EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS'

By RAJINDER SINGH

University of Illinois and Punjab University, Chandigarh

0. Introduction. Let X be a random variable whose distribution P belongs
to a family of distributions ®. Let % be a real valued function defined on @®.
This paper is concerned with the existence of estimates of prescribed accuracy
for such functions # based on observations on X under different types of sam-
pling plans. By an estimate of prescribed accuracy we mean a confidence interval
of prescribed length and confidence coefficient, or a point estimate with pre-
scribed expected loss. The sampling plans considered here are the m-stage, m = 1,
and sequential sampling plans. It may be pointed out that estimates with pre-
scribed accuracy have been defined in the literature in various ways, [2], [3],
[4], [6], 7], [9].

In most problems of estimation, estimates based on samples of fixed sizes have
precisions which depend on unknown parameters. Consequently estimates with
prescribed accuracy are not available without resort to multistage and sequen-
tial sampling plans. In fact, [1] in many non-parametric problems, even sequen-
tial sampling plans fail to give estimates with prescribed accuracy. It therefore
becomes desirable to know whether, in a given problem of estimation, estimates
of prescribed accuracy for the functions & exist under a given type of sampling
plan.

It is shown that if # has a bounded length confidence interval based on one-
stage sampling plans then % is uniformly continuous on (®, d'), and if h has a
bounded length confidence interval based on m-stage or sequential sampling
plans, then & is continuous on (®, d'), where d' is the familiar absolute varia-
tional distance on @®.

Further, if ¢ is a uniformly continuous function of a real variable and h has a
bounded length confidence interval based on m-stage sampling plans, then the
composite function g (k) has also a bounded length confidence interval based on
m-stage sampling plans. If g is simply continuous (but not uniformly so), g (h)
has a bounded length confidence interval based on 2m-stage sampling plans.

1. Definition, notation and statement of the problem. Fixed throughout are
Q, @, ® where ® is a family of probability measures on ®, a o-field of subsets
of the set @; X;, X, ---, are random variables such that, for each P in @,
X:, X, -+ - are independent and identically distributed. Point sets {w:Y (w) &
B}, where Y is a random variable and B is a Borel set, will be denoted by (Y ¢ B)
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and P ({w:Y (w) € B}) will be written as P (Y ¢ B). I (4) will denote the charac-
teristic function of 4.

By a stopping variable N, sequential or m-stage, we mean a sample size func-
tion as in [8]. Note that the stopping variable considered in this paper are closed,
that is, P(N < «) =1 for each P in ®. For each positive integer n, let @"
be the subfield of @ generated by all events of the form ((X;, ---, X,) ¢ B)
where B is a Borel set of the n-dimensional Euclidean space. For each stopping
variable N, let @" be the subfield of @ generated by all events of the form (N =
0) and (N =n, (X1, -+, X.) ¢ B) where B is a Borel set of the appropriate
space and n = 1.

We may now describe the main problem of this paper in the decision theoretic
setting. Let © be a Borel subset of a Euclidean space. The set O is the decision
space. Let W be a non-negative function defined on ® X D and such that W (P,
-) is Borel measurable, P ¢ ®. The function W is the loss function, that is
W (P, d) is the loss if decision d is made (or action d is taken) and P obtains.
Let C be a non-negative function on the non-negative integers. C (n) is the cost
of observing X7, -+, X,. Let N be a stopping variable and Y be based on
@", the range of ¥ being a subset of D. Such a pair may be called a decision pro-
cedure. For any such procedure consider the expected loss function, E,W (P, Y)
and the expected cost function E»C (N). These are function on @®.

Ideally, both functions should be uniformly small. However, there is no pro-
cedure which uniformly minimizes both except in trivial cases. A possible and
often used approach is to put an upper bound on one of them and seek a proce-
dure which minimizes the other in some sense, say the supremum. For example,
let « > 0 be given and among all procedures (or among all procedures in a cer-
tain class, say m-stage procedures) satisfying,

1.1) EWP,Y) € o Peo,

choose the one minimizing supr E-C (V).

One question immediately arises. Are there any procedures satisfying (1.1)?
For the class W, of all loss functions Wy, of the form W;, (P, d) = 11if |d —
h(P)| > L/2, = 0 otherwise, where h is a function on @ into the reals and L >
0, the above question amounts to investigating the existence of bounded length
confidence intervals for h.

