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1. Summary. The empirical Bayes approach is described in Section 2. In
Section 3 “optimal’’ empirical Bayes rules are given for the problem of testing a
simple hypothesis against a simple alternative. In Section 4 a limit theorem is
proved which is used in Section 5 to obtain “optimal” empirical Bayes rules for
testing one and two-sided hypotheses about the parameters in the Poisson,
geometric, negative binomial and binomial distributions. The same methods
are used in Section 6 to obtain “optimal” empirical Bayes rules for testing hy-
potheses about parameters in continuous distributions of the exponential fam-
ily. Examples of areas of applications are given in Section 7, and the last Section
discusses uses of the above methods in the compound decision problem.

2. Introduction. Consider a random variable X distributed according to
distribution function P(x |A) = P(X < z|\) where N\ is a real parameter
known to belong to some set 2, and foreach A € @ P(z | A) is completely specified.
A statistical decision problem arises if the statistician has to take some action,
and the best action depends on A, but A is unknown. In particular, for each action
A in a set of possible actions @, there is defined a (usually non-negative) loss
function L = L(A, \). Since X is unknown the statistician will base his decision
on the observation z on X. Let ¢(x) denote a (randomized) decision function,
i.e. for each observed value z of X, ¢(x) is a distribution over the set @ of pos-
sible actions. The risk function corresponding to ¢, i.e. the expected loss, is

(1) Rlp,\) = By f L(4,N) do

where E, denotes the expectation with respect to distribution P(z |\). The
statistician’s aim is thus to minimize (1), but, as is well known, except in trivial
cases there exists no rule ¢ minimizing (1) uniformly in A € Q.

In the Bayesian approach the parameter A is considered a realization of a
random variable A, distributed according to some distribution function G on
Q, where G(A\) = P(A =< \). In this case it is natural to consider the “global”
expected loss, or Bayes risk, of ¢, rather than (1). It is defined by R(e, G) =
Ja R(e, ) dG. For given G there will usually exist a Bayes rule with respect
to apriori distribution @, denoted ¢q, for which min, R(p, G) = R(pe, G) =
R(@®). R(G) is called the “Bayes envelope function’, and denotes the minimal
possible global risk attainable by any decision function if A is the realization
of a random variable with distribution G. Though the assumption of the exist-
ence of an apriori distribution G is often reasonable, it is usually difficult in
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EMPIRICAL BAYES APPROACH TO TESTING 1371

practice to assert what this distribution is, and thus one will usually use a rule
the Bayes risk of which exceeds B(G).

Consider now the situation where (X,, A1), (X2, A2), -+-, (Xu, Au), -+~
is a sequence of independent pairs of random variables, where the A,’s are
identically distributed according to @, and where for n = 1, 2, .-+, P(X, =
z| An = N) = P(z|\). We assume that for each n, n = 1, 2, - - - the statis-
tician is confronted with the same decision problem, and that these problems
arise sequentially. Even if G is unknown, we may hope that as n increases it will
be possible to improve the decision rule used, since at the time when the statis-

tician must decide on A, he has all the observations z;, 2, +++, Z» = X, On
X, Xy, -+, X, = X, at his disposal, and the distribution of every X is
(2) Po(z) = P(X < 2) = fﬂ Pz |) dG.

A method using previous observations in order to approach the Bayes decision
rule ¢¢ was first used by Robbins in [12], where it is called an ‘“empirical Bayes
approach”. The decision problem considered in [12] is one of estimating M for
various families of distributions P(z | A). Johns in [6] and [7] generalizes the
results of [12] and shows that for some of the proposed procedures not only the
rules, but also their risks converge to the corresponding R(G), whatever be G.
In [8] Johns considers an empirical Bayes problem related to the subject matter
of the present paper.

