ROBUST ESTIMATION OF A LOCATION PARAMETER'

By Perer J. Huser’
University of California, Berkeley

1. Introduction and summary. This paper contains a new approach toward a
theory of robust estimation; it treats in detail the asymptotic theory of esti-
mating a location parameter for contaminated normal distributions, and ex-
hibits estimators—intermediaries between sample mean and sample median—
that are asymptotically most robust (in a sense to be specified) among all trans-
lation invariant estimators. For the general background, see Tukey (1960)
(p. 448 ff.) .

Let z;,, ---, 2, be independent random variables with common distribution
function F(¢t — £). The problem is to estimate the location parameter £ but
with the complication that the prototype distribution F(¢) is only approximately
known. I shall primarily be concerned with the model of indeterminacy F =
(1 — €)® + eH, where 0 £ ¢ < 1 is a known number, ®(f) = (21r)_%ft_w
exp(—1s’) ds is the standard normal cumulative and H is an unknown con-
taminating distribution. This model arises for instance if the observations are
assumed to be normal with variance 1, but a fraction e of them is affected by
gross errors. Later on, I shall also consider other models of indeterminacy, e.g.,
sup; |[F(1) — ®(t)| £ e

Some inconvenience is caused by the fact that location and scale parameters
are not uniquely determined: in general, for fixed ¢, there will be several values of
£ and ¢ such that sup,|F(t) — ®((t — £)/0)| £ ¢, and similarly for the contam-
inated case. Although this inherent and unavoidable indeterminacy is small if
¢ is small and is rather irrelevant for practical purposes, it poses awkward prob-
lems for the theory, especially for optimality questions. To remove this difficulty,
one may either (i) restrict attention to symmetric distributions, and estimate the
location of the center of symmetry (this works for £ but not for ¢); or (ii) one
may define the parameter to be estimated in terms of the estimator itself, namely
by its asymptotic value for sample size n — o; or (iii) one may define the pa-
rameters by arbitrarily chosen functionals of the distribution (e.g., by the expec-
tation, or the median of F). All three possibilities have unsatisfactory aspects,
and I shall usually choose the variant which is mathematically most convenient.

It is interesting to look back to the very origin of the theory of estimation,
namely to Gauss and his theory of least squares. Gauss was fully aware that
his main reason for assuming an underlying normal distribution and a quadratic
loss function was mathematical, i.e., computational, convenience. In later times,
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74 PETER J. HUBER

this was often forgotten, partly because of the central limit theorem. However,
if one wants to be honest, the central limit theorem can at most explain why many
distributions occurring in practice are approximately normal. The stress is on
the word ‘“‘approximately.”

This raises a question which could have been asked already by Gauss, but
which was, as far as I know, only raised a few years ago (notably by Tukey):
What happens if the true distribution deviates slightly from the assumed normal
one? As is now well known, the sample mean then may have a catastrophically
bad performance: seemingly quite mild deviations may already explode its
variance. Tukey and others proposed several more robust substitutes—trimmed
means, Winsorized means, etc.—and explored their performance for a few typical
violations of normality. A general theory of robust estimation is still lacking;
it is hoped that the present paper will furnish the first few steps toward such a
theory. .

At the core of the method of least squares lies the idea to minimize the sum of
the squared “‘errors,” that is, to adjust. the unknown parameters such that the
sum of the squares of the differences between observed and computed values is
minimized. In the simplest case, with which we are concerned here, namely the
estimation of a location parameter, one has to minimize the expression
> i (x: — T)%; this is of course achieved by the sample mean 7' = dixi/n. 1
should like to emphasize that no loss function is involved here; I am only describ-
ing how the least squares estimator is defined, and neither the underlying family
of distributions nor the true value of the parameter to be estimated enters so
far.

It is quite natural to ask whether one can obtain more robustness by minimizing
another function of the errors than the sum of their squares. We shall therefore
concentrate our attention to estimators that can be defined by a minimum
principle of the form (for a location parameter):

T = Tu(xy, -+, xn) minimizes 9 s p(z; — T),

(M) . .
where p s a non-constant function.

Of course, this definition generalizes at once to more general least squares type
problems, where several parameters have to be determined.

This class of estimators contains in particular (i) the sample mean (p(t) = &),
(ii) the sample median (p(¢) = |¢|), and more generally, (iii) all maximum like-
lihood estimators (p(t) = —log f(t), where f is the assumed density of the un-
translated distribution). :

These (M )-estimators, as I shall call them for short, have rather pleasant
asymptotic properties; sufficient conditions for asymptotic normality and an
explicit expression for their asymptotic variance will be given.

How should one judge the robustness of an estimator T,(z) = Tp(x1, + - ,Ts)?
Since ill effects from contamination are mainly felt for large sample sizes, it seems
that one should primarily optimize large sample robustness properties. Therefore,
a convenient measure of robustness for asymptotically normal estimators seems
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to be the supremum of the asymptotic variance (n — «) when F ranges over
some suitable set of underlying distributions, in particular over the set of all

= (1 — €)® + eH for fixed ¢ and symmetric H.

On second thought, it turns out that the asymptotic variance is not only easier
to handle, but that even for moderate values of n it is a better measure of per-
formance than the actual variance, because (i) the actual variance of an estimator
depends very much on the behavior of the tails of H, and the supremum of the
actual variance is infinite for any estimator whose value is always contained in
the convex hull of the observations. (ii) If an estimator is asymptotically nor-
mal, then the important central part of its distribution and confidence intervals
for moderate confidence levels can better be approximated in terms of the
asymptotic variance than in terms of the actual variance.

If we adopt this measure of robustness, and if we restrict attention to (M)-
estimators, then it will be shown that the most robust estimator is uniquely
determined and corresponds to the following p:p(t) = 3£ for |t| < k, p(t) =
k|t| — 3k* for |t| = k, with &k depending on e. This estimator is most robust even
among all translation invariant estimators. Sample mean (k¥ = «) and sample
median (k = 0) are limiting cases corresponding to e = 0 and ¢ = 1, respectively,
and the estimator is closely related and asymptotically equivalent to Winsorizing.

I recall the definition of Winsorizing: assume that the observations have been
ordered, z; < 2, £ --- < x,,, then the statistic T = n ' (gZ41 + To11 + Toy2 +
coo 4 Tpn + hxn-p) is called the Winsorized mean, obtained by Winsorizing
the g leftmost and the A rightmost observations. The above most robust (M )-
estimators can be described by the same formula, except that in the first and in
the last summand, the factors x,; and x,_» have to be replaced by some numbers
u, v satisfying z, £ v < g1 and T, = v = ZTpny1, respectively; g, h, v and v
depend on the sample.

In fact, this (M )-estimator is the maximum likelihood estimator corre-
sponding to a unique least favorable distribution F, with density fo(¢) =
(1 — €)(2r) % . This fo behaves like a normal density for small ¢, like an
exponential density for large {. At least for me, this was rather surprising—I
would have expected an f, with much heavier tails.

This result is a particular case of a more general one that can be stated roughly
as follows: Assume that F belongs to some convex set C of distribution functions.
Then the most robust (M )-estimator for the set C' coincides with the maximum
likelihood estimator for the unique Fy £ C' which has the smallest Fisher informa-
tion number I(F) = f(f'/f)zf dt among all F ¢ C.

Miscellaneous related problems will also be treated: the case of non-sym-
metric contaminating distributions; the most robust estimator for the model
of indeterminacy sup.F(¢) — &(t)] = ¢; robust estimation of a scale
parameter; how to estimate location, if scale and e are unknown; numerical
computation of the estimators; more general estimators, e.g., minimizing
ZK,- o(z; — T, z; — T), where p is a function of two arguments.

