes of stopping regions, an earlier, mimeographed
version of his paper described his result also in terms of the Bayes risk, itself; in
our case the difference between the two descriptions is greater, and is essentially
the difference between Lemma 4 and Theorem 1.) Schwarz mentions briefly (page
234) the relationship between these two forms of the optimality result in his case,
and Theorem 2 (and its analogues in Theorems 4, 5, and 6) make the result pre-
cise in our case: for a given set of possible states of nature, we obtain a family of
procedures which is asymptotically Bayes for every a prior: distribution whose sup-
port is the given set. (When there are only finitely many states, Chernoff’s pro-
cedure clearly achieves this.) One can easily find examples where the hypothesis
of the Corollary to Theorem 1 is violated by an asymptotically Bayes family, for
example, when the family is asymptotically Bayes relative to an a priori distribu-
tion whose support is a proper subset of the given set; the violation of hypothesis
and conclusion are only to be expected in such a case, since one can not generally
find a family which is simultaneously asymptotically Bayes against a priori
distributions with different support. It would be interesting to obtain the conclu-
sion to Theorem 2 for the procedure of Theorem 1, but we are unable to prove
such a result.

In the presence of an indifference region I, the family of procedures we obtain
has the additional property that 4 s also asymptotically Bayes relative to every a
priori distribution whose support S’ satisfies 8 = (S — I) U A with A C I, where
S s the given supporting set (S D I).

Turning to our design considerations, the Summary and Section 5 describe the
spirit of these. As for the results themselves, our considerations extend those of
the previous papers in this area by considering both infinite sets of possible states
and infinite sets of possible experiments, by including multiple decisions, indiffer-
ence regions, and semi-indifference regions, by eliminating the e in Albert’s
e-optimality result (by use of a trivial device which could also be applied in his
treatment), and by obtaining procedures with the strong uniform Bayes property
mentioned in the two previous paragraphs. However, we regard it as more impor-
tant than these extensions, that one sees that asymptotically optimum designs
can be described and used in the simpler manner evolving from our extension of
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Wald’s method (wherein design prescriptions are decided at the outset and at one
later stage, rather than after every stage), and that their properties can be verified
largely’ by reference to the nondesign results. While no asymptotic theory of this
type can contain any strict admissibility results, an examination of various non-
asymptotic design problems leads us to a preference in applications and where ¢
is not too small, for certain nonrandomized design choices over randomized ones
which are demonstrably worse. Chernoff had indicated in his paper that such non-
randomized choices can be used, but the formal demonstrations of optimality in
previous papers refer only to the random method (mentioned in Section 5) for
choosing designs.

Most of our notation is similar to that of previous papers in the area, as is our
model of independent, identically distributed observations in the nondesign work,
and of identical possible choices of experiment at each stage in the design work.
The reader is referred to Wald (1947) and Chernoff (1959) for asymptotic proper-
ties of the SPRT which we use. The fundamental role of the information num-
bers (whose use, as Albert mentions, was described by Wald (1947), although
they subsequently came to be known as the Kullback-Leibler numbers) is well
described in Chernoff’s introductory comments.

Simultaneous tests. We continue this introduction by describing briefly the
treatment of multiple decision problems through the use of simultaneous tests.
This device has long been used by practical people, and was treated in detail by
Lehmann (1957a, 1957b) in questions of nonasymptotic, nonsequential admissi-
bility. In our asymptotic sequential context, considerations are easier, due to the
fact that even a fairly large change in the stopping boundary does not alter
asymptotic optimality. As an example of this last fact, we plot, in a three-state,
three-decision problem, the asymptotically (as ¢ — 0) optimum boundaries
given in Section 4 for the three-decision analogue of the SPRT; they are the lines

Fia. 1
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o of Figure 1, namely (for 0 — 11loss) &, = 1 — ¢ (2 = 1, 2, 3), where &, is
the a posteriori probability of hypothesis ¢ after n observations. However, if these
bounds are placed twice as far from the vertices, i.e., at &, = 1 — 2¢ (lines 8),
we change the expected sample size by a relative amount log 2/[log ¢| = o(1),
and still keep the probabilities of error to be of a smaller order of magnitude than
the expected sample size. Thus, the second set of bounds is also asymptotically
optimum. As Chernoff pointed out, the expected sample size is the overwhelming
part of the asymptotic risk in these problems. As a consequence, the asymptoti-
cally optimum stopping bounds can vary greatly, and the almost impossible non-
asymptotic problem of computing the best bounds disappears.

Now suppose that the statistician tried, in the classical tradition of solving new
problems by using a conglomeration of old techniques, to carry on three SPRT’s
simultaneously, one between each of the three pairs of hypotheses and each with
bounds (1 — ¢)/c and ¢/(1 — ¢) on the probability ratio, and that he stopped
as soon as any two tests simultaneously dictated acceptance of the same hypothe-
sis. Then his stopping bounds would be the broken lines v, and these are again
easily seen to be asymptotically optimum. It is not difficult to verify that the
modification of this procedure which allows the tests to stop at different times
(each one, as soon as possible) and makes a final decision as soon as two terminal
decisions coincide or three are contradictory (in which case any decision can be
made), is also asymptotically optimum, although this procedure cannot be repre-
sented so simply diagrammatically.

This technique of using simultaneous tests can also be used in more compli-
cated cases. If one hypothesis consists of state 1 and a second consists of states 2
and 3, the procedure of Theorem 1 has the bounds a(&,, = 1 — ¢ and &,, +
&, = 1 — ¢) shown in Figure 2. If one instead tests 1 against 2 and 1 against 3
simultaneously with bounds (1 — ¢)/c and ¢/(1 — ¢) on the probability ratio,
stopping as soon as both tests say to accept 1 or else either rejects 1, one obtains
the bounds v of Figure 2. The region where 1 is rejected is not even convex, but
the procedure is asymptotically optimum; this again points up the extent to
which small sample computational difficulties have become trivialized in the
asymptotic theory. A modification like that indicated at the end of the previous
paragraph is again possible.

As a final example, suppose we are testing between simple hypotheses 1 and 2,
with 3 the simple indifference state. The procedure of Theorem 3 then stops as
soon as either &, or &,, is <c¢ («, Figure 3). This rule can be described in terms
of the tests of composite hypotheses without indifference region, of the previous
paragraph: test 1 U 3 against 2 and 2 U 3 against 1, simultaneously. (If different
critical constants were used, the lines a could be broken near the bottom line
&a = 0.) Going all the way back to SPRT’s, the boundaries v of Figure 3, which
are again asymptotically optimum, arise from using three simultaneous SPRT’s
and stopping as soon as either 1 or 2 is rejected by some test. The end of this
section discusses these procedures further.

Further use of these ideas is contained in Sections 3 and 4. We summarize by
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F16.3

remarking now that the whole development of asymptotically optimum multiple-
decision procedures, with or without indifference and semi-indifference regions,
can be carried out entirely in terms of such simultaneous tests. (If only SPRT’s
of simple hypotheses are used, this will, however, involve the use of appropriately
fine coverings if the space of states of nature is infinite.)

The procedures of Donnelly, Anderson, and Schwarz. Let us consider the special
application of the results of Section 3 to the problem where f.,, k., and gs are
normal with variance one and means —1, 0, and 1, respectively. In this case we
can, with Schwarz, conveniently represent the asymptotic shape of procedures in
the (¢, y) = (n/[logc|, >+ X:/|logc|) plane. The solid lines 8 of Figure 4 indi-
cate the stopping boundary coiresponding to either « or v of Figure 3 as ¢ — 0.
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2/3

1/2

Fic. 4

This is Schwarz’s famous pentagon. (The broken nature of 8 has nothing to do
with that of v, since « yields the same 8; rather, the lower broken line 8 arises
from the relation

exp (XX —n/2)/[1 +exp (X —n/2) +exp (—2 X —n/2)] =¢

which determines one half of « in Figure 3. It is the same shape which can be
discerned more generally in the discussion of (3.16) of Section 3 in terms of coor-
dinates T',/[log ¢| and S,/|log c| which correspond to y — ¢ and —y — ¢ in the
present example.) The three points marked e are the intersection of the boundary
with lines of “expected movement’’ under the three states (4-45° lines under f,
and go , a horizontal line under h.), and illustrate that the approximate expected
sample size is [log ¢|/2 under f, or go and is 2 [log ¢| under . .

It is to be noted that, in the spirit of our discussion of simultaneous tests, this
stopping rule can be obtained by drawing the well known parallel lines in terms of
(n, Y X;) for each of the three possible SPRT’s with stopping constants ¢ and
1/c for the probability ratio (it is impossible to reject k. in both tests where it
appears).

Other stopping boundaries of similar piecewise linear shape have been proposed
by Donnelly (1957) and Anderson (1960). To obtain the same approximate
sample sizes, such boundaries would also have to pass through the points e. One
such boundary & merely truncates, at ¢ = 2, the SPRT of f, against gy . The idea
of using such truncated sequential procedures goes back to Wald (1947). One can
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easily verify (e.g., Anderson, Equation (4.74), and an analogue of the paren-
thetical remark of the next paragraph regarding translation from continuous to
discrete time) that this test is also asymptotically optimum. One might then
wonder how Schwarz’s test 8 can be optimum, since it superficially appears to
stop sooner with presumably larger resulting probabilities of error. The explana-
tion is that under f, it is so unlikely any path will reach a point P on the upper
segment of 8 to the right of ¢ = 1 having not gone out earlier, that nothing is lost
(asymptotically) by stopping at P. Many other continuous boundaries passing
through the three points ¢ would also work, and we shall shortly discuss one such
boundary, o.

On the other hand, other boundaries formed from no more than three line seg-
ments which are symmetric in ¥ and which go through the three points e, are not
asymptotically optimum. (This conclusion also obviously applies to many other
bounds through the three points, e.) For example, the “triangular” boundary con-
sisting of the cross-hatched line segments p(y = =% =F ¢/3) and whose properties
have been studied in detail by Anderson, has the right asymptotic expected
sample sizes, but probabilities of error which are too large. This last can be veri-
fied from Equation (4.61) of Anderson, which gives probabilities of error of
order ¢®® for the corresponding Wiener process problem. To put it another way,
if one wants symmetric triangular bounds with Py {error} = O(c) and EN ~
2 [log c|, then the bounds must be y = & a F ta/2 with a = 1. For the best of
these, @ = 1, obtains E,,N ~ £ |log¢|, efficiency § compared with optimum
bounds (like 8 or 8) for which E, N ~ % |log ¢|. (Translating the Wiener process
results to the original discrete time normal problem, we see that by raising both
lines slightly we obtain bounds p’ for the Wiener process which still give order
¢***¢ for probabilities of error, where ¢ < %, and such that the probability that
the corresponding discrete time process (obtained by examining the Wiener
process at integral multiples of £ = 1/[log ¢|) with bounds p rejects f., when it is
true, exceeds that for the Wiener process with bounds o by o(c); this last bound
on the maximum difference between the two processes is standard.) A similar
result holds for the procedure whose boundaries are the broken lines 7 truncated
at ¢ = 2: we again obtain probabilities of error which are ¢ [log ¢|/0(1), whereas
the bounds g or & yield a risk function of order ¢ |log c|.

We now discuss the particular boundary ¢ which is designated by a curved
broken line in Figure 4 and whose equation isy = &£ ¢ F 2 (0=t =2).
The boundary ¢ gives Schwarz’s asymptotic shape of the Bayes stopping regions
for the problem of testing # < —1 against # = 1 with indifference region I =
(—1, 1) when the support of the a priori distribution is the entire real line. For
Schwarz’s family of procedures (which is the same as the family {;} of our
Theorem 3) the asymptotic shape is given by ¢ when the a priori distribution is
as described in the last sentence, and it is also easy to see that the same holds
for the family {3."} of our Theorem 4. Although {8} and {5;'} have the same
asymptotic shape, it is not clear that they enjoy the same asymptotic properties;
e.g., in Theorem 4 we show (despite the lack of compactness in the parameter
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space, the methods of Section 3 will work because of the exponential structure
of normal densities; the same will not generally be true in non-exponential situa-
tions) that {6,”}, constructed for a given F, is asymptotically Bayes with respect
to any G having the same support as F but we do not know if the same is true
for {8.} (a discussion of this difference in the simpler context of Section 2 appears
following the corollary to Theorem 1). The reason that the asymptotic shape does
not seem to yield the asymptotic Bayes properties expressed in Theorem 4 is due
to the necessity of knowing how Py {error} behaves asymptotically (for Theorem
4 we need Py {error} = o(c |log ¢|) uniformly for 6 ¢ I), and knowing the asymp-
totic shape of a family of procedures does not séem to yield precise enough
knowledge about probabilities of error.