In the present paper we discuss the empirical Bayes approach to the two-
decision problem, focussing particularly on the problem of testing one sided
hypotheses of the kind

Hy:x £2\¥ Hy:\ = \*
(3) N and (3a) "
Hyi: N> Hi: A<\
and two sided hypotheses of the kind
H:N=\=a Hy: =2z A
(4) * and (4a) N
Hi:N=N>aA H:h—\ <A

where \* and A > 0 are fixed constants. Since we shall consider only two-de-
cision problems, we shall denote the two actions available by 4, and 4, , where
A4, can usually be interpreted to mean: “say H; is correct”, z = 0, 1. For such
problems any decision rule ¢ can be written simply as a (measurable) function
t = t(x) where 0 < ¢ <1 and ¢{(z) and 1 — ¢(z) denote the probabilities of
deciding 4; and A, respectively, once X = z is observed. In the empirical Bayes
situation, where we have x, at our disposal at the nth decision, we shall use
tn = ta(Xn)-

In the next section we consider an empirical Bayes solution of the general
simple versus simple hypothesis testing problem, and in Section 5 the problem
of testing (3) and (4) for discrete distributions of the type

(5) P(X =z|\) = Nr(N)g(z) for 2=0,1,---
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is considered. The Poisson, geometric and general negative binomial distribu-
tions are particular cases of (5). Section 6 considers the problem of testing (3)
and (4) for random variables with densities (with respect to Lebesgue measure)
belonging to the exponential family.

3. The empirical Bayes approach to testing a simple hypothesis versus a
simple alternative. The simple versus simple hypothesis testing problem can be
stated as Hy: P = Py, H, : P = P; where P is the distribution function of a
random variable X and where P, and P; are completely specified distributions,
with densities f(z | 0) and f(z | 1) respectively, with respect to some measure
u. Here it is natural to consider the loss function

L(4;,\)=0 j=A\ A=0,1
a j=0 A=1
j=1 x=0

where a > 0,5 > 0.

In this case A is a Bernoulli random variable and G corresponds to a Bernoulli
apriori distribution. Let h(x) be a bounded unbiassed estimate of A\ and let
Dn = Pa(X,) equal 0, D 7y h(z;)/nand 1 as > oy h(z;)/n is less than zero,
between zero and one, and exceeds one respectively. Then it follows easily from
the results of Hannan and Robbins in [5] that the rule with

tn(%,) = 1 i paaf(za|1) > (1 — pa)bf(za | 0)

6

() =0 otherwise

satisfies

7 lim,.., R(t,, G) = R(Q@)

whatever be the (Bernoulli) apriori distribution G. Other (related) rules satis-
fying (7) are given in [15]. See also [16]. A direct proof that (6) satisfies (7)
can also be found in Robbins [13], a manuscript-copy of which was obtained by
the author after the present paper was submitted. [13] is also closely related to
the other subject matter of the present paper.

4. A theorem. Let L(A;, \) denote the loss function when action A4 is taken,
1 = 0, 1. Then for any decision function t= ¢(x) the Bayes risk function with
respect to apriori distribution G is given by

R(t, @) = EI(X)L(4A1, A) + (1 — #(X))L(4o, 4)]
(8) = E¢[L(4o, A)] — E[((X)(L(4o, A) — L(41, A))]
= EJL(4s, A)] — E[t(X)EoL(4os, A) — L(4:, A) | X],

where E and E¢ denote the expectations with respect to the joint distribution
of (X, A) and of A respectively, and where Eg4[- | X] denotes the conditional
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expectation of A given X. Since the first term in the right hand side of (8) does
not involve X, it follows that the #’s which minimize (8), for fixed G, are

ta(x) =1 as EG[L(A(] , A) - L(A1 y A) l.’l?] >0
(9) =0 <0
= arbitrary in [0, 1] = 0.

In order to avoid randomization we shall consider the version of {s(x) where
the arbitrary part is taken to be 0. This version is of the form
() =1 if K(z) >0
(10)
=0 if K(x) =0.
For any function K (z) it follows from (8) that the Bayes risk of t* is

R(t%, G) = Eo[L(4o, A)] — EelL(4,, A)

(1) — L(A:, A) | K(X) > 0]P[K(X) > 0].
Let
t<(z) = 1 if K(z) >0
=0 if K(z) <0

arbitrary in [0, 1] if K(z) = 0.
Suppose K(z) is such that
(12) R(t*, @) = R(tX,G) forall .
(This is satisfied in particular for ¢ defined in (9).)
We shall now consider the case where instead of a fixed function K(z) we
have a sequence of random functions K,(x; X,), where X, is arandom vector

independent of (X, A). Let tx = tx(z; X,) be the (random) decision function
defined for K,(z; X,) by (10), i.e. decide

ta(z; X,) =1 if K,(z;X,) >0

(13)
0 if Ku(z;X,) =0

when X = z is observed.