There is another class W, of loss functions, to which we may occasionally
refer. It consists of all loss functions W satisfying W (P, d) = V(|d — h(P)|),
where the function V is strictly increasing in its argument. In particular, if
V(e —b]) =l]a—1|, r>0, denote W, by W, .

For notational convenience we make the following definition. For any class
9 of random variables (on Q) and for any class ‘W of loss functions, let H (%Y, W)
be the class of all real-valued functions 2 on @ such that, for every o > 0 and
W ¢ W, there exists a random variable Y in ¢ satisfying E,W (P, ¥) =< «,
P ¢ ®. Note that by Tchebycheff’s inequality H (Y, W) < H (Y, W;). Fur-
thermore [Y — L/2, Y 4 L/2], restricting ¥ to ¢, is a 1 — « confidence inter-
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val for b iff A is in H (Y, ‘Wy). The study of the class H (%Y, W) is therefore impor-
tant for our problem. Let H,, = H (Y, W1), m = 1,2, .-+, @, where Yu[Ye)
is the class of all random variables ¥ based on m-stage [sequential] sampling
plans.

2. Some preliminary results. Let @ be a subfield of @ and let d**(P, Q) =
sup | P(4) — Q(A) |, where the supremum is taken over all A in ®@ and P,
Q are in ®. We may note that, as shown in [8], d*° (P, @) is equal to each of the
following expressions:

(i) %fa|p — ¢l dv, where » is any o-finite measure with respect to which P
and @ are absolutely continuous, for example, » = P + @ and p, q are G-
measurable and satisfy P(4) = fA pdv, Q(A) = fA qgdv, A € Q.

(i) sup |ErY — EoY|, where the supremum is taken over all @-measurable
Y into [0, 1].

(iii) sup |EpY — E¢Y|, where the supremum is taken over all ¥ into [0, 1]
that are based on @, .

We shall write d” (P, Q) for d*" (P, Q) and d" (P, Q) for d*"(P, Q). For our
purposes there is no loss of generality in assuming that d' (P, Q) = 0 implies
that P = Q. It can be easily seen that this assumption implies that (@, d")
is a metric space provided P(N > 0) > 0 for each P in @®.

We also note that for our problem it is enough to consider terminal decision
functions Y that are @"-measurable. That is, if NV is a stopping variable and ¥
is a random variable that is based on @" and satisfies

2.1) P(Y —h(P)| = L/2) 21— q P ¢ @,
then there is a random variable Z that is @"-measurable and satisfies,
2.2) P(Z —hP)|=L)=21— 2q Pe @.

To prove this, let F (y, w) = PN(Y = ¥, w) be the conditional distribution func-
tion of ¥ given @". F (y, -) is an @"-measurable function for each y and F (-, w)
is a distribution function for each w. Let:--, y_1, %, %1 - -be the sequence- - -,
—L/2, 0, L/2,---. Let K(w) = min {k|% < F(yx, w)}. Then K is an @"-
measurable random variable. For, for every integer k, (K (v) = k) = (F Yg,
©) <N Fys, ») = %) and the last two sets are in @". Let Z (@) = Yrw) -
This Z satisfies (2.2). For, from (2.1) we have E»(P* (|Y — h(P)| £ L/2,
w)) =1 — a, P e ®, which, as shown below, implies that

PEPY(Y —h(P)| £ L/2,0) > = (1 —a—e/l—¢
=1— (a/1 — ¢).
Therefore, if ¢ = %, then the left side of (2.3) = 1 — 2a. But PGN(|Y — WP)| =
L/2, ») > 1 implies that |Z (w) — h(P)| < L, which proves that Z satisfies
(2.2). To justify (2.3), we note that if a random variable V is such that P(0 =
V=<1 =1, then P(V>¢ = (EV —e)/(1 —¢), 0 <e<1.
We now prove

2.3)
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TurorEM 2.1. Let N be a stopping variable. Then for every ¢ > 0 and every P
in @ there s a & > 0 such that d" (P, Q) < e if d' (P, Q) < &. & does not depend
on P if limg,e P(N > k) = 0 uniformly over ®.

Proor. Suppose ¢ > 0 and P ¢ @. Let k& be a positive integer such that

(24) P(N > k) < ¢2.