Questions of small sample size theory will not be touched in this paper.
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2. Asymptotic normality of (M )-estimators for convex p. It will be assumed
throughout this section that p is a continuous convex real-valued function of a
real variable ¢, tending to + ast — = o.

Let 21, - -+, «, be independent identically distributed random variables with
common distribution function F. Let [T,(x)] be the set of all those ¢ for which
Q) = D iy p(x: — £) reaches its infimum Q;.¢ . Obviously, [T,(z)] is invariant
under translations: [T.(z 4+ ¢)] = [T.(z)] + ¢. By Tx(x) we shall denote any

representation of the set valued function (z;, ---, x,) — [Tx(z)] by a single-
valued function (z1, -+, €,) — Tu(x) £ [Ta(z)], e.g., Tx(z) = midpoint of
[T ()]

Lemma 1. Q(£) is a convex function of £, and [T,(x)] is non-empty, convexr and
compact. If p is strictly convex, then [T, (x)] is reduced to a single point.

Proor. (Strict) convexity of @ follows immediately from (strict) convexity
of p. The sets {£ | Q(£) < Qint + m '} form a decreasing sequence of non-empty
convex compact sets as m — oo, hence their intersection [7',(z)] is non-empty
convex compact. If Q is strictly convex, and if ¢, £ were distinct points of
[T.(x)], then we would have Qine = Q(3t' + #”) < 3Q(¥) + 3Q(¢") = Qint,
which is a contradiction.

Let ¥ = p’ be the derivative of p, normalized such that ¢(¢) = L¢(t — 0) +
(¢t 4+ 0). ¢ is monotone increasing and strictly negative (positive) for large
negative (positive) values of .

If ¢ is continuous, 7.(zx) may equivalently be defined by the equation
2o ia¥(w — Ta(z)) = 0.

Define N(¢) = [¢(t — £)F(dt) = Ey(t — £).

LeMMA 2. If there is a & such that N(&) exists and is finite, then N(¥) exists for
all £ (possibly N(§) = ), is monotone decreasing and strictly positive (nega-
tive) for large negative (positive) values of £.

Proor. Split ¢ into its positive and negative part ¢ = ¢* — ¢ ~. Then \(§) =
[yt (t — £)F(dt) — [¥(t — £)F(dt). For ¢ = & both integrals exist and are
finite. For ¢ = £ the first integral is bounded 0 < [y*(t — £)F(dt) <
f¥"(t — &)F(dt), and similarly, for ¢ < &, the second integral is bounded
0= fV(t — HF(dt) = fn//_(t — &)F(dt). Hence, at least one of the two
integrals is finite, thus A(¢) exists everywhere. A(¢) is monotone decreasing in
¢ since Y(t — £) is. Now we want to show that \(£) is strictly negative for
large positive values of ¢, and strictly positive for large negative £; of course, it
suffices to prove the first of these two assertions. Let ¢ > 0, and let M be such
that fﬁ v (t — &)F(dt) < e; for sufficiently large £ we have fﬁ'w yH(t — £)F(dt)
= 0, hence [2y*(t — £)F(dt) < e, which implies that fn/f’(t — §F(dt) >0
for ¢ — . Since ¥ takes upon strictly negative values, there is a § > 0 such that
f v (L — &)F(dt) > 6 for sufficiently large £, thus \(£) is strictly negative for
sufficiently large values of &.

Lemma 3. (“Consistency of T',’). Assume that there is a ¢ such that N\(£) > 0
for ¢ < cand N(¢) < 0 for &£ > c. Then T, — c almost sure and in probability.
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Proor. Let ¢ > 0. Then, by the law of large numbers,

(l/n)l{;f Y(xi —c—¢€) > Nc+e€) <0,

(l/n);xp(x,- —c+¢€) =N —¢€) >0,

a.s. and in probability. Hence, by monotonicity of ¢, for a.a. sample sequences,
¢ — € < [Ta(2)] < ¢ + €holds from some n on, and similarly, Plc — ¢ < [T.(x)] <
c+ ¢ — 1.

REMARK. The assumption of Lemma 3 could have been replaced—in view of
Lemma 2—by the assumption that A(¢) exists and is finite for some &, , and that
it does not identically vanish on a nondegenerate interval.

LemMA 4. (“Asymptotic normality”). Assume that (i) A(c¢) = 0, (ii) A(§)
is differentiable at ¢ = ¢, and N (¢) < 0, (iii) f¢2(t — §£)F(dt) s finite and con-
tinuous at ¢ = c. Then n*(T,.(x) — ¢) 1s asymptotically normal with asymptotic
mean 0 and asymptotic variance V(y, F) = [ ¢*(t — ¢)F(dt)/(N (¢))™

Proor. Without loss of generality assume ¢ = 0. We have to show that for
every fixed real number g, P[R'T, < go] — ®(g), where o = V(y, F )}, Since

T, < gan“*] cC [i v(z; — gcm_’) < 0] c [T, £ gan-*],

it suffices to show that
pn = P [Z Y(zs — gon™) < O] — &(g).
=1

Let s = [ (¥(t — gon™*) — N(gon™))’F(dt), then the y; = (¥(z: — gon™*) —
Mgon?))/s are independent random variables with mean 0 and variance 1.
We have

po=P [n‘* Z; yi < — n*)\(gan‘*)/s]
and — ni\( gan—})/ s — g. We shall see presently that n"*z ys; is asymptotically
normal with mean 0 and variance 1, hence p, — ®(g).

There is a slight complication: although the y; are independent identically
distributed summands, they are different for different values of n, and the usual
formulations of normal convergence theorems do not apply. But by the normal
convergence criterion, as given in Loeve (1960), p. 295, the distribution of
> n"’y,- converges toward the standard normal iff for every ¢ > 0, as n — oo,
[eyiF (dz;) — 0, the integration being extended over the set E = [|ys] = nle.
Since N(gon™t) — 0, this holds iff for every ¢ > 0, fE, V(z — nYge)F(dz) — 0,
the integration being extended over the set E' = [|[¢(z1 — ngo)| = n'e]. Now,
let n > 0 be given and let n, be such that |[n7%s| < n for n = ny . Then,
since ¢ is monotone, we have y*(z; — n'0) = W’(z:) for n = n, with
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w(zy) = max{|y(z; — )|, [¥(z1 + n)|}. Since Ey’(z; + 5) exists, we have
fE” u’(zy) F(dz;) — 0, the integration being extended over the set E”
= [|lu| = n'] D E’. This proves the assertion.

REMARK. Lemma 4 admits a slight generalization, which is sometimes useful:
If X has different left and right derivatives at ¢, then the asymptotic distribution
of n*( T.(z) — c¢) is pieced together from two half-normal distributions, with
variances determined by the one-sided derivatives of X respectively in the same
way as in Lemma 4.

For the remainder of this section, assume for simplicity ¢ = 0. By formally
interchanging the order of integration and differentiation one obtains \'(0) =
[(d/dg) [¥(t — £)F(dt))emo = — [ ¥/ (t)F(dt) = —Ey’. This makes sense either
when y is sufficiently regular or when F is sufficiently regular so that ¢" may be
interpreted as a Schwartz distribution. Moreover, if F has an absolutely con-
tinuous density f, we find by partial integration \'(0) = f\p(t)f'(t) dt. The
Schwarz inequality now yields the inequality

By [Yf dt 1
1 Vi, F) = = > .
W W) = Gy = G prae = [T
We have strict inequality unless ¢ = —pf’/f, for some constant p, that is, unless

f(t) = const. exp(—p(t)/p) and then the (M )-estimator is the maximum likeli-
hood estimator.