While knowledge of the boundary o does not seem to yield the properties we
obtain for {6,}, it is interesting to note that ¢ could be used to define a new family
of procedures which will possess the desired properties. In fact, let 8. be the pro-
cedure which truncates at 2 |log c| observations, continues observing when
n < 2|logecland n — (2 |log ¢| n)! < 8, < (2 |log ¢| n)} — n, decides 6 = 1
(resp. 6 = —1) if S, “goes out at the right”’ (resp. left) for n < 2 [log ¢|, and,
if 2 |log c| observations are taken, §, decides 8 = 1 (resp. 8 < —1) if Sejioge) >
0 (resp. < 0). By direct computation (which we omit), it' can be shown that Py
{wrong decision using §;} = o(c |log ¢|) uniformly for |6] = 1, and that EsN (3,)
has the “right” asymptotic value uniformly in 6, and this yields the result of
Theorem 4. Thus, in this normal example, the family {8;} can be used to obtain
an asymptotic shape ¢ from which we can go ‘“back’ and obtain a new family
{8.} (which is not the same as {6;}) with asymptotic shape ¢, which has the de-
sired asymptotic Bayes properties, and which is simple to describe. For non-
exponential problems we cannot generally expect to find simple asymptotic
shapes which can be used to obtain such families {3.}. ]

Finally, we note that the {8’} corresponding to the boundary o (ie., the
{6."} constructed for an F whose support is (— o, ») is Bayes with respect to
any G whose support contains the two points —1 and +1. That we can ignore
that part of the support of the a priori distribution in (— e, —1), orin (1, ),
is a consequence of the exponential structure of normal densities and is not,
generally, possible in non-exponential situations. But, the reason we can “do
away’’ with (—1, 1) is generally true, and is stated in Theorem 4, where it is
shown that we can replace the indifference region I by any subset I’ of I and
{5."} remains asymptotically optimum. In particular, therefore, the {5."} asso-
ciated with o is asymptotically optimum for our original three-state problem
and is also asymptotically equivalent to the SPRT for testing between the
simple hypotheses 8§ = —1 and § = +1. Of course, the procedures which gave
rise to the 8 and & boundaries are also asymptotically optimum for testing
60 = —1 against 6 = -1 as well as for the original three-state problem; however,
these procedures will not be asymptotically optimum in other problems for which
the {8,"} corresponding to ¢ is asymptotically optimum.

Minimizing the maximum of EN subject to bounds on probabilities of error.
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Kiefer and Weiss (1957) considered problems which, for the sake of brevity, we
describe only in the special normal three-state setting just discussed. One problem
is to minimize the maximum expected sample size, max(E,N, E, N, E,N),
subject to specified upper bounds on probabilities of error when w or 6 is true.
This is easily shown to be equivalent to minimizing

kMEWN + ksEeN + ksE.N + kdP,, {error} + ksPs {error}

for some positive k; , k2, ks, k4, ks . As the specified bounds on the probability
of error go to zero, this problem can be seen to be equivalent to the asymptotic
problem of Section 3. Thus, if we seek a family which asymptotically minimizes
the maximum of EN subject to P, {error} =< ¢(c) and Py {error} =< ¢(c) where
g(e) = o(c |log ¢|) and q(c) = ¢/O(1) (for example, ¢q(¢) = K¢ where K is a
positive constant), procedures corresponding to boundaries like the 8 and o of
Schwarz and the & of Anderson (but not p or 7) are asymptotically optimum, as
are many others. In fact, the fixed sample size procedure corresponding to the
line ¢ = 2 is asymptotically optimum for the present problem, although not for
the previous one. (The normalization of ¢ is for convenience.)

A problem auxiliary to the above, and of less intrinsic importance, is to mini-
mize E,N alone, subject to restrictions on Py {error} and P, {error}. This problem
really arises only because it is often true that its solution yields a solution to the
more meaningful problem of the previous paragraph; nevertheless, we discuss it
briefly here because of theoretical interest. This problem is equivalent to one of
minimizing kBN + kP,{error} + ksPe{error}, and is thus slightly different
from that of the previous paragraph, so that the theorems of Section 3 do not
lead immediately to an asymptotic solution. However from Lemma 5 of Section 3,
we do obtain an asymptotic solution which is, in fact, the same one as for the
first problem. Thus, in the normal example considered above, the procedures
corresponding to 8, o, and 4, as well as many others, are asymptotically optimum
in the sense of the present problem. It is interesting to note that, as a consequence
of Lemma 5, any boundary which always guarantees stopping earlier than ¢ = 2
cannot guarantee error probabilities of order O(c).

L. Weiss has recently developed algorithms for the exact computation of pro-
cedures which solve this problem in certain cases (JASA, 1962). Actual compu-
tations by Weiss and D. Freeman indicate that the minimum E,N must be very
large before the asymptotic theory estimates it accurately.

Similar remarks apply to minimizing the maximum of EN over a larger indiffer-
ence zone, etc. For example, in the normal example just discussed, the boundaries
B, o, and § yield procedures which approximately minimize the maximum of EN
over all normal distributions with unit variance, subject to the stated bounds on
probabilities of error if the mean is £ —1 or = 1. The corresponding %-decision
problem can be treated in exactly the same manner.

2. Hypothesis testing without indifference region. In this section we prove the
principal results for the two decision problem without indifference region; the
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latter modification is introduced in Section 3. The methods used in subsequent
sections are very similar to those used here. Let @ and © be two disjoint subsets
of some Euclidean space (the restriction to Euclidean space is for convenience).
Let {fo ; w e Q}, and {go ; 6 ¢ O} be two sets of densities, all absolutely continuous
with respect to the same measure u. The problem is to decide whether the true
density is from @ (Decision 1) or from © (Decision 2). Let L:(w) be the loss if
w & Qis “true” and Decision 2 is made and let L;(6) be the loss if 6 ¢ © is “true”
and Decision 1 is made. If the “correct’ decision is made no loss is incurred. Let
F be an a priori distribution on @ U © and denote that part of F which is con-
centrated on @ by ¢ and the part of F concentrated on ® by 5. We shall assume
that @ U O is closed and that the support of F is @ U ©. This is for convenience
in stating the results and the assumptions. To handle matters more generally
all assumptions and results should be stated for the support of F (including, for
example, the definitions in Assumption 2).

Independent and identically distributed observations may be taken sequen-
tially with the cost of each observation being ¢ with 0 < ¢ < 1. Let &; denote a
Bayes solution with respect to F (the dependence on F of the various decision
functions we define will be suppressed). Let 8, be the decision function which,
after n observations, stops and makes Decision 1 if

(2-1) /fw(xl, Tty zn)LZ(w)g (dw) > '(l?f go(-’lll, ttty xn)Ll(o)"l (do):
stops and makes Decision 2 if
@2) [ 1o, m) L o) < ¢ [ gular, <o, ) Ia(0)n (d0),

and takes an (n + 1)th observation if neither (2.1) nor (2.2) holds. (An asymp-
totically equivalent procedure, which is in the form of the k-decision procedure
of Section 4, is to stop when the a posteriori risk is < ¢. This form also exhibits
an invariance under changes in monetary scale which is not present in (2.1) and
(2.2), although its absence in these last is of course irrelevant in asymptotic
considerations.) The first result we wish to establish is that, under certain restric-
tions, lime.o 7.(F, 8:)/r(F, 8F) = 1, i.e., that {é,} is “asymptotically Bayes’ as
the cost of observation goes to 0; 7, , of course, denotes the risk when c is the cost
of observation.

AssumprioN 1. Put o3 = infy Li(0), ez = inf, Ly(w), 1 = sups L.1(0), B2 =
sup, L2(w). We assume that «; and a» are strictly positive and that 8; and 3. are
finite.

AssumprioN 2. Put M(w, 6) = Elog fo(X) — log ge(X)] and put
M(w, ) = Eglog go(X) — log fu(X)]. The indicated expectations are assumed
to exist. Furthermore, we assume

(a) inf, infs \(w, 8) = A > 0

(b) inf, infs A(w, ) = A, > 0

(¢) M(w, 6) and M\ (w) = infy \;(w, 8) are both continuous in w.
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(d) M(w, 0) and A2(6) = inf, A2(w, ) are both continuous in 6.

Remark. Assumption 2 guarantees that @ and © are “separated.”

AssumprioN 3. For each , 0

(a) Euflog fu(X) — log go(X)’ < w

Eillog go(X) — log fu(X)I <

(b) lim,  oEuflog supe—s <, gor(X) — log go(X)I = 0

lilnplGEf?[lOg SUP|w—wl <p Jfur(X) — log fw(X)]z =0

(¢) limys Euflog fur(X) — log fu(X)FF = 0

limy.eEollog gor(X) — log go(X)]* = 0.

REMARK. (c) is slightly stronger than actually required. If (¢) holds with the
second moment replaced by the first moment and if the second moment is finite
in some neighborhood of w(or ) then the argument below will proceed without
change.

The first thing we do is to estimate the loss due to incorrect decision when d¢
is used. Let P,(c) be the probability of making Decision 2 when w is the true
state of nature and when &, is the decision function used. Let Qy(c) be the prob-
ability of making Decision 1 when 6 is the true state of nature and 8, is used.

Lemma 1. [ Ly(w)Pu(c)E(dw) + [L1(0)Qs(c)n(d6) = (B: + B2)e.

Proor. Let 4; be the set of (21, - - - , z;) where 8, says stop after j observa-
tions and make Decision 2. Then

P@(C) = ij;.fw(xl, "',xj) dﬂj'

=1

Using (2.2) and Assumption 1 we have
[ 1P @) s o3 [ [ goor, -, 2 L0 (@0) a?
Q j=1J4; J0

= ¢ [ (1 =~ Q) La(6)n (d0) = o

The rest of the argument is obvious.

Lemma 2 which we now prove is the heart of the matter before us.

Lemma 2. Put M(w) = infs M(w, 6) (see Assumption 2). Let ® be a compact
(therefore bounded) set in some Euclidean space. Let N (c) be the number of observa-
tions required by 6. to terminate. For each wy ,

(2.3) EwN(c) = [1 + o(1)] [[log ¢l/M(wo)]

as ¢ — 0 (the o(1) term may depend on w, ; this dependence is removed in Lemma 3.
Proor. We will show (2.3) by proving it to be so for some random variable
N*(c) (see (2.21) et seq) which is larger than N(c). To obtain an N*(¢) with
which we can work we will suitably discretize ® and alter (2.1). The first step
is to obtain (2.8) below.
Fix wy and put, for 6 ¢ ©,

M("’O) 0, p) = Ewo [Ingwo(X) - IOg Suplﬂ’—91<pgo(X)]-
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From Assumption 3, we obtain
(24) M (wy, 8, p) increases to A;(wo, 0) as p decreases to 0.
Let {e; ; ¢ > 0} be a set of positive numbers with ¢. — 0 as ¢ — 0. From (2.4)
and Assumption 3, there is, for each ¢ and each 6, a p,(8) such that
M(wo, o: pe(0)) 2 M(wo ’ ) — €,

Ey,[10g fu,(X) — log supjo—s <penger (X)I < .
Let U6, p.(6)) = {6'€0O| |6 — 6] < po(8)}. Then {U(6, ps(0)), 66} is a
family of open sets which covers ©® and, since © is compact, we can extract a
finite subcovering. Let {U(6; , p:(6:)),2 = 1, --- , T} be such a finite subcover-
ing of ® and abbreviate U(8;, p.(0;)) by U;. The 6; will also depend on ¢ but
we suppress this dependence. By (2.5), foreachz =1, ---, T,,
(2.6) Euyllog fu,(X) — log supseu,gs(X)] 2 M(wo, 0:) — e

From (¢) of Assumption 3, we know that there is a v, such that, when
l“" - "’0| < Yes

(2.5)

(2.7) Eoylog fu(X) — log fu,(X)] > —e,.
Let V, = {0 | |w — wo| < v¢}. Then (2.6) and (2.7) yield
(2.8) E oy llog fo(X) — log supy; go(X)] = M(wo, 0:) — 2e

forall weV,andz = 1,.--, T,. Since w is in the support of ¢ (as is every
point in Q)
(2.9) £V, >0 forall ¢> 0.

We are now ready to work towards the definition of N*(¢c). First note that if
Ni(c) is the first n such that (2.1) holds then N(¢) = Ni(c). Let Na(c) be the
first » such that

210) [ fulmn, + e, 2 Ta(w)E (do) > supo galan, -+, ) 2.

Clearly N:(c) = Ni(c). Dividing both sides of (2.10) by £(V,) (which is positive
by (2.9)) and taking logarithms we obtain an equivalent of (2.10), viz.,

log ‘/;cfw(xl, coo, 20) Lo(w) EE((?’?:)) > |log ¢| + log B1

+ |log £(V,)| + log sups go(z1, - -+, 2u).
By the concavity of log and Jensen’s Inequality ‘

IOgj; fw(xly . xn)LZ(w) E(d‘*’) = ./; log fw(xl; Tt Zn) E(dw)

(2.11)

V) = £(Ve)
tdw) & £(dw)
(2.12) + f log Ly(w) BV ]_Zl fv log fu(#;) oo T
£(dw)
+f log Ly(w) s AR
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Recalling that {U;} covers 0,

log supo go(a1, -+ , 2,) = log sups<r, supy; go(wr, - - , z2)

(2.13) = SUPisupu; D log gu(z;) < sup: 3. supy, log go(z;)
. J=1 J=1

= sup; Zl log supy; go(z;).
o

Put

(214) Ae = og €V.)| + log s+ flog o] — [ 1og In(a) £X2)

(215) Y, = /; log fu(Xy) E((?,“’)) forj=1,2-.-
(2.16) Z; = log supy, go(X;) fori=1,.--,T;5=1,2, -
Let N3(c) be the first n such that

(2.17) g Y; — sup; ; Z: > A,

or, equivalently, the first n such that
(2.18) Z [V — e — Zj] + min<,<r, Z [Z; + e — Zi] > A..