This is possible because we are considering closed stopping variables. For this %
choose a 6 > 0 such that

2.5) d"(P,Q) = P(N > k) + ¢/2,

where Q ¢ ® and satisfies d' (P, Q) < . The existence of such a & is shown be-
low. Combining (2.4) and (2.5) we get the first part of the theorem. For the
second part note that if limg... P(N > k) = 0 uniformly over ®, then the
choice of kin (2.4) does not depend upon P and consequently § depends only on e.

We now prove (2.5). We can choose a 6 > 0 (see [8]) such that d' (P, Q) < &
implies that d*(P, Q) < ¢/2(k + 1). Let A ¢ @". Then A = 4, U U2, (N =
n, (X1, -+, X») € By), where 4, is either empty or the set (N = 0) and B,
B,, - - - are Borel subsets of the appropriate spaces. Thus, if ¥ = I(4) then
Y=Y % Y.Z,, where Z, = I(N = n) and Y, is the characteristic function
ofasetin @",n =0,1,---.Ifn <k, then (N = n) and the events in @*are
independent of Xii1, Xi4z, - ++, and Ep(Z,|G") = Ep(Z,|X)a.e[P], P e @,
where X = (X;, Xs, ---). But the latter conditional expectation may be taken
free of P and so also can the former. Therefore, if P and @ satisfy d* (P, Q) < 8,
then

k k
Q4) = EoY > Z& BoYyZy = 7;0 Eq(Bo(YaZn|a")

Eq(YoEq(Za| @Y) = n}=:0 Eo(Y.Er(Z, | "))

Ma-

Il
o

n

k
> ;[EP(YnEP(Zn |&") — &/2(k + 1)]
= P(4) — PN > k) — ¢/2.

This implies that P(4) — Q@A) < P(N > k) + ¢/2. A similar inequality

holds if A is replaced by @ — 4. Combining the two inequalities we get (2.5).
We now prove a theorem which shows that if A has a bounded length confi-

dence interval based on G, then & is uniformly continuous on (@, d*°).
TuEOREM 2.2. Suppose Y is a random variable based on Gy and satisfies

(2.6) P(JY —h(P)|=L/2) 21— aq Pe e

Then |h(P) — h(Q)| £ L whenever d*(P, Q) < 1 — 2a, for P, Q in @®.
Proor. Let Z = 1,if |Y — h(P)| £ L/2;0, otherwise. Then [E,Z — EoZ| <
d® (P, Q) and therefore

@2.7) EoZ z E+Z — d* (P, Q).
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Now
QUY — h(P)| = L/2,|¥Y — h(@)| < L/2) = Q(Y — h(P)| < L/2)
+QIY —h@|=L/2) -1zl —a—d"P, Q]+ 1 —-0a) —1
=1—2a —d*(P, Q) by (2.6) and (2.7).

Obviously if d*(P, @) < 1 — 2« then the above inequality is positive. Conse-
quently two events (|Y — h(P)| £ L/2) and (Y — h(Q)| = L/2) occur
together with positive probability provided d*(P, @) < 1 — 2a. This proves
the theorem.

3. Necessary conditions. In this section we derive necessary conditions for
hto bein Hy, Hy, - -+, H, . Note that a necessary condition for & to be in H,,
is also a necessary condition for h to be in H,, since Hn C Ho,m = 1,2, -- -,
In Section 5 we shall discuss some other properties of these classes.

Let (®, D) be a metric space with 1 — 1 mapping § — Py from © into @
and h denote a real-valued function on ©. For functions & we denote the class
H (Y, W), defined in Section 1 for the functions &, by H (%Y, W).

TrHEOREM 3.1.

(a) If the mapping 6 — Py from (0, D) into (®, d*) is continuous, then h & He,
implies that h is continuous on (O, D).

(b) If the mapping 6 — Py is uniformly continuous, then h & Hy implies that h
1s uniformly continuous on (0, D).

Proor. (a) For every 6 in © define h on ® by taking h(Ps) = h(6). It suf-
fices to show that h is continuous on (@, d'). For this let ¢ > 0. Then by the
definition of H., it follows that there exists a stopping variable N and an @"-
measurable random variable Y satisfying P(|Y — h(P)| < ¢/2) = %, P ¢ @.
Again, by Theorem 2.1, there is a & > 0 such that for Q ¢ ®, d'(P, Q) < &
implies d" (P, Q) < %. Consequently by Theorem 2.2, d'(P, Q) < & implies
that |h(P) — h(Q)| £ e Thus h is continuous at €. Proof for (b) is similar
and is therefore omitted.