The Bayes risk R(t5 , G) will be an expression corresponding to (8) (or (11))
where the expectation £ (and probability P in (11)) is now taken over the joint
distribution of (X, A) and X, . We have the following

TueEoREM. Let K,(x; X,) be such that for each x

(14) K.(z; X,) — K(z) in probability

(where “in probability’ refers to the distribution of X,) and suppose (12) holds
for K(z).
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If
(15) Eo|L(Ao, A) — L(A4;1, A)]] <
then the rule t= with

tn(z;X,) =1 if Kn(z;%) >0

(16)
=0 if Kulr;x,) =0
has a risk satisfying
17) lim,.. R(tx , @) = R(t5, G).
In particular, if
(18) K(z) = Eo[L(4y, A) — L(4;, A)| ]

then (12) holds and (17) becomes lim, .., R(t% , G) = R(G).

Proor. From (8) it follows that it suffices to show that
limy.e Eltn(X; Xa)EG[L(Ao, A) — L(A:1, A)| X]

= E[t"(X)E¢L(4o, A) — L(41, A) | X]

where E denotes the expectation with respect to the joint distribution of (X, A)
and X, . X, is assumed to be independent of X and A, and we shall denote the
expectation with respect to X, by E, , and with respect to (X, A) by E«. Now
it follows by (13) and (14) that for each z, except possibly for values of z for
which K(z) = 0
(20) limy,w Ealtx(z; Xa)] = t5(2).

Also

(19)

Elta(X; Xa)Ee[L(4o, A) — L(41, 4)| X]]

(21 = Eo(E,[th(X; X,)| X]E6[L(4Ao, A) — L(A4:1, A)| X]).
Now
|Ealtn(X; Xa) | X1EG[L(4o, A) — L(41, A)| X]|
S Eqf| L(4o, A) — L(41, A)| X]
and by (15)

E(Eql| L(4o, A) — L(41, )] X1)
= EG[|L<A01 A) - L(Al ) A)” < o,

Thus (19) follows from (21) by the use of (20), (12) and Lebesgue’s domi-
nated convergence theorem.

6. Application of the Theorem for two action problems involving the Poisson,
geometric, negative binomial and binomial distributions. In applications of
the Theorem we shall try to look for a sequence K, (x; X,) of functions for which
(14) holds with K (z) defined in (18), since this will minimize the possible limit
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of R(tx , G). Since K(z) in (18) is a function of the (unknown) apriori dis-
tribution G, we would like (14) to hold for (18) for all possible distributions G.
Obviously this may be possible only if the distribution of X, has some relation
to G. We shall see that in the empirical Bayes approach the limit R(G) can
sometimes be attained.

We shall let X, denote the vector of random variables X; , - -+, X, on which
the first n observations are taken, and we assume that X; are independent, each
with distribution function (2). For X we shall take X, ; which again is assumed
independent, with distribution (2).

Consider the case where P(x | \) is an integer valued discrete distribution and

let p(z|]A) = PX =z|A=A)z2z=0,1,---,and pe(z) = Pao(X = z) =
Jep(z|N)dG(\), x = 0, 1,---. pe(x) is the unconditional distribution of
X, when A is distributed according to G.

Define p,(z) = p.(z; X,) = (number of indices ¢, ¢ = 1, ---, n, for which
X,=2a)/n,z = 0,1, .-+ . p(x) is the empirical probability function of X,
and, as is well known
(22) limpaw Po(z) = Pe(x)

for all x, with probability one, whatever be the (unknown) apriori distribution G.
We shall consider the case where

(28) L(d0,0) = L(4s, ) = S,

i.e. the difference between the losses is a polynomial in A. For (23), (15) holds
whenever G has a finite moment of order s. Particular cases of (23) are