3. The case of non-convex p. If p is not convex, the estimators T, will, in
general, no longer converge toward some constant ¢. Apparently, one has to
impose not only local but also some global conditions on p in order to have
consistency. Compare also Wald (1949).

Asymptotic normality is easier to handle. The following is a simple proof of
asymptotic normality under somewhat too stringent regularity conditions, but
without assuming monotonicity of .

LeEmMA 5. Assume that (i) T,(x) — 0 in probability; (ii) ¢ s continuous and
has a uniformly continuous derivative ¥'; (iii) Ey* < «; (iv) 0 < Ey/ < o,
Then n!T, is asymptotically normal, with asymptotic mean 0 and asymptotic
variance EY*/(EY' ) .

Proor. T, satisfies ) ¢(z; — T») = 0, hence, by the mean value theorem,
there is some ¢, 0 < ¢ =< 1, such that Y ¢(z:) — To) ¢ (z: — 0T,) = 0,
or n’T, = n Y y(z:)/(n'2 ¥ (z; — 8T,)). The numerator is asymptotically
normal with mean 0 and variance Ey’, the denominator tends in probability
toward the constant Ey’, hence n'T, is asymptotically normal with mean and
variance as given above (see Cramér (1946), 20.6).

4. Examples. In all examples below we shall choose the origin such that
Ey(z) = 0, that is, T, — 0.

(i) p(t) = . The corresponding estimator is the sample mean 7, = > i/,
T, — Ez = 0, and n!T, is asymptotically normal with mean 0 and variance
Ed’ = [ £F(dt).
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(ii) p(t) = |[¢|. The corresponding estimator is the sample median, and
Tn — u = 0, where u is the median of F. If F has a non-zero derivative at the
origin, then n!T, is asymptotically normal with asymptotic mean 0 and asymp-
totic variance 1/(2F'(0))>

(iil) p(t) = 3’ for |t| < k, p(t) = k|t| — 3k’ for |{| > k. The corresponding
estimator is closely related to Winsorizing, since it has the following property :
if we put for short ¢, = T.(z), then all observations z; such that |z; — &| > k
may be replaced by ¢ == k, whichever is nearer, without changing the estimate
T.(z), and % equals the arithmetic mean of the modified set of observations.
Proof: since p is convex, it suffices to look at the first derivative of Q(¢) =
> p(x; — £), which still vanishes at £ = & if it did before the change:

Q) = 2 (@m—t)+ 2 ((b+k) —t)+

|zi—to| <k zi>to+k

> ((b—k) — ).

zi<to—k

The asymptotic variance of n'T, is

V= ( [ :k ¢rar) + ¥ [ ;k Fdt) + ¥ fk ) F(dt)) / ( _:k F(dt))z.

(iv) p(t) = 3t*for |t| < k, p(t) = 3k*for |t| > k. The corresponding estimator
is a trimmed mean: let {, = T'.(x), and assume for simplicity that for no observa-
tion |z; — &| = k. Then T,(x) equals the saniple mean of those observations for
which |z; — &| < k, and remains unchanged if some or all of the z; for which
|2; — to| > k are removed. Proof: Compute the derivative of Q(£) = X p(z: — £)
at

Q) = 25 (z:i— t).

|zi—to <k

Thus, if Q(£) attained its infimum at # before the outliers were removed, it must
still be stationary there when the outliers are excluded. But removing an outlier
decreases Q(t) by 3k’ and cannot decrease Q(£) by more than that for any £,
hence Q still attains its infimum at ¢, .

Assume that T, is consistent T, — 0, then the asymptotic variance of niT,

is, formally,

+i +k 2
V= f £'F(dt) /( . F(dt) — kF'(k) — IcF’(—-Ic)) .
(However, one should be reminded that we did not prove the formyla in this
case, p not being convex. I conjecture that it is valid if and only if the expression
inside the parentheses of the denominator is strictly positive.)

A glance at the asymptotic variances computed in these four cases shows
plainly that

(i) The sample mean is very sensitive to the tails of F.
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(ii) The sample median is very sensitive to the behavior of F at its median,
and neglects its behavior elsewhere.

(iii) “Winsorizing” avoids these shortcomings and seems to be practically
foolproof. Apparently, this is connected with the fact that the correspond-
ing ¥ is monotone, bounded and absolutely continuous.

(iv) The “trimming procedure’ is rather sensitive to the behavior of F at
the rejection points ==k; a high density at these points will play havoc
with the estimate. This shortcoming seems to be common also to other
rejection procedures; here one might avoid it by smoothing p at k.

6. Minimax questions; a special case. At first glance, it might seem absurd
to look for asymptotic minimax solutions, since, asymptotically, one could do
better by estimating the true underlying distribution (see also Stein (1956),
Héjek (1962)). However, this seems to require an exorbhitant number of observa-
tions. On the other hand, it is hoped—and preliminary numerical experiments
seem to substantiate this hope—that (M )-estimators approach their asymptotic
behavior rather fast, provided ¢ is bounded. So an asymptotic minimax theory
should be useful in those frequent cases where the sample size is perhaps large
enough to indicate deviations from the assumed model but not yet large enough
to establish their nature. In the case of the contaminated normal distribution
F = (1 — €)® + eH, this means that asymptotic minimax theory would be
appropriate whenever the sample size » is fairly large, but en, the average number
of outliers, is still rather small. We shall discuss this point in a later section.

First we shall treat a special case that can be solved explicitly by a direct
verification of the saddlepoint property.

Let C be the set of all distributions of the form F = (1 — ¢)G@ + ¢H, where
0 < e < lisa fixed number, G is a fixed and H is a variable distribution function.
Assume that G has a convex support and a twice continuously differentiable
density g such that —log ¢ is convex on the support of G. Let T, be an (M )-
estimator belonging to a certain p, let ¥ = p’ be the derivative of p, and let ¢ =
c(F) be such that f ¥(t — ¢)F(dt) = 0. The asymptotic variance of n*(T, — ¢)
will be

VY, F) = B'(t — o)/ (B’ (t = ¢))’,

provided y is “nice.” For the moment we shall not bother about c—it might be
interpreted as the bias of T,—and shall try to minimize the supremum
«upp V (¢, F) of the asymptotic variance only for those pairs (¢, F) for which
c(F) = 0.

TuaeoreM 1. The asymptotic variance V (¥, F) has a saddlepoint: there is an
Fo = (1 — €)G + eHy and a ¥, such that

supr V(¥o, F) = V(so, Fo) = infy V(¥, Fo)
where F ranges over those distributions in C for which Exy = 0. Let to < t, be the
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endpoints of the interval where |g'/g| < k (either or both of these endpoints may be
at infinity), and k is related to € by

(1—-¢7 ' = [1 g(t) dt + (g(t) + g(t1))/k.

Then the density fo of Fo is given explicitly by

fo(t) = (1 — e)g(to)e"“™™ fort < ¢y,
= (1 — €)g(t) forto < t < t,,
= (1 — e)g(t;)e—k(‘”") fort = ¢.
Yo = —fo/fo is monotone and bounded and corresponds to the maximum likelihood

estimator of the location parameter when Fy is the underlying distribution.
REeEMARK. The statement of this theorem is unsatisfactory insofar as the class

over which H ranges depends on y, . This could be avoided by restricting G to be

symmetric, and letting H range over all symmetric distributions. However, 1

preferred to give the stronger statement above.
Proor. It is easy to check that F, has total mass 1, hence also Hy, =
(Fy — (1 — €)@)/e has total mass 1, and it remains to check that its density ho

is nonnegative. But
eho(t) = (1 — )lg(ta)e" ™ — g(1)] fort < 4,

(1 — lgt)e ™™™ —g(t)]  fort=t.