(2.12)~(2.16) imply that Ns(c) = Ni(c). From (2.8) we have
(2.19) EolY; — e — Z;] = M(wo, 6;) — 3¢, for s = ,.--,T.,.

Suppose that {U;} are indexed so that the minimum (over z) of the left hand side
of (2.19) occurs when ¢ = 1. Then

EolY; — & — Z;] 2 M(w) — 3e ;

(2.20) . .
EwlZi+ e —2Zj] 2 e fori=1,---,T,.

Let S, denote the nth partial sum of the sequence {Y; — & — Zj} and let B,

(z =1, , T:) denote the nth partial sum of the sequence {Z; + ¢ — Zi}.

Since {X } Is a sequence of independent and 1dentlcally distributed random vari-
ables the same is true for each of the sequences in the last sentence. Put B,
min; <z, By, . Then (2.18) is equivalent to S, + B, > A.. Let N*(c) be the
first n such that, simultaneously,

(2.21) S, > A, and B, = 0.
It is obvious that N*(¢) = N. s(¢). Our problem now is to show that the lemma,
holds for N*(c).

We hereafter assume, as we may, that M(wo) — 3e, > 0. Let », be the first n
such that S, > A., v, the second n such that S, > 4, ¢, ete. Let ¢; be the indi-
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cator function of the set where B,, < 0,{ = 1,2, --- . Then
) i
N*(c) = n + 21 (Vi1 — v5) I]; @t
= =

Let »fy1 — »; be the first m > 0 such that Suy,; — S,; > 0. Since S,; > 4., it
follows that S,.,,, > A. and, therefore, v}, — »; 2 ;1 — v;. Since ¥ —
v; depends on X’s whose indices are greater than »;, it follows that »fy — »;
is independent of ¢;, - - - , ¢; . Consequently

o Jj
(222)  BulN*(e) S Bam+ 33 Buao(ofn = v)Ee IT 6.

11 — »; has the same distribution as the first n for which S, > 0 so that, using
(4.6) of Spitzer (1956), the Chebyshev inequality, (2.20), Assumption 3, and
(2.5), we have

Ewo(V.;;l - Vj) =144 g P{maxléjék Sj,é O}
(2.23) = exp [; (1/k)P(S: < 0}]

< exp {[Var(.,o(Yl — & — Z1)/(M(w0) — 3e)’] g; (l/kz)}

= D(c, w0) (say).

For thg purpose of estimating E.,, IIi=: ¢: welet oi(d = 1, -+, T,) be the last
time B, < 0 and then ¢ = max(oy, -+, o7,) is the last time B, < 0. Observe
that »; is at least as big as j so that

0 i © ©
> Eu J1 6= 2 Py (B, <0,---, B,, <0} §;P%{ag v

j=1 t=1 j=1

© T¢
pro{déj} =Ewo‘7§ ZE"’O"@"

j=1 =1

(2.24)

IIA

We now apply Theorem D in the Appendix to { — By} with o = ¢, since, by (2.20),
the summands in B;, have mean = e, and, by (2.5), they have finite variance,
so that

(2.25)  Eu0: S — (2/€) Eoy[mingsoBi] + ’; P{B; — ke,/2 < 0}.

Since Bi — ke./2 is the kth partial sum of independent and identically distributed
random variables whose mean is =¢,/2 and whose variance is finite, we obtain
from Erdos (1949) the fact that the last term in (2.25) is finite. The first term
to the right of the inequality in (2.25) is finite because the summands in B; have
positive (=¢,) mean and finite variance (this is well-known and can be seen in
Theorem B of the Appendix). (2.24) and (2.25) yield
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(2.26) ZE,.,,,II@ = h(c, w) (say) < eo.

=1
The final estimate we need is the well-known fact from renewal theory that

[+ o4, _ 1+ o(Dl4,
E‘.,o[Yl — € — Zi] - )\1((-00) — 3e. ’

Putting (2.23), (2.26), (2.27) into (2.22) we get
EoN*(c) = [1 + 0(1)]4o/D(w0) — 3e] + D(e, w)h(c, w).

The final step is to observe that ¢, may be chosen to go to 0 so slowly that the
choices of V,, {U4, ete. (which depend on ¢ through e,) result in

llog (V)| = o([loge]),  D(c, w)h(e, w) = o([logc]).
For, if this is the case,
= [1 4 o(1)] [log¢| + log B + |log az| = [1 + o(1)] [log ¢|

and then E",ON*(c) [1 + o(1)] Jlog c|/M(wo), which completes the proof.
If we put A(0) = inf, A2(w, 8) we can State
Lemma 2'. If Q s compact, then for each 6,

[1 4+ o(1)] |log c|
R CH

as ¢ — 0 (the o(1) term may depend on 6, ; see, however, Lemma 3').

The proof of Lemma 2’ is, of course, the same as for Lemma 2.

REMARKS.

1. We may extend Lemmas 2 and 2 to cases where 2 and © are not bounded
subsets of a Euclidean space by using the following compactification assumption
(in addition to assuming that our prev10us1y stated assumptions hold for com-
pact subsets) :

AssumpTioN 4. There is for each » a number r, such that

(a) EBullogfu(X) — log supjezs, go(X)]* <  and

(b) E.flogfu(X) — logsupjezr, ge(X)] = M(w).

The argument of Lemma 2 will go through quite easily by observing that we can
take the {U;} there as a covering of @ N {6 | |6] =< r.,} and then we can take the
remaining part of @ as a neighborhood of infinity and add that to {Uj} to give a
covering of ©. There is no problem in carrying out the remaining part of the
argument. An analogous assumption will take care of Lemma 2. These assump-
tions are satisfied in many common problems, for example, in ones of the uni-
variate or multivariate exponential (K-D) or translation parameter type.

2. When, for any w, we have

™ E.flog fo(X) — log supjazr go(X)] < M(w)
for all r then the argument of Lemma 2 breaks down unless we have

(2.27) B =

(2.28) EyN(c) =
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Assumprion 4'. If w is such that (*) holds then there is a sequence {r,} (which
may depend on w) such that r, — + « and

(a) Eullogfu(X) — log sups -, g6(X)I < « for each n (boundedness in 7
is not assumed);

(b) The limit as 7 — + « of the left side of (*) is equal to \(w). (The limit
exists because the Lh.s. of (*) is increasing in r).

To treat Lemma 2 in the presence of Assumption 4’ observe that, for fixed wp ,
we can take r, sufficiently large depending on ¢ so that @ N {6 ] |6] = r.} can be
added to {U} to form a covering of ®. Turning to (2.20) with the possibility
now that Z; = log supe| »-, ge(X;) we see that all is well provided r, is also large
enough so that the Lh.s. of (*) with 7 replaced by r, is larger than \(w) — e -

For generalizing Lemma 2 to unbounded 2 and ® we make the obvious remark
that it is only necessary to have each w ¢ Q satisfy either (a) or (b) of Assumption
4 or (a) or (b) of Assumption 4.

3. The situations not covered by Remarks 1 and 2 include, of course, those
where the second moment in (a) of each of the two assumptions fails to exist in
the right way. In most regular situations the second moment will either exist
for any choice of r or never exist. Here and in our other assumptions, finiteness
of second moments can be weakened ; recent work by R. H. Farrell replaces ¢* by
convex h(t) with lim;.. h(f)/|f| = « for some of these considerations. The pos-
sible pathology in the behavior of the first moment is that, for some w,

inf, )\1((0, 0) = )\1(0)) > limyaw quogfw(X) - IOg Supje| =r go(X)]

indicating a lack of continuity at a point of infinity in ©.

ASsSUMPTION 5.

(8) EBullogfu(X) — logge(X)]" and -Eyllog supje—s <, go(X) — log go(X)I*
are continuous in w; E,[log for(X) — log f.(X)] is jointly continuous in w and
.
(b) Interchange » and 0, » and 6, f, and g in (a) and the assumption is
continuity in 6 and joint continuity in 6, ¢".

LemMma 3. If @ and © are compact and Assumptions 1, 2, 3 and 5 are satisfied,
then there is a constant M such that

E.N(c) = M|loge|, EeN(c) = M |logc|

for all w and 6. .

Proor. We will only consider E,N(¢). Observe by the first part of the proof
of Lemma 2 that, for each » £ @, there is a family U;, ---, Ugp of open sets
covering ® such thatforz =1, -+, T'(w)

Elog fu(X) — log supy, ge(X)] = M/2
B.[log fu(X) — log supy, go(X)I* < Gi(w) (say) < .

By making use of Assumptions 2, 3, and 5 we can obtain an open set V(w) con-
taining o such that for any o' ¢ V(w) and o” & V(o)
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(2.29) E,[logf.(X) — logsupy, gs(X)] = M/4, i=1,--,T(w)
(2.30) E.[logfw(X) — logsupy, go(X)I < Gi(w) < », i=1,---,T(w)
{V(w), » £ Q covers @ so we can extract a finite covering V(w), - -+, V(w). We
will show that for each j there is a constant M ; such that

(2.31) SUPwev (wp) BuN (¢) = M; |log c|

and then take M = M, + --- + M, .

We will establish (2.31) for j = 1. Fix wy & V(w;). We can now emulate the
proof of Lemma 2 starting at (2.14), replacing V. by V(w:) and e by A:/8, and
using (2.29) and (2.30) to conclude that

T(w1)

(2.32) EuwN(c) £ Eon + Eov* Y, Euyoi
=1

where », is the first time S, > A. = |logc| + v (v is some constant), S, is the
nth partial sum of independent and identically distributed random variables
whose mean is =\;/8 and whose variance is = 7@ Gl () = @ (say) < o,»"
has the same distribution as the first time S, > 0, and o, is the last time B, < 0
where B, is the nth partial sum of independent and identically distributed random
variables with mean larger than \;/8 and variance <2G'. From (2.23) it is im-
mediate that

(2.33) E,»* = exp {G’(S/)\l)zki (l/kz)} = p (say)

=1

for all wy & V(). From (2.25) we obtain

E,0: £ (—16/M\)Eq,[min, 50 By] + ,,Z P.,{Bi — k\/16 < 0}.
=1

The mean of the summands in Bj is always greater than \;/8 and the variance

is bounded as long as wy € V (w;) so we can use Theorems A and B in the Appendix

to conclude that

(2.34) "Eoyoi = p2 (say), t=1,--, T(w1), all woe V().
Similarly, by Theorem C in the Appendix, we obtain
(2.35) E,n < ps|logel, all wy e V(wr),

(2.33), (2.34), (2.35) used in (2.32) give (2.31) for j = 1 and we are finished.

REMARK 4. A refinement of the proof of Lemma 3 using the full strength of
Theorem C in the Appendix can be used to show that the o(1) term in Lemma 2
(and Lemma 2') is uniform in wo(6). This refinement is necessary in the proof of
Theorem 2 (to obtain (2.57)), and we state it as

Lemma 3. Inequalities (2.3) and (2:28) hold with the o(1) term independent of
wo and 00 .

REMARK 5. It will sometimes be possible to establish the conclusion of Lem-
mas 3 and 3’ even when Q and © are not compact. If it can be shown that
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supe E.N(¢) = supg, E.N(c) where © is a compact subset of @ and similarly for
O then Lemma 3 is clearly true. When @, © are disjoint intervals on the real line
and f, , gs are exponential densities with respect to the same measure then such
a result can be established. This is the context of the work of G. Schwarz (1962).
Other examples are easy to give.

The next lemma is essentially due to Schwarz who proved it in the case of ex-
ponential densities. It will be seen that Lemma 4 is not used in the proof of
Theorem 1 although a proof of Theorem 1 can be constructed using Lemma, 4.
We state it here because of its intrinsic interest and because of the intuitive
understanding which it lends to the whole subject.

Let S(c) be the set of points in the sample space where §, says to stop. Let B(c)
be the set of points where a Bayes solution with respect to F (and with ¢ the
cost of observation) says to stop.

LemMma 4. If @ and © are compact and Assumptions 1, 2, 3 and 5 are satisfied,
then there are positive constants o and = such that S(oc) C B(c) < S(7c |loge|)
for all ¢ = co(7) (co(7) s some positive number).

ReMARK 6. What is needed here is the validity of the conclusions of Lemmas
2 and 2’ and the conclusion of Lemma 3.

Proor. The first inclusion will follow from the fact that no Bayes solution would
continue to take observations if the a posteriori loss is smaller than the cost of
taking another observation. Indeed, if z;, --- , x, have been observed, and we
have

f L2(w)f.,,(x1, Tty xn)g (dw) < oC f LI(O)QO(wly Sty xn)"’ (do)
then the a posteriori risk is smaller than

o [ Lu(0)go(zs, - -+ , )1 (d6)

=< 0’0['31

[ oo, w0 @) + [ S, -, 20 (d0)

with a similar relation if §, stops “at the other hypothesis.” How to choose ¢ is

apparent.

The second inclusion requires further argument. If 8,104 ¢ Says continue after
observing x; ; - - + , £, we have (abbreviating f,(z1, - - - , Z») by fo and similarly
with g )

reflog o] [ Lu)gin (@) < [ La()f (do) < o [ La(ogin (0.