L(A4g,2\) = c¢(A — \*) for A >F
=0 otherwise
(24) * *
L(A1,\) =c¢(\" — ) for A<
=0 otherwise
and
L(4p,\) =0 if A=A =a
(25) = ¢[(A = \*)® — A’ otherwise
L(A:;,\) =0 i A=2%>a

= c[a’ — (A — \*)?] otherwise

where ¢ > 0 is some fixed constant. (24) and (25) seem particularly proper for
testing (3) and (4) respectively. They may, in fact, be more reasonable than
the usual zero-one losses. (24) and (25) are considered also in [7]. For (23) one
has

j=0

[RZCIINELeS

fn (Z 9 k") p(z | N) dG(N)

(26) EQ[L(AO N A) - L(Al , A) I 13] =
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For distributions of type (5)

(21) pele) = g(2) [ NN a6
and (26) becomes

ioa,. fn RO dGOV)

EolL(4e,A) — L(4;,4) | 2] = !

(28) fﬂ MR dG(N)

> o pola + /ol +3)
- pa(@)/9(@)

Thus it follows from (22) that

/0 pa(x 4 5)/9(x + J)

Pa()/9(x)

converges to (28) with probability one, and the Theorem is applicable and (16)
yields an “optimal” empirical Bayes rule, provided (15) holds.
Thus for distributions of type (5) the empirical Bayes rule with

29 Ku(5iX,) = &=

loyr = tn+l(xn+1)
where

= 1 if Kn(xn+l ;Xn) > 0
=0 otherwise

satisfies lim,.» B(t,, G) = R(G) whatever be @, provided (15) holds.

Particular distributions of type (5) are the Poisson, geometric and negative
binomial distributions, (the latter depending on a positive integer-valued
nuisance parameter m), where for

bn1(Xng1)

Poisson g(z) = 1/x!
geometric g(z) =1
negative binomial g(z) = (x T 7: - 1) x=01,--.
Thus, for example, for testing (3) with loss function (24) K,(x; X,) becomes
K. (z; Xa) = cl(x + 1)pa(z + 1)/pa(z) — A for the Poisson
= c[pa(x + 1)/pa(z) — \7] for the geometric

c(z + Vpa(z + 1)/(z + m)p.(x) — A*] for the
negative binomial
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distribution, and an optimal empirical Bayes rule t,4; = ty41(Xs41) becomes:
On the (n + 1)st decision take action 4; when X,,1 = X,4; is observed if and
only if

(o1 + D)Da(Tnys + 1)/pa(@npn) > A for the Poisson
(30)  pu(@ns: + 1)/Pa(Znga) > N for the geometric

(Tng1 + l)pn(xn+1 + 1)/(557»-1—1 + m)pn(xnﬂ) > \* for the
negative binomial

distribution. For the geometric and negative binomial distributions 0 < A < 1,
s0 (15) is no restriction for losses of type (23). The left hand sides of (30) are
easily computable, but the statistician may prefer to start using ¢, only for =
sufficiently large, since for small n, p.(x) will often be 0, which may cause
some trouble. It is interesting to notice that the left hand sides of (30) provide
optimal empirical Bayes solutions to the corresponding problems of estimating A
when G is unknown, where the loss it taken to be the squared deviation. For
the Poisson and geometric distributions these estimates are given already in
[12].

For testing (3a) an appropriate loss function is one where L(A4;,\) is
L(Ajizji, \) of (24) 4,5 = 0,17 5 j, and (30) with reversed inequalities is
an optimal empirical Bayes rule. Likewise, optimal empirical Bayes rules for
these distributions, for testing (4) with loss (25) are easily obtainable by substi-
tuting from (25) in (29). Case (4a) is treated similarly.

Consider now the binomial distribution, i.e.