Because the function —log ¢(¢) is convex, it lies above its tangents at # and
t, ie., —log g(t) = —log g(t) — k(t — &), thus g(¢) = g(t)e*“ ™, ete.,
which implies non-negativity of A, .

Yo = —fo/fois bounded and monotone, so we have

EFo lﬁg - (1 - G)Ea l/’ﬁ + 6702
(Ergo)? (1 — e)Eq¢ ¥)*

The right side is an obvious upper bound for V(y,, F), provided Exyy = 0,
so we have V(¢o, F) < V(¥a, Fy).

Note that Az has left and right derivatives, so the asymptotic distribution of
n! T, must be either normal or pieced together from two half normal distribu-
tions, and the latter case can only occur if F puts positive mass on the points
lo, t1.

The inequality V(¢o, Fo) < V (¢, Fo) follows directly from inequality (1) of
Section 2, noticing that V(yo, Fo) = ([ (fo/fo)*fodt)™

More generally, using results of LeCam (1953), (1958), one may prove that
the maximum likelihood estimator for F is indeed efficient among all translation

Vo, Fo) =
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invariant estimators, in the sense that for any translation invariant measurable
estimator T, = T, (1, --- , Z,) one has

Vo, Fo) < limes., lim infees, f min(nT? , A)Fo(dzy) - - - Fo(day).

In other words, one may strengthen the theorem: the (M )-estimator cor-
responding to ¥, minimizes the maximal asymptotic variance not only among
(M )-estimators, but even among all translation invariant estimators. (Instead
of translation invariance, any weaker condition still excluding superefficient
estimators would suffice in this context.)

6. The contaminated normal distribution. The assumptions of the preceding
section are satisfied if G = & is the standard normal cumulative with density
o(t) = (2r) ™ exp{ —3#*}. Because of the importance of this case, we summarize
the results in a

CoroLLARY. Define the estimator T, = Tp(z1, -+, x,) by the property that it
minimizes 3 ; p(x: — Tn), where p(t) = 3 for |t] < k, p(t) = k|t| — 3k for
lt| = k. Let y = p'. For symmetric H, n*T,, is asymptotically normal with asymp-
totic mean 0, and atlains the maximal asymptotic variance supr V(y, F) =
{(1 — )Es¥’ + &}/{(1 — €)Esd'}’, whenever H puts all its mass outside the
interval [—k, +Fk]. If e and k are related by (1 — €)™ = [Txo(t) dt + 20(k)/k,
then T, minimizes the maximal asymptotic variance among all translation tnvariant
estimators, the maximum being taken over the set of all symmetric e-contaminated
distributions F = (1 — €)® + eH. There is a unique asymplotically least favorable
Fo having the density fo(t1) = (1 — €)(2r) e

Table I gives the value of supr V(¢, F) in dependence of % and e. Notice that
Esy' = Pif|z| < k] is the probability that an observation falls inside the interval
(—k, +k) if ® is the true underlying distribution. exin is the value of ¢ for which
the corresponding & yields the asymptotic minimax solution.

It can be seen from the table that the performance of T, is not very sensitive
to the choice of k—any value between 1.0 and 2.0 will give acceptable results
for all ¢ < 0.2. The limiting case ¥ = 0 is the sample median.

7. The question of bias. Assume that we have the situation of Section 5,
the prototype distribution being F = (1 — €)G + eH, with a symmetric G.
‘What happens if the contaminating distribution H is not symmetric? (Suggested
interpretation: most observations are distributed according to G(r — ¢), but
a small fraction e of them is distributed according to H(z), and is unrelated to
the parameter ¢ to be estimated. This might happen if the observations are
made with an instrument that jams with probability e.)

Let ¢ be any of the minimax procedures described in Theorem 1, or any other
sufficiently regular bounded monotone skew symmetric function. Let ¢ = ¢(F)
be such that Ar(c) = Exp(t — ¢) = 0; for reasons of symmetry, we have c¢(G) =
0. Thus, ¢(F) may be considered as the bias caused by the contamination eH.
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The mean value theorem implies that A(0) + c(F)Ar(d¢) = O for some &,
0 < ¢ < 1, if Ap is differentiable. Hence

¢(F) = —ena(0)/[(1 — e)Na(¥¢) + An(dc)].
Thus, since ¥ and A are monotone,
(2) le(F)| = [¢/(1 — €)] sup [¥|/(— Na(dc)).

If Ng(c) is continuous at ¢ = 0, and if € and hence ¢ are small, we may replace
¢ by 0 to obtain an approximation to the right side of (2).

The upper bound of the asymptotic variance calculated above for symmetric
H will have to be increased if also asymmetric H are admitted. But under mild
regularity conditions this correction will be of the order o(c) and may thus be
neglected in comparison with the bias ¢, if the latter is small.

In the particular case where G = & is the standard normal cumulative, and
¥ is the minimax solution for e (minimizing the maximal asymptotic variance for
symmetric H), we obtain the following approximate upper bounds for the
asymptotic bias c:

le] = 0.17 fore = 0.1, k = 1.14,
le| < 0.021 fore = 001, k = 1.95,
le| < 0.0027 fore = 0.001, &k = 2.64.

These bounds will be reached by ¢ whenever H puts all its mass to the right
of k + ¢, or to the left of —k — c.

It does not seem that one can make the bias much smaller without doing serious
damage to the variance of the estimate. The sample median gives the smallest
bias, namely |¢| = (1 — €) (20(0)) '~ 1.25¢(1 — €) 7 It is easy to see that
this is indeed the best possible bound for translation invariant estimators: let

f(#) = (1 — €)e(0) for [t < ¢,
= (1 = ee(lt| = ¢) for |2 ¢,

f and e being related by [f(t) dt = 1,1ie.,¢ = (1 — €)™(2¢(0))™. Then both
c(t — ¢) and f(¢ + ¢) may be considered as e-contaminated standard normal
densities, one having the contamination to the right, and the other to the left
of the origin. No translation invariant estimator canhave a bias of absolute value
less than ¢ for both of these densities simultaneously, since the difference of the
two biases must be 2c.

As a consequence of these considerations, if somebody wants to control the
asymptotic bias and keep it below 3n %, that is, below one half of the asymptotic
standard deviation of T, , he should not increase the sample size above n = 9,
600 and 35,000, respectively, for the above-mentioned values of € and k.

Of course, such sample sizes are not large enough to estimate H to a sufficient
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degree of accuracy, since, on the average, less than en = 1, 6 or 35 observations,
respectively, would come from H, and one would not even know which ones.
This may be taken as a justification for using minimax procedures, in the sense
thai sample sizes reasonable for a given amount of unknown contamination will
not allow to determine the nature of this contamination, except in rather extreme
cases.

8. Minimax theory. The most robust estimator constructed in Section 5
coincided with the maximum likelihood estimator for some least favorable
distribution. The present section shows that this is quite a general feature of
most robust (M)-estimators.

Consider the following game against Nature:

Nature chooses a distribution F from some set C of distributions on the real

line.

The statistician chooses a function ¢ from some set ¥ of functions.