Suppose @ is dominated by a o-finite measure u, then for each 6 in © there is a
density (Radon-Nikodym derivative) ps, @'-measurable, corresponding to
Py such that Py(4) = f +Podu, A e @'. We can now state the following

CoroLLARY 3.1. Suppose for each w, pc.)(w) is a continuous function from (O,
D) into the real numbers, then h € H, implies that h is continuous on (0, D).

REMARK.

(1) If (O, D) is, in particular, (®, d') then Theorem 3.1 reads as follows:
(a) h & H, implies that h is continuous on (®, d"), (b) h & Hy implies that h is
uniformly continuous on (®, d').

(2) It may be noted that continuity of h in (a) cannot be replaced by its
uniform continuity as in (b). That is, if & has a bounded length confidence inter-
val in m-stage (m = 2) or sequential sampling plans then & need not be uni-
formly continuous on (®, d"). For this see Examples 3.1 and 3.2 below.
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ExampLE 3.1. Let @ be the class of normal distributions with mean p and
variance o”. Let 6 = (u, 0), h(Ps) = u,and 6, = (ui, o), 7 = 1,2. Then d' (Ps, ,
Py,) = 2G (Ju1 — u2|/20) — 1, where G is the distribution function of a random
variable normal with mean 0 and variance 1. It is clear that A is not uniformly
continuous on (®, d'). However u has a bounded length confidence interval
based on two-stage sampling plans as shown in [10].

ExampLE 3.2. Let ® be the class of exponential distributions having density
function f(z) = 1/6¢™"° if © > 0, = 0 otherwise. Let h(Py) = 6°. It will be
shown that  has a (1 — «) confidence interval of length L based on a two-stage
samphng plan although A is not uniformly continuous on (®, d"). For this let

= (i X )/4 and b = L’a/5120, where L > 0, a > 0 are preassigned.
Lethe the smallest integer =4 -+ exp (X/b) and ¥ = O Y X3 /2(N — 4).
Then [V — L/2,Y + L/2]isal — « confidence interval for §°. For, by Tcheby—
cheff’s inequality, P(|¥ — 6’| < L/2) = 1 — 4L’E,(Y — 6°)* = 417"
varg ¥ =1 — 4L7%E, var, (Y|N) + var, Bo(Y |N)} = 1 — 4L Eo varg
(Y|N) =1 — 4L7°Ey (56*/ (N — 4)) = 1 — 4L 2B, (56 %) = 1 — 206°bL2
(Bo(e™'*)* = 1 — a. Now

d'(Py,, Ps,) = % / [ (1/60)6™" — (1/65)¢™*"" | du
0

=™ — ™| < 16— 6,]/6,

where zo = (6:0: log (6:/61))/ (6, — 6;) is the point of intersection of two
density curves. Hence, for |6, — 6|/, < 8, we have d'(Ps,, Ps,) < 8, but
|67 — 03] = (|6 — 62]/62)6]61 + 65| is not bounded, proving thereby that 6
is not uniformly continuous on (@, d').

(3) As observed earlier, the necessary condition stated in the theorem is also a
necessary condition for 4 to be in H,, , for every positive integer m. Example 3.3
given below shows that for A to be in H,, this condition is not sufficient.

Exampre 3.3. Let & be the class of all distribution functions on the real line
having a unique median. Let, for every real z, Pr(X < z) = F(z). Let ® =
{Pp | F ¢ 5} and h(Pr) = median of the distribution function F. It is easily
seen that h is continuous on (@, d'). However it is shown in [5] that h 2 H,
for any finite integer m = 1.

(4) Whether the continuity of & on (®, d') is sufficient for & to be in H.,, is
still an open question. That the condition in this case is sufficient appears to be a
reasonable conjecture.

(5) The following example shows that the necessary condition in Theorem
3.1 (b) is not sufficient. That is, A uniformly continuous on (®, d') need not
imply that h ¢ H; .