P(X:QZ) =p,.(xl)\) =<;>A2(1_x)r—-z x:O,l’.-.’r.
For this distribution

(31) Por(z) = (;) fol (1 — NG z=0,1,---,7

and for losses satisfying (23) we have

i o fl )\x+f(1 — N dGO)
Eo,L(Ay,A) — L(4,,A) | 2] = =° k
(32) fo N1 — 2™ a0

- S| wvenita+i) /(XD / [pete) / ()]

Since the right hand side of (32) involves the function pg,+s and we are dealing
with binomial random variables with parameter r only, we cannot hope to find
a function which will converge to (32), but we can still use the theorem to obtain
“good” empirical Bayes rules for this situation.
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Considering the binomial variable X; as the number of successes in r inde-
pendent Bernoulli trials with probability A; of success, we assume that not only
the total, X; , but also the order of successes is known. Let X{” denote the num-
ber of successes in the v first of the r trials of X;, v = 1, 2, ---, r, and define
the empirical distribution functions

P (z) = p (x5 X)
= (1/n) (number of indices 5,7 = 1, - -- , n for which X{” = z),

z=0,1,---,0.

Since limge pS(z) = pa.(z) forz = 0, - - - , v with probability one, it follows

from (32) that (for r > s)
zs: @ D (3 + ) /(r — 8 +.7)
K.(z;X,) = =2 ] 2+

converges to
(33) FopddL(4o, A) — L(A1, A)| ] for z=0,1, - r—s
with probability one. Since (12) holds for (33) it follows by the theorem that
if we let

topr(Xogz) = 1 i Ku(2li73 %) > 0

(34)
=0 otherwise
then
(35) limn-poo R(tn ) G) = Rr—s(G), fOI‘ a,ll G

where R,(G) denotes the Bayes envelope function for the above discussed loss
function and a binomial distribution with parameter v. Thus, with the above
described rule one will in the limit be just as well off as if one knew @ but based
the decision on a binomial variable with parameter r — s rather than r. The
difference R,_,(G@) — R,(G@) may be considered the “cost of ignorance of G”.

As a particular example we shall again consider problem (3) and loss (24).
Here (34) becomes: Take action A; if and only if

(36) eI (25 4+ 1) /rpd P (2570 > Ak

(The left hand side of (36) is again an estimate of A given in [12], and the present
method of dealing with the binomial case is motivated by Robbins’ work [12].)
It follows from (35) that the risk of this rule converges to R,1(G), whatever be
@. The difference R,1(G) — R,.(@) is thus of interest. Consider (24) with¢ = 1
and \* = 1. If G is degenerate, i.e. assigns probability one to some value Ao , then
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R,1(G) = R.(G) = 0. The values of R,(@) in the case where @ is the uniform
distribution over the interval [0, 1] are given in the table below.

r R.(G)
1,2 o = .042
3,4 7o = 025
5,6 45 = .018
7,8 5= .014

Thus for this example R,1(G@) — R.(G) > 0 if and only if r is an odd integer,
and this difference decreases rapidly with increasing r.

One may wonder why the binomial distribution does not give rise to as good
empirical Bayes rules as the three other distributions discussed. The reason,
pointed out to the author in a discussion with Professor Robbins, can be found
when comparing (31) and (27). In the empirical Bayes approach we use X, in
order to obtain “information” about G and this “information” is contained in
an estimate of pe(x) which converges to pe(x) with probability 1. Now for the
binomial distribution it is seen from (31) that forx = 0, 1, - -+ , 7 pe.(z) is a
linear combination of the r first moments 6f G. Thus all distributions G over [0, 1]
which have indentical r first moments give rise to the same p¢,.(2). However,
for losses satisfying (23) it follows from (32) that the best procedure is a func-
tion of the r 4 s first moments of @, and in order to obtain a limiting loss R(G)
an estimate of this function would be required, but such an estimate cannot be
obtained from X, . Thus the exhibited rules (34) which are shown to satisfy
(35) for all G must be considered ‘“‘optimal in the limit”. For the other three
distributions, pe(x) given in (27) is a function of G depending on G in a more
involved manner, and the mapping (2) of G to Pg is one-to-one when the class
G is properly restricted. Thus in this case the “information” about G contained
in X, is much larger. (Compare [12] p. 162.)

We have exhibited empirical Bayes solutions for the four families of distribu-
tions considered above only in the case where the loss function satisfies (23).
Since many functions can be approximated to any required degree of accuracy
by a polynomial, the solution is quite general. It should, however, be remem-
bered that in the binomial case our limiting risk will be R,_,(G) and not R.(G),
when the degree of the polynomial is s, (s < r).