The payoff to the statistician is

Ky, F) = (f v dF)z/f:p’ dF

where ¢’ denotes the derivative (in measure) of ¥; it shall be tacitly under-
stood that the statistician chooses not only ¢, but also a particular repre-
sentative of ¢

On purpose, we shall remain rather vague about the set ¥ and shall change it
according to convenience. For instance, if F has an absolutely continuous density
f, the payoff function may be transformed by partial integration into K (¢, F) =
([yf'dt)’/ [¥’f dt, which makes sense for a broader class of functions than the
original definition and allows to use a larger class ¥.

If C and ¥ are restricted in a suitable way, for instance to symmetric distri-
butions and sufficiently regular skew symmetric monotone functions ¢, we will
have K(¢, F) = (asymptotic variance of n*T,)™, hence K(¢, F) is a measure
of the asymptotic efficiency of the estimator. For the moment, we shall not
bother about this aspect and shall just try to establish properties of the ab-
stractly defined game.

The reason for preferring the utility function K(¢, F) over the loss function
V(¥, F) = K(¢, F)™ used in earlier sections is that K has more convenient
convexity properties.

The following convexity inequality is hardly new, but since it will be used
several times, it is given the status of a lemma.

LeMMA 6. Let vy > 0,92 > 0,0 < a < 1. Then

(e + (1 — a)us)® _ ui uz
av, + (1 — ). Sey ¥ a a)E’
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Proor. Put » = an, + (1 — a)v2, 8 = ow/v. Then
2 2
01 V2

av; + (1 — a)ve
< v{ﬁ(l—?>2+ (1-8) (%2),} —a—+ (a- )z‘:.

In particular, if we put u; = [¢' dF;, v; = [¢* dF;, (i = 1, 2), we obtain
that K (¢, -) is a convex function: K(¢, aF1 + (1 — a)F:) = aK(¥, F1) +
(1 —a)K (¥, F:). Hence, if u is a mixed strategy of Nature, that is, a probabil-
ity distribution on C, it follows that K(¢, F.) < [K(¥, F) du, where F, =
JF dp. In other words, every mixed strategy of Nature is dominated by a pure
one, provided C is convex in the sense that it contains all averages F, of ele-
ments of C. However, we shall not use this result, so we do not give it a formal

proof.
THEOREM 2. Let C be a convex set.of distribution functions such that every F & C

has an absolutely continuous density f satisfying I(F) = f( F/1f dt < . (i) If
there is an Fo & C such that I(Fo) < I(F) for all F £ C, and if Yo = —fo/fo is
contained in ¥, then (Yo , Fo) is a saddlepoint of the game, that is,

K, Fo) = K(bo, Fo) = I(Fo) < K(¥o, F)

forally eV and all F ¢ C. (ii) Conversely, if (Yo, Fo) 7s a saddlepoint and ¥ con-
tains a nonzero multiple of — fo/fo , then I(Fo) < I(F) for all F ¢ C, Fy s unsquely
determined, and o is [Fol-equivalent to a multiple —fo/fo. (iii) Necessary and
sufficient for Fy to minimize I(F) is that [(—2¢eg’ — ¢§§g) dt = 0 for all functions
g = fii—fo, Fie C.

Proor. The inequality K(¥, Fo) = (J¥(fo/fo)fo dt)’/ ¢fo dt = [(fo/fo)fodt =
I(Fy) = K, Fo) is the Schwarz inequality (1) and holds independently of
the particular properties of F,. Assume now that I(F,) < I(F) for all F ¢C.
Put for short F. = (1 — €)Fy + eF1, with F1¢C, and let J(¢) = K(¢o, F.),
I(e) = I(F.). Both I and J are convex functions of ¢; this follows immediately
from Lemma 6. Thus, in order to prove K(¥o, Fo) = K(¥o, F) it suffices to
show that for all F; ¢ C we haveJ’'(0) = 0. An explicit calculation yields

7 = [ (=20 — ¥io) a,
with ¢ = fi — fo . On the other hand, we have also
r'o) = [ (—2ud —vio) @,

provided we are allowed to interchange differentiation and integration. But for
fixed ¢, (f(t))?/f(¢) is convex in ¢ by Lemma 6, hence the difference quotient

satisfies the inequalities

—20g’ — Wog S (/e — (o) /f}/e < (F)'/h = (fo)*/fo.
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The right-hand term is integrable by assumption, the middle term tends de-
creasingly toward the left-hand term as ¢ | 0, and has a nonnegative integral.
One concludes by the monotone convergence theorem that the interchange of
integration and differentiation is legitimate, and that the integral of the left-hand
term is I'(0) = 0. Hence, we have also J'(0) = 0. Conversely, if F, is such that
f(—2¢og' — Yog) dt = 0 for all F, £ C, then I'(0) = 0, and Fo minimizes I(F).
This proves (i) and (iii).
If (Y0, Fo) is a saddlepoint, then

I(Fo) = K(—fo/fo, Fo) < K(¥o, Fo) < K($o, F) £ K(—f/f, F) = I(F),

for all F ¢ C, provided —fo/fo (or a nonzero multiple of it) is in ¥. This proves
the first part of (ii).

Since I(F) is a convex function of F, the set of those F that minimize I(F)
is convex. Assume that F; = F, also minimizes I (F). Without loss of generality,
we may assume that F, and F, are absolutely continuous with respect to each
other (otherwise replace them, say, by 0.9F, + 0.1F; and 0.1F, 4+ 0.9F,, re-
spectively, which are still distinet and still minimize I(F)). Let ¢; = —fi/f:,
(¢ = 0, 1), then both pairs (¢, , F;) have the saddlepoint property, hence

K, Fo) < K(¥o, Fo) < K(¥o, F1) < Ky, F1) < K($u, Fo),

and we have equality signs throughout. But the first equality can only hold if
Y1 = —f1/f1is [Fo]-equivalent to a multiple of —fo/fo . Integrating this relation,
we obtain fi(t) = a(fo(t))” for some constants ¢ and p. Let f = 3fo + %f1, then,
for the same reason, f must satisfy f = 3fo + 3aff = bf¢ for some constants
b and q. Taking the logarithmic derivative, we obtain

f_a+ apff™)fo _ fo

7o aFaee i

On the set where fo/fo # 0, we have 1 — ¢ = a(q — p)f3 . Since fo is not constant
on this set, this implies p = ¢ = 1. Hence f, and f; must be equal. This terminates
the proof.

Theorem 2 does not answer the question whether such an F, exists, and it
does not tell us what happens for distributions F that do not possess an absolutely
continuous density. To settle these questions, we have to generalize a little bit
further.

From now on, let C be a vaguely compact convex set of substochastic distri-
butions on the real line. (Under the vague topology we understand the weakest
topology such that the maps F — f ¥ dF are continuous for all continuous func-
tions ¢ with compact support.) We no longer require that the elements of C have
a density, and we do not exclude the possibility that some might have a total
mass < 1. This latter case is not so far-fetched as it might seem. It corresponds
loosely to the usual practice of screening the data and excluding extremely wild
observations from further processing: If we formalize this by assuming that
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Nature chooses a probability distribution on the extended real line and that the
statistician excludes infinite-valued observations, we end up with substochastic
distributions on the ordinary real line. Theorem 2 remains valid for substochastic
distributions.

On the other hand, vague compactness would be unduly restrictive if we did
not admit substochastic distributions.

First we shall extend the definition of the Fisher information number, es-
sentially by putting it equal to « whenever the classical expression [(f'/f)’ dt
does not work. However, a more devious approach is more useful, where the
above statement turns up as the conclusion of a theorem.

DerINITION. Let
2
I(F) = sup, ( f % dF) / f JEdF

where Y ranges over the set of continuous and continuously differentiable functions
with compact support satisfying f\#z dF # 0.