Thus, the a posteriori loss when ¢ is the cost, after observing x;, , ---, 2, , is
greater than

[ L)z (o)
[ 2 o) + [ gin(an)

min [1, 7¢ |log c|],
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and is also greater than

[ 10)gin (a0)
[ 126 (e + [ gin (a)

min [1, 7¢ |log c|].

Consequently, the a posteriori risk is larger than
(2.36) ' % min [0 , ap] min [1, 7c [log c[] = 7'c [log |
for ¢ small enough (say ¢ = c).

We will now show, if no 7 yields the stated result, how to obtain a procedure
which is an improvement of the Bayes procedure, and this gives a contradiction.
Suppose B’ is the set of sample pomts where the Bayes procedure stops and

8,e110g o Says continue. If P,(B’) (Ps(B’)) is the measure of B induced by fo(ge)
then we might as well assume that

#(B") = [ Pu(B)E(dw) + [ Po(B ) (d0) > 0.

If 2 ¢ B’ and n is the time the Bayes procedure says stop let us continue to.take
observations until the first » such that

[ Iz, -, i)t (do)
(237) >

[RAGTTCYRIRFARIE)

If we put £"(dw) = fot(dw)/( [ fot(dw) + [ gin(d6)) and n"(d8) = gin(d6)/
(f fot(dw) + f gin(de)) then to caleulate the “conditional” properties (given
(21, -+, x,)) of (2.37) we need only turn to Lemmas 1 and 2 and substitute ¢"
for &. Thus the “conditional” loss (given (1, r - - , %»)) is smaller than (81 + B:)c
and the “conditional” expected number of observations is, for each w,

(2.38) E,N(¢) £ [1 + o(1)] [log ¢|/M(w)
and, for each 6,
(2:39) EoN(c) < [1 + o(1)] [log c|/N2(6)

We are assuming here that £” has Q as its support and that »" has © as its sup
port. This is inessential and (2.38) and (2.39) will hold in any case as can be seen
by applying Lemma 2 to the support of ¢” and the support of 9™ and concluding
(2.38) with )\1((») replaced by inf {\;(w, 8) | 8¢ support of 7"} which is larger

or <e¢c.

S|

than )\1((.0)
Let e(w, Z1, **+ , Tn , ¢) denote the o(1) term in (2.38) and Tet e, r, -,
2, , ¢) denote the o(1) term in (2.39)—the dependence on z;, -+ - , &, is, of

course, through £" and #". From Lemma 3 we know that there is an M (z,, - - -,
xn) Suchthat Iél(w,xl, e .,xn,c)l + I€2(0zx1) e )xq‘)c)l é M(xly ‘e ,xn)
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for all w and all 6. Thus there is a number M, and a set B* — B’ with #(B*) > 0
such that for z ¢ B*

lel(wyxly ---,x,.,c)|+|e2(0,x1, )xw,c)l = M,

for all w and all 4.

Now consider the procedure of (2.37) only for z ¢ B*. We conclude from (2.38)
and (2.39) that, for € > 0, there is a ¢, (which is the same for all z ¢ B*) such
that for all ¢ < ¢

f B N(e)" (do) + f BoN(e)n™ (d6) < [1 + ¢ log ¢l /min (A, Mg).

Thus if 7 is chosen so that 7 > (1 4 €)/min (A1, \z) (see (2.36)) we can con-
clude that, for any z ¢ B¥, the a posteriori risk when the Bayes procedure says
stop is larger than for the modified procedure. This contradiction establishes
Lemma 4.

THEOREM 1. If @ and © are compact and Assumptions 1, 2, 3, and 5 are satisfied,
then {8, is asymptotically Bayes, i.e., limy.o 7o(F, 82 )/r(F, 8;) = 1 where 6; is a
Bayes solution when F is the a priori distribution and c the cost per observation.

ReMARK 7. Referring to Remarks 1-6 it is possible to describe more general
conditions under which Theorem 1 is true.

Proor. Let v1 = fo£(dw)/M(w), v2 = [e 7(d8)/A2(8). From Lemma 2 we
know that, for each w ¢ Q,

lim supe-o EuN(¢)/|log ¢| = 1/M(w)
and from Lemma 3 we have E,N(c) = M [log ¢| for all w ¢ Q. Consequently

. 1 . E,N(¢)
hmsupc*om‘/;zEw,N(c)E (dw) = _/;hmsup,:,.o-m—s(dw) = 7.

Doing the same for © and letting ExN(c) = [o E N (¢)£(dw) + [o EeN(c)n(d8)
we obtain :

lim supe.o ErN(c)/|loge| = 71+ 72
This together with Lemma 1 yields
(2.40) lim supe.o 7o(F, 8:)/c [loge| = v1 + 72

If {4} is not asymptotically Bayes we would have lim inf,.o 7.(F, 87 ) /ro(F, 6.) <
1 — 2efor some positive ¢ which implies, due to (2.40), that there is a sequence
{c4} with ¢; — 0 such that

(2.41) re;(F, 83;) < (1 — 2€)e; [log il (v1 + 72)
and, consequently,
(2.42) ErN*(ci) < (1 — 2€) [log ¢| (v1 + v2)

where N*(¢) is the number of observations required when 0¥ is used. (2.42)
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implies that either [ E,N*(c;)&(dw) < (1 — 2¢) [log ¢i| yior [ EsN*(c:)n(d) <
(1 — 2¢) [log ci| vz - Suppose the former. Then

Ew N *(ct‘) 1 :I .
f [ |10g cil xl( ) E(d(.l)) 6‘)’1 )
while from Lemma 3, Assumption 2, and the compactness of ,
B N*(e:) _ 11—
[log cil Ai()

where My < . Now, letting @; = {w | E.N*(¢;) — (1 — ¢) [log ¢il/M(w) < 0},

we have
E.N*(e;) (1 —¢)
o) < [ [BE) - U9 ]s ) 5 —en,

which implies that £(2;) = evi/M; = « (say). Let Pi(c) and Q5 (¢) be the proba-
bilities of wrong decision when, respectively, » and 8 are true and o; is the de-
cision function used. From (2.41) we know that

Pi(c) (v +7)
¢: [log ¢ ay

= M, (say),

SUPw,:

£(dw) =

(a2 is defined in Assumption 1) Let o > 0 and ¢ > e . It is possible to find a
number K; such that A; = {w|Ph(c,) = ch,llog c,l has the property that

£(A;) = £(Q) — & ;infact, we cantake Ky = (v1+ 72)/(ae). Let Bi = 2N A,.
Then £(B;) = & — e > 0 for each 7. Since £(Q2) < « and the B; have uni-
formly positive £-measure, it is easy to see that there is a subsequence {7, , % , - - -}
of the positive integers such that B;, N B;, N --- # ¢. Since (2.41) is valid for
the subsequence {c;,} of {c} we might as well assume that {41, 42, - - -} is the set
of positive integers and, therefore, N B; # ¢. Pick we N B;. By definition of Q;
and 4 ; we have, for all 7,

(2.43) E,,N*(c;) £ (1 — €)|log ¢il/M(wo)
(2.44) Piy(ci) = Kc: [log ci.

Let @ = (820 | (1 — ¢)/M(wn) < (1 — ¢/2)/M(wn , 6)}. By the continuity of
M(w, 0) in 6 we have ©; non-empty and open and consequently n(®;) > 0. Just
as the sets A; were obtained above, we can find numbers K; and K3 and. sets
G:(i=1,2, ---) such that G; € O;, 7(G;) = e > Oforall s, and EoN*(¢;) <
K, |log cil, Qs (cz) < K;lloge, for 0 & G; . Again, as with {B;}, we can find a
subsequence of {G4} which has non-empty intersection and, for simplicity, we can
assume NG; # ¢. Choose 6 € G; and we conclude that

(2.45) EoN*(¢;) < K |log ¢
(2.46) QOo(ct = K IIOg C;l
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and, furthermore, from the definition of ©; and (2.43), we obtain
(247) E,,N*(c:) < (1 — ¢/2)|log ¢il/M(wo, bo).

Consider the problem of testing wo vs. 6, with cost of observation He, (H > 0
and will be chosen below), 0-1 loss function, and a priori probabilities « and
1 — o (to be chosen below) on wy and 6, respectively. If 6; denotes the Bayes
solution for this problem then, since & is a sequential probability ratio test
(SPRT), it follows from the properties of SPRT’s (which could be obtained
from the previous results of this paper or from Wald (1947) or Chernoff (1959))
that

arms (@0, 8) + (1 — a)rae, (6o , &)
~ aHe; IlOg HC,'I/)\l(wo 5 00) + (1 - a)Hc,- IlOgHC;l/Xz(wo y 00).

Considering 87; as a test of these two simple hypotheses in the obvious way, we
obtain from (2.44), (2.45), (2.46), and (2.47) that

orae; (w0, 00) + (1 — @)rae; (8o, 05;) < (aKy + (1 — a)Ks)e, [log ¢yl
+ HC,' IlOg C,;I [a(l - 6/2)/)\1(0)0 y 00) + (1 - a)Kgl.

Now choose H such that K; + (1 — ¢/2)H/M(wo, 00) < (1 — ¢/4)H/M(w0, 60),
and then choose @ < 1so that (1 — a)Kz + (1 — a)K:H < (aHe/8)/M (w0, 60).
This choice of H and « makes the right hand side of (2.49) smaller than

(1 — ¢/8)aHc: |log ci| (1 — ¢/8)aHec; |log He
Ai(wo, 6o) i (wo, 6o)

and this leads to a contradiction of (2.48).
COROLLARY. If {8:} s any family of procedures for which

(2.48)

(2.49)

(2.50) Supw ro(w, 8.) + sups r.(6, 8;) < Kc |log c|

for some constant K, then, letting N "(¢) be the number of observations required by
8. to terminate,

(2.51) EJN'(c) 2 [1 4 o(1)][log ¢|/M(w) Jor all o,
(2.52) EoN'(c) = [1 + o(1)][log c|/A2(6) for all 9,
which imply that

(2.53) ro(w, 8) Z [1 4 o(1)]flog ¢ /M(w)

and

(2.54) ro(6, 8:) = [1 + o(1)][log c|/Ms(0).

REMARK. 8. The uniformity in (2.50) is unnecessary; it is sufficient to have
re(w, 85) and 7.(8, 8;) of order ¢ [log c| for each w, 6.
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Proor. If (2.51) fails for wo (say) then there is a positive number ¢ and a
sequence {cg with ¢; — 0 such that

(2.55) EoN'(c) < (1 — €)|log cif /N (wo).

We can now argue as in Theorem 1 since (2.44), (2.45), and (2.46) follow im-
mediately from (2.50) and (2.47) follows from (2.55).

It is important to note that the family of procedures {8,} depends on F and
that the asymptotic Bayes property of {4.} is with respect to the same F. It is
easily seen that {4.} is also asymptotically Bayes relative to any G whose support
is the same as that of F and for which dG/dF is bounded. However it would be
desirable to be able to state that {8} is asymptotically Bayes with respect to
every @ having the same support (namely, @ U 8) as F, without any further re-
strictions. To be able to state such a result it is sufficient to prove, in view of
Lemma 3’ and Theorem 1, that

(2.56) sup, P.(c) + sups @s(c) = o(c [log ¢|).

Of course, if @ and © are finite, then (2.56) follows trivially from Lemma 1, with
O(c) for o(c |log ¢|). Our methods do not seem sufficient to prove (2.56) in gen-
eral, but we are able to achieve essentially the same end by obtaining the same
result (see (2.59)) for a family {6.} which still satisfies the conclusion of Lemma
3’ (see (2.60)) and which differs only slightly from {8;} (essentially by using
slightly larger stopping bounds; Albert (p. 798, (c)) discusses a similar difficulty
and device in his treatment). We require some slight further restrictions on {f.}
and {gs} to obtain this result on the existence of a family {6;} which satisfies this
asymptotic Bayes property for all G having @ U O as its support. To this end
let us assume

AssumpTiON 6. For each we, 0e0, E‘,,[sup,o'_oK, gor(X)/fuw (X)] is finite for
some p > 0 and all & ln some nexghborhood of w. is continuous at p = 0, and
is continuous in w and '.