ExampLE 3.4. Let ® be the class of Poisson distributions with parameter A

such that Px(X = z) = ¢ \/zl,z =0,1,2, ---. Let h(P,) = \. It is easy
to verify that

1 ‘“xl EMN | & e™MN N gl
@ (Pry, P _5; T | T&| T T e [T b
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where z, is the largest integer < (A2 — A1)/In (Ay/A1). This shows that & is
uniformly continuous on (®, d'). However, as is well-known, \ does not have
estimates of prescribed accuracy based on one-stage sampling plans.

4. Applications. Theorems proved in Sections 2 and 3 are useful in proving
the non-existence of m-stage, m = 1, and sequential plans for finding estimates
of prescribed accuracy for h. If, for a given A, bounded length confidence inter-
vals do not exist under some sampling plans then, as observed earlier at the end
of Section 1, point estimates for h with expected loss (loss W ¢ W,) bounded by a
preassigned number « cannot exist under the same sampling plans. In Examples
4.1 through 4.3 we shall show that % is not uniformly continuous on (@, d").
This will, by Theorem 3.1, imply that h can have neither bounded length confi-
dence intervals nor point estimates with bounded expected loss (loss W & W,)
under one-stage sampling plans.

ExampLe 4.1. Let ® be the class of distributions with density functions
(1/e)f ((x — u)/o), where u is real, ¢ > 0 and f is a given density function.
Here the density function f is known but the location and scale parameters are
unknown. Let § = (u, ¢), h(Ps) = wand 6; = (u;, 0),72 = 1, 2. Then

& (Pu, o) = 5 [ (1/) 15 = w) /o) = §((2 = w)/o)]| do

= %f [f(y) — f(y + (e — w)/o)| dy,

which tends to zero as ¢ — . This implies that by choosing ¢ sufficiently large
we can make d' (Py, , Ps,) < 8. But, on the other hand, |h(Ps,) — h(Py,)| =
|,4:1 — ug| is unbounded. This proves that A is not uniformly continuous on (@,
d).

ExampLE 4.2. Let ® be the class of gamma distributions with density func-
tions f@) = (/T ()02 "¢, >0 and, = 0 otherwise. Here 6 and r are
arbitrary positive real numbers. Let h(Ps) = 6°, where s > 0 is a real number.
It is easy to see that d' (Py, , Ps,) < |6i — 65|/min (6], 63). Hence for |6] — 65|/
min (6, 65) < 8, we have d' (P, , Ps,) < 6 but |6] — 63| is unbounded. Thus
h is not uniformly continuous on (@, d').

ExamprLE 4.3. Let ® be the class of distributions with density functions
f@) =1/6, 0 <z < 6, and = 0 otherwise. Here d'(Ps, , Ps,) < |61 — 65|/
min (6;, 6;). Hence for |6, — 6,|/min (6;, 6;) < 6, we have d'(Ps,, Py,) < 6
but [, — 65| is unbounded.

ExampLE 4.4. Let @ be the class of all distributions on the real line with finite
rth moment. Let h denote moment of some order ¢ < r. It is well known that
b is not continuous on (®, d'). Hence it follows from Theorem 3.1 that % has
neither bounded length confidence intervals nor point estimates with bounded
expected loss (loss W ¢ “W,) even under sequential sampling plans. The non-
existence of statistical procedures for this problem was obtained in [1] by a dif-
ferent approach.
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ExamrLE 4.5. Let ® = {Py:0 < 0 < 1} such that Py(X; = 1) = 0, Py(X; =
0) =1 — 9. Let h(Ps) = In 6. It is easy to see that d'(Ps, , Ps,) = |61 — 6,
so that In 6 is not uniformly continuous on (®, d'). Further if N is an m-stage
non-randomized stopping variable then lim,.., P (N > n) = 0 uniformly for
all 6. Hence by Theorems 2.1 and 2.2, In 6 can have neither bounded length
confidence intervals nor -point estimates with bounded expected loss (loss
W ¢ W;) under m-stage non-randomized sampling plans.

5. Properties of H(Y, W). For proving various properties of H(Y, W) we
shall need the following assumption about %Y. It will be stated explicitly whenever
this assumption is used.

AssumptioN 5.1. If Yy, Y, are in Y, then ¢ (Y7, Y,) is in 9 for all Borel
measurable functions ¢ into the real line.

Let yo[ye] be the class of all random variables Y thatare @"-measurable, N
being a non-randomized m-stage [sequential] stopping variable. Further we
denote the class H (Yo, W) by Hu,m = 1,2, -+, .

LemMma 5.1.