TuEOREM 3. [(F) < « if and only if F has an absolutely continuous density f
such that [(f'/f)%f dt < oo, f' being the derivative in measure of f, and then I(F) =
JG' 19 at. 4

Proor. If F has an absolutely continuous density f, then we may conclude
by the Schwarz inequality (1) that I(F) < [(f'/f)f dt, which proves the ‘“if”
part of the theorem. The “only if”’ part is more involved. Assume that I(F) < .

(i) First we have to show that F has a density f. Assume that it has not,
then there would be a set N of Lebesgue measure A(N) = 0 and of F-measure
F(N) > 0. The idea now is to approximate the indicator function of N by a
continuous ¢ such that ¢ has a compact support. The actual construction of ¥,
Y is somewhat tedious: let 5 > 0 be given. Let U be an open set containing N
such that N(U) < 9F(N). Let V be a compact set contained in U such that
F(V) > (1 — 9)F(N), and let V, be an open subset of U containing V, having
a compact closure. Then let g be a continuous function, 0 < g < 1, equal to 1
on V, to 0 outside V; and let ¢ be a continuous function with compact support,
equal to ¢ on Vi, and satisfying —nF(N) = ¢ = 0 outside V;, such that
J¢' dt = 0. Let ¢ be the indefinite integral of ¥/, normed such that it vanishes
outside a compact, then |¢| < 7F(N) and [¢' dF > (1 — 29)F(N); hence
KW, F) > ((1 — 29)/ n)? can be made arbitrarily large. This leads to a contra-
diction, and thus F must have a density.

For the following parts of the proof we shall freely use measurable functions
for ¢ and ¢/, leaving it understood that one should approximate them by con-
tinuous functions with compact support in a similar way as above, in order to
complete the proofs.

(ii) Now we show that f is essentially bounded (modulo Lebesgue measure).
If this would not be the case, the sets A, = {¢|f(¢) = m} would have strictly
positive Lebesgue measure A(A4,,) > O for all m. Let ¥’ be the indicator function
of A, , then [¢'f dt = mA(A,). We may choose ¢ such that [¢| < N(4,), then
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J¥’fdt < (\(A.))}, thus K(¢, F) = m’ can be made arbitrarily large; this leads
to a contradiction. '

(iii) Then we show that f can be chosen to be continuous. If not, then there
would be three numbers &, ¢, and e¢ such that for all § > 0, the sets
Ay = {t|f@) > c+ et —t| <dland A_ = {t|f(t) <c — ¢ |t — t] < 8}
would have strictly positive Lebesgue measure simultaneously. Replace A and
A_ by smaller sets B, and B_, respectively, such that A\(By) = A(B-) = p > 0.
Put ¢'(t) = +10on B,, = —1 on B_, = 0 elsewhere, and norm its indefinite
integral ¥ such that it vanishes outside the interval [t, — 8, £, + 6]. Then || < p.
Since f is essentially bounded, say by M, it follows that f¢2f dt < 2p°Ms, fqp'f dt =
J¥'(f — ¢) dt = 2pe. Thus K(¢, F) = 4¢'/(2M), which can be made arbitrarily
large; this leads to a contradiction.

(iv) Thus we can choose a continuous version of f; we have to show that it is
absolutely continuous. Assume that it is not, then there would be a ¢ > 0 such
that for every ¢ > 0 there exists a finite collection (a; , b;) of disjoint intervals, of
total length <e, such that |>_;f(b;) — f(a;)| > ¢. Now let ¢’ be defined by

Y(t) =6" if |t—Db) <3 for some i,
=—&" if |t—aj] <3 for some 1,
= 0 elsewhere;

5 > 0 has to be chosen so small that this definition makes sense. We may choose
the indefinite integral ¥ of ' such that |¢| < 1, and that ¢ = 0 outside the
union of the intervals (a; — 35, b; + 36), which will have a total length <e if &
is chosen sufficiently small. Then [y’f dt < eM, and | [¢f dt| > ¢ by continuity
of f, if & is chosen sufficiently small. Hence K(y, F) = c’/(eM) can be made
arbitrarily large, which leads to a contradiction.

(v) In a way very similar to (iv) one shows that f is of bounded variation.
This implies in particular that [|f'| dt < c.

(vi) By the Schwarz inequality, we have

kB =(fwra) [ [vras [y

Now approximate —f /f by a continuous, continuously differentiable function ¢
with compact support in the sense that the integrals [|(—f'/f) — ¥|’f dt and
fI(=f/f) — ¥| |f| dt are made arbitrarily small. Then both J¥’f dt and [yf'dt
approach [(f'/f)’f dt, which shows that supy, K (¢, F) = [(f'/f)’f dt. This termi-
nates the proof.

THaEOREM 4. Assume that C s vaguely compact and convex. If infe.cI(F) =
a < o, then there exists a unique Fy € C such that I1(F,) = a.

Proor. For b > a, theset Ky = {F ¢ C | I(F) < b} is nonempty and convex.
Being the intersection of the vaguely closed sets Kpy = {F e C|([y' dF)’ =
b[y* dF}, it is vaguely closed and hence compact. By the finite intersection
property, K, = Ny>.Ks is nonempty, convex and compact, and Theorem 2
implies that it is reduced to a single element F, .
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THEOREM 5. Assume that C is vaguely compact and convexr, and that the set
C,={FeC|I(F) < o} is dense in C. Let Fy be the unique distribution mini-
mizing I(F). If Fy happens to be such that Yo = —fo/fo is in ¥, is differentiable in
measure and Yo is either continuous or monnegative upper semi-continuous, and
vanishes at infinity, then (Yo, Fo) is not only a saddlepoint with respect to C , but
also with respect to C.

Proor. Assume that F ¢ C, and let (F,) be a net of elements of C; converging
toward F. We have to prove that K(¢o , F) = a. If ¥y is continuous and vanishes
at infinity, then [yo dF, — [y dF. If ¢o = 0 is upper semi-continuous and
vanishes at infinity, then [y dF = inf, [xdF = inf, limsup, [x dF, = limsup,
Jwo dF, where x ranges over the continuous functions x = ¥, vanishing at infinity.
On the other hand, we have

[ ¥ aF = sup, [ x dF = sup, limin, [ + dF, < liminf, [ viar.,

where x ranges over the set of continuous functions 0 £ x = ¥ vanishing at
infinity. It follows that K(yo, F) = limsup, K(¢o, F,) = a.

RemarK. This theorem solves the abstract game; however, for the original
statistical problem some further considerations are needed. Let Ap(¢) =
J¥o(t — &) dF. According to Lemma 4, the asymptotic variance of T, is
Vo, F) = f:pﬁ dF/(7\z(0))? provided o is bounded and monotone increasing,
Ar(0) = 0 and \z(0) < O exists. If ¥ is uniformly continuous, then—\z(0) =
[wo dF, thus V¢, F) = Ko, F)™ and ($o, Fo) is also a saddlepoint of
V (¢, F) if it is one of K (¢, F) and if A¢(0) = Oforall F £ C. If y, is discontinuous,
then —Ar(0) = [y dF still holds for F £ C;. Under the assumptions (i) yo is
continuous, bounded and monotone increasing, (ii) for all F £ C, \¢(0) = 0
and Ap(0) < O exists, (iii) for every F ¢ C, there is a net F, — F, F, £ C; , such
that lim [y dF, < —X#(0), we may still conclude that (o, Fo) is a saddlepoint
of V(¢, F). The proof is a simplified version of that of Theorem 5.