Since B, [go(X)/fo(X)] = 1 and E,[ge(X)/fo(X)]" is convex and not constant
in & € [0, 1], we know that for ¢ small enough there is an h, with A, — 1 as e — 0
such that Eu[ge(X)/fo(X)]* < 1 — 2¢ Then by Assumption 6 there is a p. and
a neighborhood V. of w such that

Ew~[sup|a'—o|<p. go'(X)/fw'(X)]h. S1—ce

for all o ¢ Ve and o” ¢ V.. Taking advantage of the compactness of ® and Q in
the same way that we did in the proofs of Lemmas 2 and 3, we can find open
sets Uy, ---, U 7. which cover @, and open sets Vi, - -, Vi, which cover @,
and a number k¥ such that

, 8up  Borlsupo, go(X)/fu (¥ < 1 — ¢

w e i‘l”’& 7 .
forj=1, - Me,z—-l T,,andmthh*—>1aSe—>O
If we deﬁne 6” = 83 Where ¢ = ¢/™ then, from Lemma 3’, we have
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(2.57) BN (5% <.[1 + o(1)]llog cl/M(w)h*

with the o(1) term going to zero with ¢ and uniformly in w. A similar relation
holds for EsN (8¥.). To calculate P,(8%.) observe that, as in the proof of Lemma
2, we have, for all o’ £ V;,

Py(st) < P‘,,{ [, log fu(Xy) £(%)

57y — Supsi<r, I; log supy, go( Xx)

1
< (;L%C + |log £(V;)| for some n}
Hence, putting
=3 [ llog £u(X) — log supo, go(X:)] Sved
k=1 Jv; (VJ)

we have, for all ' € V;

Pco'(at,e) Z ZP {Sin < log C/h* + IlOg E(VJ)I

(2.58) =1 =t
= 33 Putexp (—h2Sw) > (1/6) exp 4% log &V,
Now,
E, exp (—h¥Sim) = [Eu exp (—hSu)]"
and

E. exp (—hiSa) £ Ew fv ) [Supj?(gfol()Xl)]h: 'EEE?;:))

EWo) _ (f_ .
() - T

and this, used in (2.58) via the Chebyshev inequality, yields
Te ’
P (88 S 2 2 (e/BOVIH (1 — " = T/ de(V)I"

If ‘we let e depend on ¢ (we will write e) in such a way that T’/ elE(V )]
o([log c|) as ¢ — 0 and ¢ — 0 as ¢ — 0, then we obtain, for the procedures

80 = 66601

=/ 1=-9
Vi

(2.59) - sup, Pu(8:) = o(c [log ¢]);
and, since k¥, — 1 as ¢ — 0, we will also have from (2.57)
(2.60) EN(3:) = [L+ o(1)]log el/M(w)

with the o(1) uniform in w. A similar result for Q‘o(aﬁ) and EsN (8;), when com- (
bined with the above, yield
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TueoreM 2. If © and O are compact and Assumptions 1, 2, 3, 5, 6 are satisfied,
then, for a given a priori distribution F whose support is @U O, the family {6e) just
defined satisfies (2.59), (2.60), and their analogues in ©, and is therefore asymp-
totically Bayes (as the cost ¢ — 0) with respect to every a priors distribution G having
the same support as F.

3. Indifference region, two decisions. With @, © as before let us introduce an
indifference region I. For « ¢ I let h, denote the density of an observation. Let F
be an a priori distribution on @ U ® U I and let ¢ (resp. #, ¢) denote the restric-
tion of F to @ (resp. ©, I'). The loss function on © and O satisfies the assumptions
of Section 2, and it is zero on I. (For the sake of notational simplicity, we will
carry out the details below when the loss is zero-or-one, but the proof in general
is the same except for obvious changes.) Let £ = fn fo(x1, -+, Za)E(dw),
1 = fego(z, -+, 2a)n(d0), ¥ = [1ha(z1, -+, 2)¥(da). Let An(a) =
inf, Eflog he(X1) — logfo(X1)], Ae(a) = info Euflog ha(X1) — log ge(X1)] and
define I, = {a e I | An(a) 2 Ap(a)}, 1 = {a el | An(a) = A (@)}

We may as well assume, and do, that F has @ U @ U I as its support. Our
regularity assumptions are the following:

AssumprioN ITIA. @ U I; and © U I, are compact.

Assumprion ITIB. The assumptions of Section 2 hold when (2, ©) of Section 2
is replaced here by (@ U I;, ©) and also when (2, ©) is replaced here by (2,
O U I,). (In this replacement of @ by @ U I,, f, on @ is replaced by f. on
together with h, on I, ete.)

REeMARK 9. As in Section 2, the compactness can often be weakened. The form
of the assumptions as stated above is designed to include common cases where I
is not closed but where its closure contains points of @ and ©. For example, in
the case of normal random variables with variance one and mean g, in testing
Q:a < p £ —1 against ©:1 < p £ b with indifference region —1 < p < 1, we
obtain I; = {—1 < u £ 0} and I, = {0 = u < 1}, neither of which is compact,
but the above assumptions are satisfied.

Define &; as follows: take an (n + 1)th observation if

(31 £/ 49" 9@l > ¢ oand qP/E + 0+ >
stop and choose @ (resp., ©) if
(32) ﬂ(n)/[g(n) + ﬂ(n) + ‘l/n] <c¢ (resp., g(n)/[g(n) + "7(") + ‘#(n)] < C)

and £ > 9™ (resp., £ < ™), randomizing if £ = 7™. The symmetric
form of (3.2) is not really necessary; when both inequalities of (3.2) are satisfied,
either decision could be made. (The form of (3.1) and (3.2) can be altered to
reflect a posteriori loss, as in Section 2; again, this is a trivial alteration which is
not even needed in view of the identical asymptotic behavior of the present and
altered forms.) '

Since we are only concerned with probabilities of error when the true state of
nature is either in Q or ®, Lemma 1 is easily verified. Let N;(¢c) be the number of
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observation for §; to terminate. When w £ @ is true, E,N;(¢c) < E.N(c) where
N(c) isthe first time ™ /[¢™ + 2] < ¢ or, equivalently, £™ /9™ = 1/¢ — 1.
Now we can use Lemma 2 (which will work despite the fact that £(Q) + 7(0)
< 1;it is only the positivity of £(2) and 5(®) which is relevant) to conclude that

EuNi(c) = [1 + o(1)] |log ¢|/M(w)
where )\, is as in Section 2. Similarly we get
EN1(c) = [1 + o(1)] [log c|/A2(8).
For a ¢ I, , we have E,N;(c) < E.N'(c) where N'(c) is the first n such that

EM/E™ 4+ §™] < ¢, where ¢ = [1, ha(@1, -+, 2a)¥(de). Again we use
Lemma 2 to conclude that '
E.Ni(e) £ [1 4 o(1)] |log ¢|/Ar(a), aely

and, similarly,
E.N:(c) = [1 + o(1)] |log c|/An(a), acel,.

Lemma 3 follows as before, noting again that we are always dealing with com-
pact sets; for example, if the true state of nature is « ¢ I; , we are dealing with
Q U I, and ©. Lemma 4 also follows as before (but, again, it will not be used in
proving the Theorem).

In the required modification of the proof of Theorem 1, we must now consider
both the contingencies of Section 2 and also the pos51b111ty of [1 E.N*(c:)¢(da)
being too small, where N*(c;) denotes the number of observations requlred by
the Bayes solution to stop when c; is the cost. As for the former, since &, is a
test of @ vs. ©, we can conclude from Section 2 that

[ BNH© () + [ BNE(o)n (dn)
33) ° °

> [1 + o(1)] [log cl[ E)‘(l((i;’))-}' ”)‘Eg’))].

As for the latter, to obtain the result

(34) [ BNI(oW (da) 2 11+ o()]log [ a‘bn((f;)xn(a»

we require Lemma 5 below. This lemma, which obtains the required results in
the case where each of 2, ®, and I consists of -one element, is used to obtain
(3.4) in the same way that the analogous results concerning the SPRT were
used to obtain (3.3) in Section 2. Putting these results together as in Section 2,
we obtain

TrEOREM 3. Under the assumptions of the present section, with &, replaced by
8%, the conclusion of Theorem 1 holds.

We also obtain

CoRoLLARY. Under the assumptions of the present section, if {8;} is any family of
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procedures for which supw ro(w, 8;) + sups 7.(6, 8,) + sup. r.(e, &) = Kc |log ¢|
Jor some constant K, then (2.51) anc (2.52) (and thus (2.53) and (2.54)) hold,
and also

[1 4+ o(1)] [log ¢|
max [An(a), M2(e)]”

In fact, all of the Corollary except for (3.5) follows from the Corollary to
Theorem 1 (Section 2) and the fact that any test in the present context can be
regarded as a test for the problem of Section 2. Lemma 5 yields (3.5) in the same
way that properties of the SPRT yielded (2.51) and (2.52) in Section 2.

Remark 10. The analogue of Remark 8 applies here.

We now turn to Lemma 5. We shall state and prove, for use in Section 4, a more
general result than that needed in the present section, where we need consider
only three states f, g, h. (We have dropped subscripts for convenience.) The
specialization of Lemma 5 to the present case is then obtained by putting & for w;
f for 6, g for 6., ““decision ¢’ for the decision that 6, is not the true state, and
m = k = 2; Condition (3.7) is vacuous. We then obtain the desired conclusion
that, for either &; or for the Bayes stopping rule,

(3.6) EwN(c) 2[1 4 o(1)] [log ¢|/max (A, Ar).

(The analogous results for f and g, which have already been stated in a more
general context in the Corollary, followed from a comparison with the SPRT;
they can also be obtained from Lemma 5, which generalizes to certain multiple
decision problems the particular SPRT optimality results it states when m = 1,

(3.5) [1 4+ 0(1)] ¢ supa 7o(a, 62) = sups E.N'(¢) =

k=2)
Lemma 5. Consider any k-decision problem where the observations { X3} are taken
sequentially and are independent and identically distributed. Let w, 61, -+ , Op

(m = k) be any m + 1 (not necessarily distinct) states of nature with corresponding
densities f, g1, *++ , gm . Suppose M(w, 0;) = Eflog f(X) — log g«(X)] > 0 and
EJlog f(X) — log g«(X)* < © for i = 1, -+, m. Put A\ = max; M w, 0;).
Suppose {6; ;7 = 1} is a sequence of decision functions satisfying

k
(3.7) >~ P.{8; makes decision t} = o(1) agj—

t=m+1
(3.8) Py, {8; makes decision 7} < Ac; |log ¢l

for all i, all j, where A is some positive constant and c;— 0 asj— . ((3.7) is empty
if m = k.) Let N(j) be the number of observations required by 8; to terminate. Then
E,N(j) = [1 + o(1)] [log ¢,|/N as j — <.

Proor. Write N for N(j) (there will be no.confusion since j will be fixed for
each calculation), and let ¢ > 0, Put Siv = D oy [log g:(X,) — log £(X,)],
D;={8w=—(1—c¢)|logcil}, Ain = {N = n, §; selects decision ¢} (¢ = 1,
-+, m). We are assuming here, merely for convenience, that each 8; is non-
randomized. Put B;, = D; N A, . The existence of X (w, §;) implies that on the
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set where g; is 0, f must be 0 a. e. () so that, following Lemma 4 of Chernoff, we
have

P,{6; makes decision ¢, D;} f I1 7(z;) du®™
n—l Bip j=1

,:1[ fI [7(x;)/g:(2)gs ;) dp™

Bip j=1

f eV [T gizs) du(")
n==1 Bin

= Z Py, {Bi} < ¢;7'Ps,{5; makes decision ¢} < Ac; |log ¢l

n=l -
where the last inequality follows from (3.8). Thus
(3.9) P,{6; makes decision 7, D} = o(1) asjr— o

We might as well assume that

(3.10) Z P.{5; makes decision #} =

=1
since, otherwise, we would have E,N = + o,
Now

(311) PN < —(1 — 2¢) log ¢;/A\} = Z ofN <— (1 — 2¢) — log ¢j/A;
Sav < (1 — €) logej + PuDiN -+ N Dy}

From (3.10), (3.9), and (3.7),

PiD;N --- N Dy} = Z P.{D;, §; decides 2}
(3.12) =t k ,
+ > P.{s;decides §§ = o(1)
temtl
as j — o. Also, for r > 0,
PN < —(1 — €) log ¢;/\, Siv < (1 — ¢€) log e}
(3.13) =< Pu{minj<a<r Sin < (1 —¢) logej}
+ PufSin/N < —[(1 — €)/(1 —/2€)] (M(e, 6:)); N > 1}.

The last probability can be made arbitrarily small by taking r sufficiently large
and using once more the result of Erdés (1949), while the first probability on the
right side of (3.13) goes_to zero for fixed r as j — . Hence,

(3.14) PN < —[(1 = 2¢)/A]1logec;; Saw < (1 — €) log e} = o(1)
asj — . Thus, using (3.14) and (3.12) in (3.11), we obtain
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(3.15) PN < —[(1 — 2¢)/A\]log c;} = o(1)

as j — o, which proves Lemma 5.

The conclusion of Lemma 5 when k = m = 2 is related to a result of Hoeffd-
ing (1960) whose concern, in this situation, is to find lower bounds for E,N, and
one of his lower bounds (to be precise, (1.4) in Hoeffding’s paper) has the
asymptotic value given by Lemma 5 when (3.8) (of Lemma 5) holds. Hoeffding’s
conditions are stronger than ours so that his result does not include Lemma 5.