(i) If Ny, N, are non-randomized stopping variables then N = max (Ny, N,)
s a non-randomized stopping variable. (ii) If Ny, N» are m-stage non-randomized
stopping variables, then N = max (N1, Ny) is an m-stage non-randomized stop-
ping variable.

Proor.

(i) For every integer n = 1,

(N =n) = (max Vi, N;) Sn) = W =2) N NV: £ n).

The last two sets are in @". Consequently (N < n) is in @". Hence, for every
integer n = 1, the event (N < n) is independent of X,41, Xnse, - - - and that
the conditional distribution of N given (X, X;, ---) is free of P. This proves
@).

(i1) By induction on m. It is easy to see that the proposition is true for m = 1.
Let m > 1 and suppose that the proposition is true for 1, 2, ---, m — 1. Let
N, N: be m-stage non-randomized stopping variables. Then, by definition,
there exist (m — 1)-stage non-randomized stopping variables M; , M, such that
N is @"-measurable, ¢ = 1, 2. Let M = max (M;, M;). Then by the induction
hypothesis M is (m — 1)-stage non-randomized stopping variable. Also since
@" < @™, N;is @"”-measurable, ¢ = 1, 2. This implies that N is @"'-measurable
and the lemma is proved.

LemMA 5.2. Form = 1,2, --+ | o, Y, satisfies Assumption 5.1.

Proor. Let m be a positive integer. Let ¥, & Ys, ¢ = 1, 2. Then there is an
m-stage non-randomized stopping variable N; such that Y, is @"‘-measurable.
Let N = max (N1, N:). Then, by Lemma 5.1, N is an m-stage non-randomized
stopping variable and Y, is @" measurable. This implies the desired result.
The proof for Ye, is similar and is omitted.

TaeoreM 5.1. Under Assumption 5.1,
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(@) of, for every integer n > 1, f is a uniformly continuous function of n real

variables then h; ¢ H(Y, W), ¢ = 1, -+ , n, implies that f(hy, --- , hy)
&€ H ((H, Wl) .

(b) H (Y, Wy) s closed under passages to limats with respect to uniform con-
vergence.

Proor.

(a) The proof is elementary and is, therefore, omitted.

(b) Suppose k, is in H(Y, Wi), n = 1, 2, --- and lima. b, (P) = h(P),
uniformly for all P in ®. Therefore there exist a positive integer m such that
|hm (P) — h(P)| < L/4, for all P in ®. Also there exists a ¥ in Y such that

P(|Y — ha(P)| £ L/4) 21— q, Pin @.

Then [Y — L/2, Y + L/2]is a 1 — « confidence interval for h. For,
P(Y — h(P)| = L/2) = P(Y — hn(P)| < L/4, [hn(P) — h(P)| < L/4)
21— q Pin @.

It may be noted that this theorem is true of H),m =12 ---, o, This is an
immediate consequence of Lemma 5.2.

TueoreM 5.2. Let g be a continuous function of one variable. Then (i) the
composite function g (h) & HYwif heHp,m = 1,2, ---; (ii) the composite func-
tion g(h) e Ho if h e He, .

Remark. (a) Compare with Theorem 5.1 (a). There uniform continuity of
g was assumed. Here only continuity is assumed. (b) The change from m-stage
to 2m-stage sampling plan in (i) is brought about as follows: we first use an
m-stage sampling plan to get a provisional bounded length confidence interval
for h. From this we obtain a closed real number interval which brackets & with
a certain probability. On this interval g is uniformly continuous. As in Theorem
5.1(a) we now use another m-stage sampling plan to get a bounded length
confidence interval for g (h) as desired. Lastly these two m-stage sampling plans
are combined to give a 2m-stage sampling plan.

Proor. (i) Suppose h e H,, . Let L > 0, « > 0. Since A is in H), , it is clear
that there is a non-randomized m-stage stopping variable N and an @"-measurable
random variable Y such that Y is integer valued and satisfies

P(Y —h(P) £2)21—0a/2, Peco.