6. Applications of the theorem for continuous distributions. In the previous
section we considered applications of the theorem in various decision problems
for several discrete distributions. Here we shall use a similar approach for the
case where the independent, identically distributed random variables have a
distribution function which is absolutely continuous with respect to the Lebesgue
measure.

Let f(x | \) be the conditional density of X given A = A, and for simplicity
assume that the range for which f(z [A) > 0 does not depend on A. Then it
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follows from Fubini’s theorem that if A is distributed according to G' the un-
conditional density of X (with respect to Lebesgue measure) is

(37) Jol@) = [ e [0 d6Q).

In the empirical Bayesian situation X, therefore constitutes a random sample
of size n from a distribution with density (37). It would therefore be natural
to seek an estimate f.(x) = f.(x; X,.), such that for all z, as n — o«

(38) fa(x) — fe(x) in probability

for all possible fo. fo(x) satisfying (38) is a consistent estimate of a density
function. Such consistent estimates exist, and are exhibited by Rosenblatt [14]
and Parzen [10]. One of the simplest classes of estimates satisfying (38), with
some optimality properties (see [14]) is

(39) fa(x) = [Fa(z + ha) — Fu(x — ha)]/2h,

where h, = dn*, d > 0 some constant, and where F,(zx) = F,(z; X,) is the
empirical distribution function defined by

Fu(x)
(40) .

= (1/n) (number of indices 7,7 = 1, - - - , n, for which X; £ z).

For loss functions satisfying (23) one has

fn (;0 a; X’) f(z | \) dG(\)

(41)  BolL(4v,A) — L(As,4) | =
[RCIRSE LN

Corresponding to (5) we shall consider density functions of the form

flx|X) = Ng(x)h(X) for a <2 <

(42) .
=0 otherwise,
where a is some constant (possibly ¢ = — ). It then follows easily from the
above that
2 afalz + ) /g(z + )
K.(z;X,) = =
(i %o) @@

converges in probability to (41) with f(x [ \) given in (42). The Theorem there-
fore states that if on the (n 4 1)st decision one takes action A, if and only if
K.(%ny1 ; X») > 0 when X, = X, is observed, then the corresponding Bayes
risk of the rules converges to R(G) as n — «, whatever be G, provided (15)
holds.

(42) may seem a quite particular density function. The fact is, however,
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that many well known density functions can be described by (42) after simple
transformations. The following are some examples:
1. The exponential distribution: 0 < § < o

f(x]6) = 6 for 2>0
=0 otherwise.
Set ¢’ = \. Thenfor 0 < A < 1
fx|A) = —A"log\ for x>0
=0 otherwise.
2. The normal distribution with fixred o: — o < 6 < «
fx]6) = (2nd") Fexp (—(z — 0)*/26") for —w <2z < .
Set ¢’/”" = \. Then for 0 < A <
Ff@|N) = Nexp (—2%/2)\P2 for —w <z < .
3. The normal distribution with fized u: 0 < § < o
f@]0) = (2n6") Fexp (—(x — u)?/26") for —o <z < o.
Set y = (x — u)’, A = exp (—1/26"). Thenfor 0 < \ < 1
Fy N = Ny [(=log\)/al'/2 for y >0

=0 otherwise.

4. The gamma distribution with p > 0 fixed: 0 < 6 <
f(z]0) = [(26°)?*T(p/2)]"«”* " exp (—x/26°) for z > 0

=0 otherwise.
Set X = exp (—1/26%). Thenfor 0 < A\ < 1

fx|N) = N2 (=log M\)??/T(p/2) for z >0
=0 otherwise.

(Example 3 is a particular case of the latter, with p = 1.).

Many more examples can be given. The characteristic of all these examples is
that they belong to the exponential family of distributions.

In all the above examples the function A = y¥(8) which takes the parameter
6 into X is a strictly monotone function of 6 (for the range of 6 for which f(z | 6)
is a density function). Thus there is a one-to-one correspondence between
hypotheses stated in terms of 6 and those stated in terms of A. If the original
loss function (which is given as a function of 4) can be written in the form (23)
as a function of A and if the apriori distribution G*(6) corresponds to the apriori
distribution G(A\) then by using the empirical Bayes rule indicated above one
will suffer a risk which as n — « converges to R(G)—the minimum attainable
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risk for known G. These rules must therefore be considered ‘“optimal in the
limit”.