The reader may find it illuminating to consider the specialization of these
results to the three-state problem discussed in Section 1 in connection with
Figure 4. Writing U; = log[f(X.)/h(X:)], V; = loglg(X:)/h(X)], 8n = 21 U;
and T, = D7 V; (with S, = T, = 0), the Bayes continuation region, by the
analogue of Lemma 4, is easily seen to be

(316) max{ ISn - Tn,’ '—Sn ) '—Tn} < |10g C, (1 + 0(1))a

for any f, h, g satisfying our conditions. If f, &, g are of exponential type with
parameter values increasing in the order f, h, g, then S, , T, and n are linearly
related, and the unbounded polygonal region (3.16) becomes Schwarz’s
(bounded) pentagon as exemplified by 8 of Figure 4 in the symmetric normal
case. ‘

Again, as in Section 2, we are able to establish the analogue of Theorem 2 for a
family {5.} obtained by modifying {8}, rather than for the original family
{6t}. In fact, there is now an additional difficulty: we cannot immediately
refer to the argument preceding Theorem 2 because I is not necessarily sepa-
rated from @ U © (see the example cited earlier in this section). We get around
this by defining &;, to be the test of Section 2 with the same @ but © replaced by
® U I,, and define 82, to be the test of Section 2 with the same ® but with Q
replaced by @ U I,. Let 5. be the procedure which (1) continues observing if
both 8;. and 8, continue, (2) stops and selects Q if 6. stops and selects @ U I,
while 8,, continues or stops and selects 2, (3) stops and selects O if §;, stops and
selects © U I, while 8., continues or stops and selects ©, and (4) stops and ran-
domizes in all other situations. (In the case of finitely many possible states of
nature this “simultaneous test” is essentially like &, or the procedure described
in Figure 3; in the nonseparated case, it will differ from &.) It is now possible to
modify &, (by modifying 8. and &, in exactly the way 8, was modified in the argu-
ment leading to Theorem 2) to obtain 8,” with the desired properties.

We also observe that the family {5;} whose construction was just described
for a given F with support @ U ® U I has an asymptotic risk function which, on
any subset I: of I, is identical to that for the analogous asymptotically Bayes
family relative to an F’ with support @ U © U I'. Thus, the family {8,"} is also
asymptotically optimum for the problem where I is replaced by a smaller I " (although
of course {8;"'} need not be optimum for 2 U ® U I'). This optimality of the given
family for problems with reduced indifference region, which was discussed in the
example illustrated by Figure 4, is to be contrasted with the loss of optimality
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which occurs if @ or © is changed, except in certain cases such as those of ex-
ponential families as treated by Schwarz, and for which one family of procedures
is optimum whether @ = {w:w = a} or @ = {wiw = ).

It follows from this remark on the effect of I that, in designing sequential
procedures for large sample applications, we may as well take I to be so large as
to include even the most remotely suspected indifferent possibilities, as long as
our assumptions remain satisfied and computations remain tractable. “Robust-
ness” can easily be built into indifference region performance from the outset,
in the asymptotic theory. (Of course, the rate of approach to optimality may
depend on the size of the chosen I.)

TaEOREM 4. The family {6,"} whose construction (with respect to any F with sup-
port QU O U I) was just described satisfies Py {wrong decision} = o(c |log ¢|) and

EyN'(c)/log ¢| = [1 + o(1)]r.(¢, 8.7)/c |log c|

1+ o(1)]/M(8) ifpeQ,
= <[l + o(1)]/M(9) ifpe®,
[1 + o(1)]/max [An(¢), Ae(¢)] ifoel,

where the o(1) terms do not depend on ¢. Hence, {6,"} is asymptotically Bayes rela-
tive to every a priort distribution G with support QU © U I' where I' c 1.

4. k-decisions, with or without indifference and semi-indifference regions.
The generalization of Section 2 and 3 to a k-decision problem is quite straight-
forward. First assume no indifference region, and let 2;,7 = 1, - -+ , k be & dis-
joint compact subsets of a Euclidean space and for w ¢ U%_; ©; let f,, denote the
density of an observation. Let F be an a priori distribution on U%*_; @; and
let & be its restriction to ;. For the sake of simplicity we shall describe the
results when the loss is 0-1, the modifications needed for the more general case
being obvious upon reference to Section 2. Let £;,,,. be the a posteriori probability
of Q; when ,, --- , x, is observed. Let . be the procedure which stops at the
first n for which £;,,,. > 1 — ¢ for some ¢ and selects that Q; for which ¢, , >
1 — ¢ (or randomizes in any way if there are several such ¢’s, which could only
occur if ¢ > 1/k). The appropriate assumptions are obtained from those of
Section 2 by replacing @ and © by 2; and U ,.; Q; , respectively, when the true
state is an element of Q; (in place of @), for each ¢ = 1, 2, - - - | k. (For example
we define M(w) = infyo, E, log [fu(X1)/fo(X1)]if w £ Q;.) It can then be proved
that {é;} is asymptotically Bayes, i.e., the conclusion of Theorem 1 holds for
{8.}. The key is to regard 3. as a test of ©; vs U ;.; @;when concerned with E,N (c)
for w £ Q; . In fact all arguments (except Lemma 1, which is trivial) can be reduced
to those of Section 2. The Corollary and Theorem 2 follow similarly. The problem
can also be treated through simultaneous tests, as exemplified in Figure 1.

When a single indifference region I is present (so that, for each ¢, if the true
state is in Q; (resp., I), the loss is positive (resp., 0) if decision d; is made, where
J # 1), the assumptions and methods of Section 3 carry over directly. There are
now k sets I; = {a el |Aj(@) = min; Ny, (a)}, ete.
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For the more general situation when there may exist several “semi-indifference”
regions, i.e., regions where there may be several possible correct decisions and
also several possible incorrect decisions, we only need slightly more care to see
that our methods carry over. Let @, denote the entire parameter space. For
convenience we again take the loss function to be 0-1.For1 =51 < < -+ <
im £k, 1 = m = k define Q;,...;,, = {weQ | L(w, %) = -+ = L(w, tn) = 0;
L(w,j) = 1if jef{d, -+, %u}}. Thus, Q;...;, is the set of w’s where the deci-
sions 71, * * + , tm are correct and all others incorrect; it may or may not be empty.
When m = k, ..., = Q... is a “true” indifference region while, if 2 < m < k,
Qi -.-4, 18 & “‘semi-indifference” region. Let B; = {0 | L(w,¢) = 0}, =1, --- , k.
Let F be an a priori distribution on Q. Let F,,. be the a posteriori distribution
after n observations when z = (a;, - -+, ,) is observed. Let us define 4, to be
the procedure which stops as soon as F, ,(B,) > 1 — ¢ for some ¢ and makes that
decision ¢ for which F, ,(B;) > 1 — ¢ or randomizes (in any way) among all
decisions ¢ for which F,.(B;) > 1 — c¢. Let N;(c) be the first n such that
F..(B;) >1—cand N;(c) = o if no such n exists, i.e., N;(c) is the first n such
that

@) [ s, w)F @) [ [l e @0) > 1 -

Then, if N(c) is the number of observations required by &, to terminate, we have
(4.2) N(c) = min (N1 (c), +++, Ni (¢)).

For this procedure §, it is easy to check that the “loss” part of the risk must
be O(c), i.e., the analogue of Lemma 1 holds here. In fact, it follows, just as in
Lemma 1, that

fn P, {8, makes decision 7} F (dw) < c.
0—Bg

To proceed further we need to make assumptions and definitions that parallel
those of Section 2.

ASSUMPTIONS.

1. Mw, 8) = E, [log f, (X) — log fo (X)] is continuous in both variables
simultaneously. (f., (fo) denotes the density when the true state of nature is
w (6).)

2. Mo, 8) = 0if, and only if, w = 6.

3. The obvious generalizations of Assumptions 3 and 5 of Section 2.

4. Qyis compact, Qo — B, is compact for each 7, and F(Qy —B;) > 0 for each <.

REmARK 11. 1.and 2. are stronger than necessary; comparison with Assump-
tions 1 and 2 of Section 2 will provide weaker assumptions.

We define, for w & Q;...4,,

(4.3) Mw) = max min A(o, 0)

1<57sm Oeﬂo—-B,-i
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Since {Qi,...;,} are disjoint sets there is no vagueness in this definition. Note
that, when there are two possible decisions and a single indifference region as in
Section 3, this definition is in agreement with the definition there of N(a) =
max (An(e), A(e)). The compactness of @ and @ —B; and continuity of
A w, 0) guarantees that min A(w) > 0.

From (4.2) we have, for v € Q;,...,, , that

(4.4) E, N(C) = minléjém E, Nij(c)-
From (4.1) it follows that N; (c) is no greater than the first n for which

[ e, - wP@e) /[ g, e B >

The methods of Lemma 2 enable us to conclude, therefore, that, for w ¢ B;,

(4.5) EuNie) = [1 + o(1)] [log ¢l/ min A(w, 0).

Since £ Q;;...;, implies that w e By, N -+ N By, , we can conclude from (4.4)
and (4.5) that

(4.6) E.N(c) = [1 + o(1)] [log c|/N ()

as ¢ — 0, for each w & Q;,...s,, . Thus the analogue of Lemma 2 is established. To
obtain the analogues of Lemmas 3 and 3’ we can proceed as follows: Define

C; = f{w|Mow) = in Ma, 0)}, i=1--,k

0eQ9—B;

Some, but not all, C'; may be empty; the C;’s may not be disjoint; the union of
the C’s is Q. Each C; is closed (and therefore compact) because of the con-
tinuity of A(w, 8). Since A(w) > 0 for all w we have C; N @ — B; empty for
each 7. Now argue, as in Lemma 3, by suitably covering C; and @ — B; as ©
and © were covered in proof of Lemma 3 to obtain E, N(c) < M; [log ¢| for all
weC;. Taking M = max (M, -+, M) we obtain E, N(¢c) < M [log ¢| for
all w e Qo . .

To prove the résult of Theorem 1, we note that it follows, as in Theorem 1,
that if {6,} is not asymptotically Bayes then there is a sequence {c;} and a point
w0 € Q.o.w (Or some ,...;,, which for convenience of notation we take to be
Q1...m) such that, for the sequence of Bayes solutions {57;}

(4.7) Eay N*(cj) £ (1-2¢) [log ¢;l/N(wn)

for some ¢ > 0 and all j, and .
k

(4.8) Y. P., {6, makes decision §§ < Ac; [log c,|

te=m+1 :
for all j. (If woeQ...r then (4.8) is vacuous). Suppose for convenience that
wo € Cy (wo must be in C; U - - - U C,). Then, again as in the argument of Theo-
rem 1, we can find 6, £ @y — By such that A(wo, 6:)) = [(1 — €)/(1 — 2¢)A(wo)
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and Py, {6;; makes decision 1} < Ac; [log c¢;| for all j. (Here and in (4.10) a
subsequence of {c;} is rewritten, for convenience, as {c;}, just as in the proof of
Theorem 1.) We can continue and find, in addition to 6;, (not necessarily dis-

tinct) values 6, - - -, 8, with 6; € 2y — B; such that
(4.9) Mwo, 0:) = [(1-€)/(1-2€)IN(w0)
(4.10) Py, {8:; makes decision i} < Ac; |log c;l

for all 5 and 1 £ ¢ £ m. We now apply Lemma 5 to 8; ; With wo playing the role
of w in the lemma (the conditions of the lemma are satisfied because of (4.7),
(4.8), (4.10) and our assumptions) to obtain, with the help of (4.9),

*, [1 + o(1)]]log c;| |log ¢
Bt 2 ey = T+ oI R

This contradicts (4.7) and thereby establishes the result of Theorem 1 for {4}
as defined above (4.1).

The results of Theorems 2 and 4 can be obtamed by a modification of {4}
like the one made in Section 3. In fact, for all pairs ¢, j (+ < k, § = k) such
that C; N B, is not empty, let 8;;, be the test of Section 2 of the closure
(C. N B;) of C; N B,against Oy — B; (recall that C; is defined after (4.6)). We
now proceed by stopping the first time one of the §;;’s terminates and ac-
cepts C; N B; and we make decision j (or randomize among those j’s for which
there are several pairs 7, 7).

THEOREM 5. With AM(w) as defined in (4.3) the resulis of Theorems 1, 2, 3, and 4
and their corollaries remain valid in k-decision problems with or without indiffer-
ence and semi-indifference regions.

The remarks in Section 3 concerning the dependence of the asymptotically
optimum procedures on the support of the a priori distribution pertain here
with the role of the indifference region played by ..., . The semi-indifference
regions cannot be incorporated because (roughly) they affect the asymptotic
value of E,N whereas the indifference region, as pointed out in Section 3, does
not; and, in addition, the semi-indifference regions appear in the ‘“loss” part of
the risk whereas the indifference region does not.

We conclude the discussion in this section by considering the three-decision
problem treated by Sobel and Wald (1949). The density functions are normal
with (unknown) mean 6 and variance 1. Numbers 8, < 0, < 6; < 0, are specified
and the problem is to decide whether8 < 6,, 6, < 8 < 6;, or6 = 64, with indiffer-
. ence between the first two decisions if the “true” 6 ¢ (6., 6), and with indiffer-
ence between the second two decisions if 6 € (65, 84). Thus, in the notation of this
section, we have @y = (— o, + o), & = (—», 6], % = [0z, 0], % = [0s, ©),
912 = (01 , 02), 923 = (03 , 04), and 913 and 9123 are empty ACCOI‘diIlg to (4.3)
AB) = (0 — 6,)%/2 for e, AN(8) = (60 — 65)°/2 for 0 £9Q;, A(§) = min
{(6 — 6,)%/2, (6 — 6,)%/ 2} for 6 £ 2z, etc. The procedure of Sobel and Wald is to
test simultaneously (by sequential probability ratio tests) 6, against 6, and 6;
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against 6, and to decide that 8 < 6, if 6; and s are accepted, to decide 6, < § =
6, if 6, and 6; are accepted, and to decide § = 6, if 6, and 6, are accepted (it is
impossible to accept 6 and 8, simultaneously under their restrictions). By com-
paring our asymptotic value of EsN(c) with that of their procedure (e.g. (6.8)
or (6.9) of Sobel and Wald) it becomes clear that their procedure is asymptotically
optimum if and only if §, = 6; and the a priori distribution is concentrated on
{61, 6., 04}. Moreover, when § = (6; + 02)/2 their procedure gives E,N'(c)/
|log ¢| — « where N’(c) is the number of observations required by the Sobel-
Wald procedure to terminate and give error probabilities of order O(c). This last
remark is analogous to the behavior of the SPRT for the problem of Figure 4.