9. The minimax solution for e-normal distributions. We say that a distribution
F is e-normal with approximate mean ¢ and approximate variance ¢° if it satisfies
sup; |F(t) — ®((t — £)/o)| = e Of course, £ and ¢ are in general not uniquely
determined, but the indeterminacy is small for small e. We shall now determine
the saddlepoint of the game, when Nature chooses an F from the set C' of sym-
metric e-standard-normal distributions:

C = {F|sup. | F(¢) — ®(¢)| = & F(¢) + F(—1t) = 1}.

This set C is vaguely closed in the set of all substochastic distributions, hence
it is compact; it is convex and C; = {F ¢ C | I[(F) < o} is dense in C. So the
theory of the preceding section can be applied.

The saddlepoint (¥, Fo) was found by some kind of enlightened guesswork,
using variational techniques; instead of going through the cumbersome heuristic
arguments, I shall state the solution explicitly and shall then verify it.

The solution is valid only for values of ¢ between 0 and (approximately) 0.03,
but it seems that this range is just the range important in practice.
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Fy has the symmetric density

fo(t) = fo(—t) = o(a)(cos ica)*(cos ict)’ for0 <t =<a
= o(2) fora <t<b
— <0(1))6—-11(5-—12) fort g b

where o(¢) = (2r) %, and a, b, ¢ are three constants determined through the
relations

(i) c tan(3ca) = a (0 =ca<m),

Gi) [5fo dt = [30dt — ¢

(i) [Ffodt = [Fodt + e
It is easy to check that the Fy thus defined belongs to C, provided (i), (ii), and
(iii) can be satisfied with 0 = a =< b; this is the case for values of ¢ between 0
and (approximately) 0.03. For numerical results, see Table II.

Putting ¥o = —fo/fo, we have

Yo(t) = —o(—t) = c tan 3ct, for0 <t=<a
=t fora <t<b
=b - fort = b,

which is continuous and has a piecewise continuous bounded derivative.

We have to prove that (o, Fo) is a saddlepoint. In view of Theorem 2, we
have to show thatJ'(0) = [(—2¢og’ — ¥5g) dt = 0 for all functions ¢ = fi — fo,
F, e C,. By partial integration, the condition becomes

J'(0) = f (290 — Yo)gdt = 0 forallg = ji — fo.
Let §(¢) = [6g(s) ds = Fi(t) — Fo(t), then Fy ¢ C implies the necessary feasi-
bility condition §(¢) = 0 for a < ¢t < b, since in this interval Fo(t) = ®(t) — e

We have
a b 0
J(0) = f dgdt+ [ (2 - Pygdi+ fb (=) di,

TABLE II
€ a b ‘
0.001 0.65 2.44 1.37
0.002 0.75 2.23 1.35
0.005 0.91 1.95 1.32
0.01 1.06 1.72 1.29
0.02 1.24 1.49 1.26
0.03 1.34 1.36 1.23
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thus, if we transform the middle integral by partial integration,
7(0) = di(a) + 2 - Vi) — 2 — i@ + [ 240
+ 8’§(b) + b (1 — Fi(=)) = (¢ + o’ — 2)§(a)
T 200) + [ 260 dt + B~ F()).

We shall show presently that ¢ 4+ a® — 2 = 0, hence all summands are non-
negative and it follows that J'(0) = 0. To prove that remaining inequality,
notice that in the interval (0, a), Yo increases monotonely from ¥o(0) = ic’ to
Yo(a) = 3(c’ + d*). Since [G¥odt = Yo(a) = a, it follows from the mean value
theorem that ¥o(f) = 1 for some 0 < ¢ < a, hence ¥s(a) = 3(’ + d°) = 1,
which establishes the inequality in question.

This proves the saddlepoint property for distributions from C;. To prove it
for the whole of C, one has to check the points (i), (ii) and (iii) of the remark
at the end of Section 8. (i) and (ii) are immediate. Instead of doing (iii),it is
probably easier to go back to Theorem 5, to show that —\z(0) = [y, dF unless
F puts a positive mass on {=-a, 4b}; and ‘that in this latter case one may de-
crease —Ar(0) by shifting this mass away from {=a, =b}.

10. Estimation of a scale parameter. The theory of estimating a scale param-
eter is less satisfactory than that of estimating a location parameter. Perhaps
the main source of trouble is that there is no natural “canonical”’ parameter to
be estimated. In the case of a location parameter, it was convenient to restrict
attention to symmetric distributions; then there is a natural location parameter,
namely the location of the center of symmetry, and we could separate difficulties
by optimizing the estimator for symmetric distributions (where we know what
we are estimating) and then investigate the properties of this optimal estimator
for nonstandard conditions, e.g., for nonsymmetric distributions. In the case of
scale parameters, we meet, typically, highly asymmetric distributions, and the
above device to ensure unicity of the parameter to be estimated fails. Moreover,
it becomes questionable, whether one should minimize bias or variance of the
estimator.

So we shall just go ahead and shall construct estimators that are invariant
under scale transformations and that estimate their own asymptotic values as
accurately as possible. Of course, one has to check afterward in a few typical
cases what these estimators really do estimate.

The problem of estimating a scale parameter for the random variable X can
be reduced to that of estimating a location parameter for the random variable
Y = log X”. This amounts to estimating the parameter r = log ¢°, where ¢ is a
scale parameter for X. The change of parameters here is made for technical
reasons, but it might also be justified on purely philosophical grounds. Compare
also Tukey (1960), especially p. 461 ff.
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We shall again be concerned with the contaminated normal case, that is, we
shall assume that the distribution of Y is of the form F = (1 — €)G + eH,
where @ is the distribution of Y corresponding to a standard normal distribution
for X, € is a known number and H is an unknown contaminating distribution.

If the distribution of X is the standard normal, then the distribution function
of Y = log X*is Q(u) = P[Y < u] = P[X* < ¢ = &(e®*) — d(—e®"),
having the density g(u) = G'(u) = (2r)"? exp(—2e* + 3u).

Then, —log g is a convex function, and —g’(u)/g(u) = 3(e* — 1) is monotone
and differentiable. Hence, we may apply the theory of Section 5, especially
Theorem 1. To avoid confusion later on, we replace the letters ¢, k of Theorem 1
by x, ¢ and define

xo(u) = 3(e" — 1) for 3le* — 1| <y,

= c¢sign(e’ — 1) for 3" — 1] = .

Then, if ¢is chosen appropriately, the estimator 7', defined by Dixo(yi — Ta) =

0 will minimize the maximal asymptotic variance among all estimators of r =

log o” that are invariant under a change of scale of the z; (resulting in a trans-

lation of the y; = log z7), the maximum being taken over those H for which
Erxo = 0.

The minimax solution shows a different behavior for ¢ < 3 than for ¢ = };
for the following, we shall assume that ¢ = %; thus, with ¢’ = 2c + 1 = 2,

xo(u) = 3(e" — 1) for ¢* < ¢*
(g = 1) for e* = ¢".

Unfortunately, the condition Erxo = O now becomes rather restrictive: it
means that only those H are admitted for competition in supr V(xo, F) which
put all their mass on the set [|z| > ¢], and for this class of distributions we have
identically V(xo, F) = supr V(xo, F'). Nevertheless, it seems intuitively plaus-
ible that an estimator behaving satisfactorily against this type of contamination
should not fare too badly against other types.

The parameters ¢ and e are related by

(=97 = [ g dt+ gtw)/e
where #; = log ¢”. Hence
+q
3) (1= = [ o) dt + 20(a" — 1 7(0).