7. Areas of applications of the methods discussed in Sections 5 and 6. The
following are some examples where the above described rules seem profitable.
Many others could be given.

A. Medical survey. It is quite common practice to assume that the seriousness
of a disease can be expressed in terms of a parameter \, such that the higher the
value of \ the more serious the disease. The parameter A for an individual cannot
be measured directly, but the individual is subjected to r independent tests
the result of each being either “positive” or ‘“negative’”, and A stands for the
probability of a positive result. In this example it is not unrealistic to assume
that N\ in the population as a whole (either the entire population or just the
population connected with a particular medical center) is a random variable
with some unknown distribution G. The model described above has been con-
sidered by Neyman [9] and Chiang [2]. In the above model it seems reasonable
to assume that there exists a value \* such that an individual having a value of
X greater than A\* must be classified as sick. Loss function (24) seems especially
adequate for the present example, and since it seems a more serious mistake to
classify a sick person as healthy than to classify a healthy person as sick, a
rather low value of A* should be chosen. In order to classify each of the patients
as sick or healthy, one could here use the empirical Bayes rule given in (36),
where z; denotes the number of positive outcomes on the r tests of the 7th in-
dividual.

B. Quality control. Consider lots containing N items. In order to decide
whether a lot should be accepted or not it is customary to sample r items from
it, and to accept it when the number of defectives in the sample does not exceed
some specified constant ¢. Let A be the proportion of defectives in the lot. It
has become customary to consider A as a random variable which varies from lot
to lot, and is distributed according to distribution function G. Considering the
costs of sampling and of rejection and acceptance as functions of X it is possible
to determine, for given N and G, optimal sample size r and constant ¢. (This
problem was raised by Barnard in [1], and solved by Guthrie and Johns in [3]
and by Hald in [4]. See also Wetherill [17].) However, since G will usually be
unknown this theoretical solution has only limited practical value. We shall
instead show, that for fixed sample size r, an empirical Bayes rule can be found.
Let 4, denote the action of accepting the lot and A; the action of rejecting it.
A reasonable loss function seems to be

L(4o,\) = ax a>0
LA, \) =b(1—=2) b>0

(where possibly @ = Na, and b = Nb,), since for each non-defective item which
is rejected there is a positive loss, and likewise for each defective item which is
accepted there is a positive (possibly different) loss. Since

(43) L(A¢,N) — L(41,N\) = (a+ D) — b
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it follows that for known M\ the best procedure would be to accept the lot if
N < b/(a 4 b), reject it if N < b/(a + b) and take either action when A =
b/(a + b). The value \* = b/(a + b) may thus be called the ‘“break even
quality”. We shall assume that r is small as compared to the lot size N, and thus
assume that the number of defectives in the sample is distributed according to
the binomial distribution with parameters , A\. (This assumption is made also
in [4].) Since (43) satisfies (23) a proper empirical Bayes rule is again given
in (36) where z; denotes the number of defectives in the 7th sample, and where
\* = b/(a + b). This rule will in the limit be as good as any optimal rule if G
were known but the sample was of size r — 1 rather than r.

From (3] and [4] it follows that the optimal sample size » (when considering
also costs of sampling) is a function of G. Thus a modification of the above rule
in which also the sample size r of the nth lot is permitted to depend upon previous
available information, seems desirable.

C. College entrance examinations. Suppose students arrive sequentially and
are submitted to a college entrance test, and decision about their admittance is
made according to their achievement on the test. It is reasonable to assume
that each student has an ability value 6. which cannot be measured directly,
but that a student’s test score is a normal variable with mean 6 and some stand-
ard deviation ¢ which is considered fixed for all students.