6. The design problem. In this section we consider the problems of Sections 2,
3, and 4 when there are design questions developing from the additional feature
that, at each stage of observation, the decision to take another observation is
accompanied by a choice of an experiment (i.e., a design) to perform in order
to make the additional observation. We shall always assume that the same design
choices are available at each stage of observation. As mentioned in the summary
and introduction, our aim here is to show that there are sequential procedures
(each of which, of course, includes the choice of design at each stage) which can
be described briefly, can be proved asymptotically optimum easily, and can be
used in applications with a minimum of calculations and switching of designs.
These procedures make use of an extension of the idea, first implemented by
Wald (1951) in certain simpler estimation problems, of taking a preliminary
sample which (when c¢ is small) is large but is small relative to the total expected
sample size, using this preliminary sample to estimate the ‘“true” state of nature,
and then deciding once and for all on the future course of experimentation.
Before introducing detailed design considerations, let us make this idea more
transparent. Here and throughout Section 5 we will give details only for the
design problem associated with Section 2; the arguments in the context of Sec-
tions 3 and 4 will be quite similar.

Suppose first, to make the statement simple, that there are a finite number k
of possible states of nature. For 1 < ¢ < k suppose {6¢} is a family of procedures
(including choices of designs) such that, for all 7 and j,

E;N(8:) = O(|log c]),
(5.1) E;N(8.) = uillog el [1 + o(1)],

P; {wrong decision using 6; } = o(c log ¢).

Let d; be the “decision” that 7 is the true state (this is not necessarily the original
decision space). Let {5} be any family of procedures for which

E; N(d) = o(|log ¢]),
P, {52 reaches decision d} = 1 — o(1),

for 1 < 4,7 < k. Consider the procedure &; defined as follows: First use o0 If

(5.2)
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“decision” d; is made, then use 8, (as though starting anew; we assume the same
design choices are available at each stage). The final decision is reached using
8: . Then, supposing for the moment that each observation costs the same
amount ¢, (5.1) and (5.2) trivially yield, for the risk when 7 is true,

r:(85) = cE; N(87) [1 + o(1)] = uiclloge| [1 + o(1)].

If u; can be shown to be the minimum possible value of E;N () as ¢ — 0 for any
procedure which is Bayes relative to an F with support {1, 2, --- , k}, we will
thus have, in {8; }, an asymptotic Bayes procedure relative to any such F.

[Added in revision: L. R. Abramson, in his Columbia thesis, has, independently,
employed this same technique in dealing with the case of two states of nature,
two decisions, and % experiments, and his {60} is a SPRT as is {8}, ¢ = 1, 2.
Under Abramson’s restrictions, which imply that A\*(§) > 0 for 8 = 6, , 6, and
Jj=1, .-+ k (see (5.9) and previous for the definition of A°?), our construction of
{6:} by any of the Methods I, II, III below shows that, in this special case,
{8:} will be a SPRT for ¢ = 1, 2 (this results from the fact that when there are
two states of nature the maximin ¢ (see (5.10) et seq.) is non-randomized), and
one of the possibilities for our construction of {8} (see the paragraph following
(5.10)) is to take {50} as a SPRT (the key here is that &® can be taken, under
Abramson’s assumptions, as non-randomized).]

In the case where @ U ® = & consists of infinitely many states of nature we
have to proceed with somewhat extra care. As in Section 2'let F be an a priori
distribution on ® and we suppose that the support of F is all of ®. Suppose we
can select designs and make observations {X; , --- } (not necessarily independent
nor identically distributed) and, on the basis of these observations, suppose there
is a sequence {¢, ; m = 1} of consistent estimators of the true parameter, i.e., for
any e > 0

(5.3) limpsw Py { [ta(X1, -+, Xa) — ¢l < ¢ =1

for each ¢ ¢®. How to make the observations X;, - - - in terms of the available
designs is immaterial for the moment; we are merely supposing that it is possible
to do so and to define {¢,} which will satisfy (5.3). Let us further suppose that, for
each v £¢® and each ¢ > 0, there is a family {67*} of decision procedures (which
incorporates the choice of design at each stage) such that

(a) [aP4{wrong decision using 87"} F(dp) = O(c);
(5.4) (b) supses EyN(5:'°) = O([logc|)
(¢) EgN(37*) £ 11+ e+ o(1)] [loge| (@), for |¢' — | < €.

for some ¢ > 0 and where u(¢’) is some positive number. Now define a family
of procedures {67 as follows: Let n(c) be a sequence of integers with n(c) =
o([log ¢|). Take n(c) observations z; , - - * , Zn() and compute tue)(T1, ** * , Tace))-
If t,) = v use &, ' and continue observation independently of the n(c) observations
used to form t,(y until 87 ' terminates and then make whatever decision 87 '* makes.
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Thus, when ¢ is the cost of observation,
re(¢, 82°) < E4P,4{wrong decision using 67" | t,y = v} + en(c)
(5.5) . + cO([log c) Pofltnr — ¢| > ¢}
+cllogel [1 + ¢ + o(1)]u(¢) Palltncr — 8| < €.
Now, integrating both sides with respect to F and using (b) of (5.4) we obtain

ro(F, 85¢) < o(c|log ¢|) + (1 + €)c|log ¢| fq’ w(@)F (do)

(56) B
[t + ¢+ o(D)lellog ¢f [ u(e)F (d9)

where the 0(1) term may depend on e.

Remark 12. If we assume that {¢,} is uniformly consistent i.e., that the limit
in (5.3) holds, for each ¢ > 0, uniformly for ¢ ¢ ®; if we assume that the o(1)
term in (¢) of (5.4) is uniform in ¢; and, finally, if we replace (a) of (5.4) by
(a') P4 {wrong decision using 57"} = o(c [log¢|) uniformly in ¢, we can obtain
from (5.5)

(5.7) re(d, 0¢°) = cllogef[1 4+ € 4+ o(1)]u(s)

with the o(1) term in (5.7) independent of ¢ but perhaps depending on e. The
difference between the uniform and non-uniform statements is related, as we
shall see, to the difference between Theorem 1 and Theorem 2.

The o(1) term in (5.6) depends on ¢, but is <e for ¢ = C. (say). Thus, for
each ¢, the bracketed expression in (5.6) is <1 + 2efor ¢ = C., and if we define
5% to be ox* for the smallest e satisfying Ce = ¢ (with the obvious modification

if the infimum of such e is not attained), we have
(58) (P, 52) 5 1L+ o(Dlellog of [ w(6)F (d9),

Our problem will be to show how to construct {t,} and {57'} (resp. {65} and
{6¢}) so that (5.3) and (5.4) (resp. (5.2) and (5.1)) are satisfied with u(¢)
(resp. ws) in (5.4) (resp. (5.1)) the minimum possible value; it will then follow
that {87}, as constructed in the above, is asymptotically Bayes with respect to F.
This will yield the result of Theorem 1. To obtain the result of Theorem 2 we must
construct {¢,} and {8; %} so that the uniform versions (see Remark 12) of (5.3) and
(5.4) hold. (When @ is finite, Theorem 2 is the same as Theorem 1).

We are now ready for our design considerations. Let & = {e} be the set of one-
observation experiments available at each stage. Each such experiment will be
assumed to cost the same amount ¢, since the more general case can be treated
without difficulty in the same way merely by dividing ‘“information numbers” by
experimental costs. For each k, given the outcomes of the first & experiments,
the conditional distribution of the (X 4+ 1)st observation depends only on the
experiment chosen for this (K + 1)st stage. We alter the notation of Section 2
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slightly and take f; to be the density of an observation when ¢ is the experiment
and 6 £® is true, while \°(8, ¢) = Eqlog [fs(X1)/fs{X1)] is the corresponding
“information” concerning ¢ when 6 is true; @ and ¢ are arbitrary elements in ®.
(In Section 2 we limited the notation so that 8 £ ®; this is no longer so.) For sim-
plicity we can assume one measure u applies for all e, although this is not really
necessary. As in Chernoff (1959), Albert (1961), and Bessler (1960), we must
also consider mixtures of experiments, i.e., probability measures é on & (We shall
see that it always suffices, under the assumptions considered in the next para-
graph, to limit consideration to measures ¢ with finite support. It may neverthe-
less be convenient in applications to consider &’s with infinite support. If & is non-
denumerable, such é&’s are measures relative to a separable Borel field generated
by open sets in a topology relative to which A°(6, ¢) is continuous, etc.) Then any
information number A° is defined to be the probabilistic mixture under & of
\s, ete.

The assumptions we require are similar to those of previous sections and will
usually be easy to verify if f; is sufficiently regular in  and e as the latter vary
over domains which are assumed compact, although such compactness is not
necessary. For brevity and simplicity, we assume the following:

ASSUMPTIONS. ,

(1) @, O, & are compact with @, © subsets of some Euclidean space.

(2) Assumption 1 of Section 2.

(3) Assumption 3 with a supremum over e inserted immediately to the left of
each expectation sign.

(4) Assumption 2 is altered by requiring boundedness and continuity of
2°(0, ¢) in all three variables and

(59) sup: infog:z,d,e@ )\6(0, ¢) > O; Sup: iIlfOeG,oseﬂ )\5(0, d’) > 0.

(5) Assumption 5 with the continuity there uniform in e.

For the proof of the analogue of Theorem 2 we will also need

(6) Assumption 6 is altered with the insertion of a supremum over e to the
left of the expectation sign and the continuity there is uniform in e.

We define

A(8) = sup; infy.e N*(6, ¢) ifoeQ

(5.10) . . .
= sup;infsn A?(6, ¢) ifoe®

Under the compactness and continuity Conditions (1) and (4) just mentioned,
the game with kernel \°(6, ¢) for each fixed 6 ¢ @ is determined and has positive
value A(6) which by (5.9) is bounded away from zero. The same holds for 6 ¢ ©.
Moreover, for each ¢ > 0 we can find a finite covering of @ (or of @) such that,
for each set S of the covering, there is an & with finite support and which is
e-maximin for all 6 in 8. Also, there is an &° (say) with finite support and rational
probabilities for which infeg, s A" (6, $) > 0, and infee 40 A* (6, ¢) > 0. These
conclusions can be derived more generally from the work of Wald (1950) or
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LeCam (1955) under assumptions analogous to Assumption 4, but our object
here is brevity rather than greatest generality. A(6) turns out, as we shall see, to
be the reciprocal of the minimum value of x(8) for which (5.4) (or (5.1)) holds.

We now describe several simple ways of constructing asymptotically optimum
designs. First, if ® is finite, 82 can be constructed very easily: letting b be the
denominator of the rational probabilities =, w2, - -+, mm (say) associated with
&’, we need only take “blocks” of b experiments, br; in each block being of the
jth type making up &°; we can then view the vector of the outcomes from each
of these blocks as a single “observation’ and with such observations we take
82 to be the procedure 3, of Section 4 (without indifferences) with g¢(c) =
o(1) and [log q(¢)| = o(|log ¢|), e.g., g(¢) = [log ¢c[™*. Alternatively we could use
the randomized experiment &° at each stage.

When & is infinite there will often be a simple choice for {¢,} using either the
“block” method above or the randomized experiment &° at each stage to obtain
observations. In fact, under our assumptions, the sequence of maximum likelihood
estimators, based on observations obtained as just described, is consistent (see
Kiefer and Wolfowitz (1956)).

An alternative program, when & is infinite, is to construct {8z %} to satisfy (5.5)
in a way analogous to the construction of {67} from {63} and {5} following (5.2).
We first construct, for each ¢ > 0, a family {50} (not to be confused with
{67°%) as follows: Suppose that observations are taken either by the “block”
method or by &° at each stage. Let Uy, - - -, Uy be a collection of open spheres
of radius ¢ /2 which covers ® and let 1, - - - , v be the centers of the spheres,
so that we havey; e® fori = 1, - - - , k(€' ). Consider the k(¢ )-decision problem
with & the space of states of nature, decisions dy , - - - , dicery , and loss function L
satisfying L(¢, d;) = 0if ¢ ¢ U;, L(¢, d;) = 1if ¢ 2 U;. We are now in the
context of Section 4 (with indifferences and semi-indifferences) and we let
8¢ be the procedure there with the ¢ in Section 4 replaced by g¢(¢) with
[log g(c)| = o(Jloge|) and g(c) = o(1), e.g., q(c) = [logc|™. We now define
{69 by taking € as in (5.4¢), using 60’ until it terminates, and if it leads to
decision d; we “‘estimate’ the true parameter by y; and then use 8 7' until the
latter terminates and we make the decision that 877'° leads to. That (5.5) is
satisfied for this definition of 87 follows because E,N(52¢) = O ([log q(¢)|) =
o([log ¢|) uniformly for ¢ e ® and, if ¢ £ U;, D' Py{o2'¢ makes decisiond,} = o(1)
where Y’ means summing over those j such that U; N U; is empty.