Let J» = [k — 4, k + 4] if k is an integer. Since g is continuous on Jy it is uni-
formly continuous on Jy . Thus there is a positive L, < 1 such that if a and b
are in J;, and satisfy |a — b] < 2Lj then |g(a) — ¢(b)| < L/2.If k is an in-
teger, let Y* be an @" *_measurable random variable where N* is a non-ran-
domized m-stage stopping variable and such that P(Y* — h(P)| S Lp) 2
1 — a/2, P& ®. Such N* and Y* exist since h ¢ H,, . This will imply, as shown
below, the existence of a non-randomized 2m-stage stopping variable N and a
random variable ¥, @¥-measurable such that
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5.1) P(YeB|Y=k)=P{Y"eB)
for all P ¢ @, all Borel sets B and all k. This implies that
[g(T) — L/2,¢(¥) + L/2]

isa 1 — « confidence interval for ¢ (). For

0

P(|Y —h(P)| £ Ly) = kZ P(|Y —h(P)| £ Le|Y = B)P(Y = k)

=—=—00

= 3 PP~ h(P) S LOP(Y = B) 21 - a/2,

Pe@.
Consequently,
P(g(¥) —g(@P))| = L/2)
> P(|?Y —hP)| <Ly,|Y —h(P)] £2)=21—0a  Peo.

Thus g (k) is in Ho,, .
We now prove (5.1). For each k& we can express N*, Y* as follows:

Nt =2 0ansh(Xy, -, Xa), Y = 220060 (X0, -+, Xo)in(Xn, -+, Xa).
Here st (Xy, -+, X.) = I(N* = n) and the functions s. and ¢, are Borel
measurable on the appropriate spaces. If, for positive integers p, &, n,
(5.2) N = p, Y =F, N =n—p,
take N = n. That is, N is defined by
n—1 0
(N=n)= U U (N=p)Y=k78]:t—p(XP+17"'7Xn)=1)'
p=1 k=—c0

Furthermore if, in conjunction with (5.2), we have Y* = y, define ¥ = y. That
is, for every real y, we define ¥ by

0 n—1 0

(?=y) = U U U (N=p)Y=k;8]:L—p(Xp+l,"',Xn) =1;

n=2 p=1 k=—o
t’:&—p(Xp-i-l y "y Xn) = y)
Clearly N is a non-randomized 2m-stage stopping variable and ¥ is @"-measur-

able.
Also

n—1
ZP(N= p)Y= k;'SI:L—P(XZH—l, ’Xn) = 1’

p=1

]
Ms

P(YeB Y =k)

s
Il
)

t,;—p(XpH y oty Xa) 33)

I
Ms

n—1
Zl P(N =D Y = k)P(SI:L—p(XZ)+17 e 7Xn) = 1’
p=

S
|
)
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tfb—p Xpt1, -+, Xa) € B)

=2 PN=pY=k) 2 PN =n—p Y'eB)

p=1 n=p+1
=P =k)PX"*eB).

This completes the proof of (i). Proof of (ii) is similar and is omitted.

This theorem has an important application. If in a problem ® = {P,| 08¢ 0, a
subset of the real line} and it is known that 6 is in A%[H%] then the restriction
to O of any function g continuous from the real line into the real line is in

HalH2).
We shall now state a theorem which is an analogue of Theorem 5.1 for the

class H (%Y, ‘W,). It may be recalled that H (Y, W,) is the class of all real-valued
functions & on ® such that, if @ > 0, then there is a ¥ in Y satisfying

Ex(Y —h(P))<a Peo.

TuvoreM 5.3. Under Assumption 5.1,
(a) f, for every integer n = 1, f 1s a uniformly continuous function of n real
variables, then h; e H (Y, W,), ¢ = 1, -+ | n, implies that

f(hly'“yhn)‘("H((ywa)

(b) H (Y, W,) s closed under passages to a limit with respect to uniform con-
vergence.
Proor. (a) Proof is elementary and is omitted. (b) Let « > O and A\, = 1
ifr <1, =27 if r = 1. Suppose hy is in H(Y, W,),n = 1, 2, --- and
lim h, (P) = h(P)
uniformly for all P in ®. Therefore there exists a positive integer m such that
[hw(P) — R(P)] £ a/2\,, P e ®. Also there exists a ¥ in 9 such that

Eo|Y — hu(P) < a/2\., Peo.

Then Y is an estimate for h with expected loss <a. For E(|Y — h(P)[) <
MEY — hn(P)] 4+ [An(P) — h(P)|") < @, P& ®. It may be noted that
this theorem is true of H (Y%, W,), m = 1,2, --+, «. This is an immediate
consequence of Lemma 5.2.
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