A student should be admitted if and only if his 6 value exceeds some fixed
value 6*. Suppose the loss (e.g. to the Nation) for not admitting a student with
0 > 6% is clexp (0/0”) — exp (6%/0”)] and the loss (e.g. to the college) for admit-
ting a student with 6 < 6 is c[exp (6*/0°) — exp (6/c%)], and there is no loss
for a correct decision. The parameter 6 can reasonably be considered as a random
variable, with some (unknown) apriori distribution among college applicants.
Thus from Example 2 of Section 6 it follows that a reasonable procedure would
be to admit the nth student if and only if his score x, and the previous scores
X,—1 are such that

exn/,z Fn_l(xn +1 4+ hn_l) - Fn—l(xn +1- hn—l) > 6(0“‘—%)/172
Fn—l(xn + hn—l) - Fn—l(xn - hn-—l)

where h, and F, are given in (39) and (40).

One may of course raise objections to letting the decision about admittance
to college depend upon the scores of the students applying earlier, though this
seems to be common practice.

In the case where students do not arrive sequentially (i.e. the decisions about
admittance are made only after all students have been examined) a modification
of the above rule is advantageous. This modification is to treat each of the n
students as if he was the last one to apply, and thus for each student one bases
the estimate (39) of f¢ on all n — 1 other students. This approach is better in
the sense that with the above modification the average risk over the » individual
decisions converges more rapidly to R(G) than the corresponding average risk
for the sequential rule. A simplification of the above rule, with the same asymp-
totic properties and which requires much less computations is to let the estimate
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of fe for each decision be based on all n observations, i.e. the 7th student is ad-
mitted if and only if z; is such that

exi/az Fn(xz 'I" 1 + hn) - Fn(xz + 1 _ hn) > e(ﬁt_%)/,2
Fu(z: + ha) — Fu(z:i — ha) '

Though the above modifications were discussed only in connection with the
particular example C, it is obvious that similar modifications for any of the
rules discussed in Sections 5 and 6 are called for whenever one is in the non-
sequential rather than in the sequential situation, i.e. whenever the individual
decisions have to be made only after all n observations are at hand. The asymp-
totic optimality properties remain unchanged.

8. Relation to the compound decision problem. The compound decision prob-
lem deals with the situation in which one is confronted with n individual de-
cisions about some unknown parameters A;, A2, -+, Ay, = ¥, . In this case,
however, 2, is considered as an unknown sequence of constants, and not as a
realization of n independent random variables A; with distribution G. Thus the
Bayes risk is of no interest of its own. Suppose however that before the n decisions
have to be made the statistician knows the values of the parameters \;, 7 =
1, ---, mn, but not their order, i.e. the function

G.(\) = (1/n) (number of indices 7,7 = 1, ---, n for which A\; = \)

is known. Then, if the statistician at each decision uses the rule ¢s, which is
Bayes with respect to G, , his average risk on the n individual decisions will be
R(@,). It is thus natural to ask, whether also when G, is unknown, one can devise
a decision rule T, = (t1,%, -+, %) where 0 < #; £ 1 (and t; = t;,(x;) or t; =
t:(x,) according to whether one is in the sequential or in the non-sequential
situation), such that if ¢; is used to decide on \; one has

(44) [B(T», %) — R(Gy)] =0

where R(T,, 2&) = 2.1 R(t;, \i)/n, (see (1)) whatever be the infinite
sequence & = Ay, Ag, - -

When the decision problem is one of testing a simple hypothesis versus a
simple alternative rules have been devised for which (44) holds, both for the
nonsequential (see [5]) as well as for the sequential (see [15] and [16]) situation.
These rules constitute also optimal empirical Bayes rules, and are indicated in
Section 3. This is intuitively obvious, since in the Bayesian situation G, — G
with probability one, and one would hope that also R(G,) — R(G).

Usually it will be easier to find empirical Bayes solutions than to find com-
pound decision rules satisfying (44), and the possibility that empirical Bayes
rules constitute also “optimal” compound decision rules was stated by Robbins
in [11] p. 147. To the best of the present author’s knowledge no “optimal” com-
pound decision rules have been exhibited except for the simple versus simple
hypothesis testing problem. The author believes that the rules exhibited in
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Section 5 and 6 of the present paper constitute “optimal” compound decision
rules for the composite hypothesis testing problems considered, at least for the
nonsequential compound case (when these rules are modified according to the
last paragraph of Section 7), when only mild restrictions are put on the sequence
2. This problem still awaits a rigorous investigation.
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