We now turn to the construction of {87'%}. We will give two methods, both of
which can be used to obtain {8:}. A third method which we present is appropriate
when @ is finite, i.e., for the construction of {8.}. To describe the first two methods
suppose that v ¢ @ and e > 0 are fixed. Let &y, ¢ > 0, ¢’ > 0 be such that

(a) 0 < € < 2einfgen )\(0)
(5.11) (b) A(6) < infye \7(0,¢) + ¢ for |0 — v <€

(¢) infe.0.¢0 A6, ¢) > 0.
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Here &, may be chosen to have finite support and with rational probabilities be-
cause of the comments following (5.10). Condition (¢) can be satisfied because
we may always combine &, with a small multiple of &°. The fact that the remainder
of (5.11) can be satisfied follows from our assumptions.

Method I. Define {5; '} by using the randomized experiment &, at each stage
and the stopping and terminal decision rule of {6.} in Section 2 with the likelihood
function there being replaced after n observations by [ [7-1/5 (x;) where e; is the
actual (nonrandomized) experiment chosen at stage 7 (after randomization as
prescribed by é&,). This is in the spirit of Chernoff’s treatment, except that, once
the “preliminary experiment’” (associated with {¢,}) has been performed, we
select the same &, to be used at every stage, rather than having to allow the
randomized experiment to be changed continually with sequential calculations.
Note that the role of the preliminary experiment is to obtain the “right” design.
The relevant random walk considerations of Section 2 proceed as before with
(6, ¢) replaced by A\ (6, ¢) and without any additional design considerations,
thus yielding (5.4) with (c) of (5.4) following from Lemma 2 and (a) of (5.11).

Method II. Instead of utilizing the randomized experiment &, we can use the
“block’ method described earlier for 5; , replacing &° in that description by &, and
observing that the methods of Section 2 will yield

Ey {number of blocks} ~ [1 + ¢ + o(1)] [log c|/bA(8)

since the appropriate information number when 6 is true and ¢ £ & is bA™(0, ¢).
This method thus yields a procedure with non-randomized choices of designs
and which satisfies (5.4). (The possibility of using nonrandomized choices with
the right asymptotic frequency was mentioned explicitly by Chernoff (1959) in
the heuristic discussion of his “prototype’” example.)

Method I11. Here we assume that ® is finite. The method will yield a direct
construction of {8;} to satisfy (5.1). For each possible state 7 we specify a fixed
sequence of experiments e, , €;2, +++ such that the frequency of occurrences of
each different ¢ among e; , + -+, e, tends as n — o to the probability assigned
by a maximin & to e. (Since the set of possible states is finite, a maximin & with
finite support is known to exist. Of course, if &’ has rational probabilities, we can
consider blocks.) We assume here, for simplicity, that ming.s \°*"(8, ¢) > 0 for
each ¢, the modification needed otherwise being simple. Using a standard argu-
ment usually applied to identically distributed random variables, we again bound
E¢N by showing the smallness of

(1+€) | Loge| /A(6)
AR tom MG < llog )
by applying exponentiation and Chebyshev’s inequality. It is important that the
sequences {e;;} do not change with c.

To summarize, then, our methods reduce the construction of procedures and
proofs in the design setting to those of Sections 2, 3, and 4 where there is no
design problem, and we obtain (under Assumptions (1)-(5)) for a given a priori
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distribution F (whose support is ® for convenience), a family {67} such that (5.8)
holds with u(¢) = 1/A(¢) where A(¢) is defined in (5.10). By appropriate use of
Remark 12, adding Assumption (6), and using the procedures {5;} of Theorem 2,
we can also obtain a family {6¥*} such that (5.8) holds with {5}} replaced by
{6*} and F replaced by any @ having the same support as F (without changing
8+*) with the o(1) term in (5.8) uniform for all such G.

As the last step in our discussion we will show that, if {57} is Bayes with respect
to F, then

(5.12) ro(F, 83)/1(F, 87) — 1
i.e., {87} is asymptotically Bayes as ¢ — 0.
To establish (5.12) we proceed as in Theorem 1 and conclude that, if (5.12)
fails, there is a sequence {c¢;} and a 8 £ Q@ (say) such that
EoN(55;) < (1 — 2e¢) Jlog i /A(0) -

Po{wrong decision using 65} < Ke; |log cil.
By Assumption (4), we can find {¢1, - -, ¢} C O such that
1 — 2 < 1 —e

A6) T sups infic;<k N(0, ¢;)
and {¢;} can be selected so that, for a subsequence of {c;} (which we take to be
{ci} for notational convenience),

(5.13)

(5.14) 0< < ©

P.,,j{wrong decision using é,} < Ke; [log ¢

forall and 1 < j < k. Considering 6z, as a test of 0 vs. ¢y, - - - , ¢ with avail-
able experiments § we see, by reference to Lemmas 4 and 5 of Chernoff (although
Chernoff assumes § is finite his arguments remain valid under our assumptions
on § and (5.14)), that
EoN(%) 2 1 + o(1)] |10_g ¢l
sup; infi<;<k N°(6, ¢;)
which, together with (5.14), contradicts (5.13). Thus (5.12) is proved.

For the design problems in the context of Sections 3 and 4 the assumptions,
definitions, and constructions are analogous to those described here for Section
‘2, and the verification of (5.12) proceeds by using the extension of Lemmas 4 and
5 of Chernoff to the multi-decision problem in the same way we used our Lemma
5 in Sections 3 and 4.

Interpreting the assumptions, definitions, and constructions in the appropriate
manner to suit the context (Sections 2, 3, or 4) we can now state

TaEOREM 6. Under Assumptions (1)—(5) and with F the a priori distribution,
the family {63}, constructed by any of the described methods, is asymptotically Bayes
with respect to F for the problems of Sections 2, 3, or 4 when & s the set of available
one-observation experiments. If Assumption (6) is added the famaly {6%*} is asymp-
totically Bayes with respect to any G having the same support as F.
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The corollaries to Theorem 1 and Theorem 3 are also valid here; the corollary
to Theorem 1 in the context of this section is, in fact, the optimality result of
Chernoff, Albert, and Bessler. Less restrictive hypotheses, under which Theorem
6 remains valid can be obtained in analogy with Remark 7 in Section 2.

The dependence of the procedures on the support of the a priori distribution is
subject to the same remarks as made in Section 3 and Section 4. Thus, for the
design problem associated with Section 3, if the support F is QUOU I then
{65*} is asymptotically Bayes with respect to any @ whose support is QUBU I’
for any subset I’ of I.

The following is an example of these considerations (an example related to
Bessler’s Example 5) : Suppose there are three possible states of nature and three
corresponding decisions. The three possible states of nature specify (f, g, g),
(9,1, 9),and (g, g,f) as the possible vector of densities of three populations where
f and ¢ are specified. e, is the experiment which takes an observation from popu-
lation <. Bessler’s solution to the design problem is to observe, at each stage, that
population which, on the basis of previous observations, is the maximum like-
lihood estimator of the population with density f. A solution using Method II
above is first to take n(c) = o(|log ¢|) (but with n(c) — « ) observations (e.g.,
[[log c]é]) from each population and, on the basis of these observations, find the
maximum likelihood estimator of the population with density f. If this is popula-
tion ¢ we conduct the remaining experimentation from population 7 except that
out of every n(c) observations we reserve two observations one from each of the
other two populations. (This modification is needed since A* can be zero.) Since
the o(1) term of the second line of (5.2) is then of order ¢ ™ while the first line
of (5.1) which it will multiply in the final expression for EN is of order [log ¢| n(c),
it is easy to verify that this design is asymptotically optimum. (We have not satis-
fied (5.1), but have proceeded in a modified manner which is more expeditious.)

If f and g are normal with unit variance and means 1 and O respectively,
Bessler’s solution is to observe the population 7 for which D 1 @, — ny/2 is
largest, where {z;;,j = 1, --- , n are the previous observations from popula-
tion ¢. However, for less simple f and ¢g the calculations are more formidable,
and for slightly more complicated problems, e.g., involving three different normal
densities instead of two, Bessler shows how much more complicated his solution
can become, with the necessity of preseribing randomization probabilities which
vary from stage to stage.

APPENDIX

Let {£#} be a sequence of independent and identically distributed random
variables with distribution G. Let u(G) = Est:, o°(G) = Varg &, and for u > 0,
0 < oo < © put G(m, 00) = {G|u(G) £ —m, () £ od}, and for uo > 0
and po > 0 let G*(uo, o) = {G|u(@) £ —po, u(@)/0(G) = —po}. Let S =
lecgiyk = 1’27 7SO= 0.

THEOREM A.

(A.1a) sup 2 Pe{Si > 0} < w.

GeG(posop) k=1
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(A.1b) sup O, Pe{Si > 0} < =.

GeG*(pospo) k=1
Proor. Since
Po{Sy > 0} = Po{Si — u(@)k > u(@)k} = Pel{Sk — p(@)k > uok}

for all G we can dominate (A.1a) by
(A.2) sup 2 Po{Sp > k}

GeG’ k=1
where ¢’ = {G | (@) = 0, ¢*(G) = o4/us}. For fixed G ¢ G’ the sum in (A.2) con-
verges; see Erdos (1949). An inspection of Erdés’ proof reveals that the only way
the distribution of £ enters in the argument (outside of its mean being 0) is
through its variance, and the use of Chebyshev’s inequality in Erdos’ argument
shows that variance 1 (which is what he assumes) can be replaced by an
upper bound on the variance. Thus (A.2) is finite and (A.1a) is thereby estab-
lished.

(A.1b) follows from (A.la) by observing that

sup D PofSi>0 = sup D Pe{Si/oo>0} = sup D, Pa{S:i> 0}.

GeG* (ngspo) GeG*(rgspo) @eG(pgsl)
TaeorREM B.
(A.3) sup Eglmax,so S;] < .
@eG(pgiop)

Proor. It is well known that the expectation considered here is finite when
uw(@) < 0, ¢*(G) < «. To obtain the uniformity expressed in (A.3) we use
Theorem 4.1 in Spitzer (1956) which states

Eemaxpso Sy = 2 (1/k)EeSE .

k=1

Suppressing the dependence on G we can now write

Emaxyso Sy = 2~ ESH =D = >0(€1+ <o 4 &) dP

1
k

=3[ waPs3 [ raPla<nb+ -+ 6> 0.
8 0

Since
Py <ti<nrb+ - +&> -8

SPiY<ti<rnb+ - +&>—r P <k <1l
we have (writing & = & — u/2, Sk = Sk — ku/2,h = k — 1)

© (—hu/2) hu
E’maxSkgkzlj; TP{$2+"'+Ek>7}drP{£1<T}

k20
+ f rd.P{& < 7}
(—hp/2)



748 J. KIEFER AND J. SACKS

° [—2r/u+ll

s 3 BEP(Sa > 0 + [ 1 dPla < 1)

0

< Egi”l; PS> 0} + fo (2 — 20/u) d. P{ts < 1},

and this is finite by (A.1a) and the finiteness of E&f and Ef .
TaEOREM C. Let N: be the first k such that Sx < —t (¢ > 0). Then, for
G & 8*(’10 ) PO),
EoN: =—t/u(@) + x(t, G)

where
sup x(¢ G) = o(?)

@eG* (Bopo)

ast— 4o,
Proor. Let {¢;} be a sequence of positive numbers which will go to zero in a

way to be chosen below. Then
EN, = ZP Ne> k) =I§P minj<; S; > —t} §I§P{Sk> -t}

= > P&>—-t14+ X, PS> —t}
kS (14e) (—t/p) k> (1+e;) (—t/p)
t ku —ku }
< (14 e)— P8, — —t
=(+e) —p + k>(1+e.z)(—t/n) { I + e > 14 e

-—+——+ EP{Sk(t) > 0}

IIA

where Si(t) is the kth partial sum of independent and identically distributed
random variables with mean eu(@)/(1 + ¢) and variance ¢*(@) when G is the
distribution of S; . By (A.lb),

sup 2. P{Si(¢) > 0} = B(t) (say) < .
@eG*(pospo) k=0
Choose ¢; to go to zero so slowly that B(t) = o(¢). Since u(G) = —puo for
G £G*(uo, po), we have

—edt/u + gP{S;’,(t) > 0} = o(2)

uniformly for G € §*(uo , po), and thus Theorem C is proved.
TueoreM D. Let » be the last k such that S > 0. Then, for any G & G(uo, 00),

Eev < (2/m)Edmaxizo Si] + 2 Po{Si + kuo/2 > 0}.
k=1

Proor. Suppressing the dependence on G we have
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Ey = ZP{I/ = k} = ;P{manngj > 0}

= ZP{max,-;k (85— 8k) + 8 >0 = ,GZ;P{M + S > 0}

k=1

where] M has the distribution of max;so S;and is independent of {S;}. Conse-
quently, denoting by [r] the greatest integer =< r,

0

S P(M 4 8> 0} = ifp{sk > —m} duP{M < m)

k=1 k=1

[2m/po]
= 3 [Pi8> —m} duP(M S m)
k=1

+ X fP{Sk+"°—’“>!‘-°—’°—m}de{M§ m)
k=[142m/ 0] 2 2

< 3EM+ZP{S,,+"L'°> 0}
Ko k=1
and Theorem D is proved.
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