-q
It will be convenient to express the results again in terms of the z; and of the
estimate S, = ¢!"" of the scale parameter of the z; . If we introduce the function
Yo (already used in Section 6), displaying explicitly the parameter ¢ occurring
in it
wo(g, t) =t for [t < g

(4) )
q sign(t) for |t| = q,
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then S, satisfies

; %(q, zi/Sa) = m,

as an elementary calculation shows, and may be defined by this equation.

Summarizing, we may describe the properties of S, as follows. Let C be the
class of all distributions of the form F = (1 — €)¢ + eH, where ¢ is given by (3),
and H puts all its mass outside the interval [—gq, +¢]. The problem is to estimate
the variance o” of the normal component of F, where F has been obtained by a
scale transformation from some (unknown) element of C. Then, log S’ is an
estimate of log ¢°, invariant under scale transformations, asymptotically unbiased
and asymptotically normal; it minimizes the maximal asymptotic variance among
all scale invariant estimators of log ¢°, and has a constant asymptotic variance
over the whole of C.

In other words, S, is gauged for the class C and the class of distributions that
can be generated from C by scale transformations and has there about the most
pleasant asymptotic properties one can reasonably expect. The flaw is that S,
may have quite a considerable bias for distributions not in C, for instance for the
normal distribution & itself.

In most cases it will be preferable to gauge the bias such that it is zero at &.
In order to do this, let S, be the asymptotic value of S, under ®; then define
8. = 8./S8. . Obviously, S» hasthe same pleasant properties as S, , except that
it is biased for the class C, but asymptotically unbiased for &.

We have, by the definition of S, ,

1= n—l Z 'pg(Q7 xi/Sﬂ) = n_lS;ZZ ¢g(qu ’ x,/S:.),
and, going over to the limit,
1 = Esyi(g, 1/8=) = S"Esfi(¢Sa, 1).
Put ¢ = ¢S., then S, can be defined by the equation
(5) 2 ¥i(q, 2i/8a) = Eabi(d, 1)
Table III gives some numerical results. enin is the value of e for which the
corresponding ¢’ yields the asymptotic minimax solution.

11. Estimation of a location parameter, if scale and ¢ are unknown. Now
consider the problem of estimating a location parameter if neither the scale

TABLE III
q S, q=9"/8, €min
1.1 0.760 1.45 0.182
1.5 0.882 1.70 0.074
2.0 0.960 2.08 0.019
2.5 0.989 2.53 0.0038
3.0

0.997 3.01 0.0006
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o of the normal component nor the amount e of contamination are known. We
are now not interested in estimating scale or ¢, but only in estimating location by
some estimator 7', , and in addition, in estimating the (asymptotic) variance of -
Th.

The following are three heuristic proposals on how one can apply the theory
of (M)-estimators to this problem. I conjecture that the third proposal is asymp-
totically minimax, in the sense that independently of scale ¢ and ¢, the supre-
mum over symmetric H of the asymptotic variance of 7', has the least possible
value. The first two proposals are asymptotically minimax if & is ehosen in rela-
tion to the true e.

All three proposals are asymptotically equivalent to Winsorizing; they differ
among each other in the determination of the number of observations to be
Winsorized. From now on I shall omit the indices from Yo,Thand S, ;¢ = ¢ois
defined by (4) in the preceding section.

ProrosaL 1. Choose beforehand a fixed number & (either by intuition or by
using previous experience). Then determine T and S such that

n Y Yk, (z: — T)/S) = 0
w2 Y (k, (z: — T)/8) = Esy/(k, ).

The second equation can only be fulfilled approximately, since . ¢'(k,
(x; — T)/8) is an integer, namely the number of observations contained in the
interval [T — kS, T + kS]. Hence this proposal is similar (and asymptotically
equivalent) to Winsorizing a fixed, predetermined number of observations; it is
asymmetric in the sense that it tends to Winsorize more observations on the
side with the heavier contamination. ¥ might be compared to a kind of insurance
against ill effects from contamination: if one insures against high contamination
by choosing a small k, one has to pay by losing some efficiency if the actual
contamination is low, and vice versa; compare also Anscombe (1960), especially
p- 127.

ProposaL 2. Choose beforehand a fixed number k. Then determine T and S
such that

Y Yk, (zi — T)/8) =0
n Y YAk, (2 — T)/8) = Eay’(k, z).

This proposal is of course suggested by the most robust estimator of scale as
determined in Equation (5) of the preceding section. It corresponds to Winsor-
izing a variable number of observations: slightly more if F has heavier tails,
slightly less if F' has lighter tails, and if H is asymmetric, more on the side with
heavier contamination. Certainly for large n, but probably also for small n, this
proposal is better than the preceding one, since it is less sensitive to a ‘“wrong”
choice of k£ (i.e., to a choice not adapted to the true value of ¢). Moreover, the
S of Proposal 2 will be more accurate in general (log S having the smaller asymp-
totic variance), which also improves accuracy of 7.
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For both proposals, T' and S can be determined relatively easily by iterative
procedures (see below), and the (asymptotic) variance of 7 might be estimated
by

n 2k (x: — T)/8) &
n— 10k, (= — T)/S)E"

The correction term n/(n — 1) is suggested by the classical theory (k = );
one will have to revise it in the light of later knowledge, but it seems to agree
quite well with exploratory Monte Carlo computations for sample sizes 5 and 10.

ProprosaL 3. Determine & such that the estimated (asymptotic) variance of
T is minimized, i.e., minimize

2 by i — T) /[ 220 (k2 — DT
subject to the side condition (determining T') )
> ¥k, zi — T) = 0.

To avoid trouble at ¥ = 0, one should safeguard by requiring that enough
observations (say more than n') are contained in the interval [T — k, T + F].
This proposal seems to give the best asymptotic properties of all three, but
numerical computation of & and T apparently is a very difficult task.

For practical applications, I personally would favor Proposal 2, since it seems
to fit best into the framework of conventional least squares techniques. For
nonlinear least squares problems, which have to be solved by iterative methods
anyway, this proposal probably could be incorporated into existing computer
programs with an only marginal increase of the amount of computation.

First we have to show that Proposal 2 constitutes a legitimate definition of
T and S; that is, we have to show existence and uniqueness of the solution.

Let x1, - - -, x, be a fixed sample of size n and consider the equations
Z_:lef(k, (2 — T)/8) =0
(6) R

; ¥'(k, (xi — T)/S) = nB.

Proposal 2 corresponds to 8 = Es*(k, z), and for this choice we have, ob-
viously, 8 < &k’ whenever k > 0. I do not want to exclude the possibility that
small sample size considerations might lead to a different choice of g.

ProPOSITION. Assume that B < k° and that the sample is such that Ty = Ty, =

=, ,0 <4 < -+ < in impliesm < n(1 — B/k"). Then the system (6)
has a unique solution T, S.

Proor. First we remark that for any pair T, S satisfying the second equation
of (6), the number m, of observations satisfying |(z; — T)/S| < k must be
greater than or equal to n(1 — B/k’), since (n — mz)k”* < Sk, (s — T)/8).
Since ties of high multiplicity between the z; are forbidden, it follows that the
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right side of this last inequality will exceed n8 for small S. Continuity ‘of ¥ now
implies that for every ¢ there is an S, > 0 such that > ¢*(k, (z; — t)/S:) = nB.
Since ms = n(1 — B/k*), this S, is uniquely determined, and is a continuous
function of ¢; for large ¢ it behaves asymptotically like g~ |¢|. Hence, n™*Y_ ¢(k,
(z; — t)/8.) is a continuous function of ¢, tending to F! for t — =+ «. Thus, by
continuity, there will be a T such that D, ¢(k, (z; — T)/Sz) = 0, which proves
the existence of a solution.

This solution 7', S is unique: Assume that 7, S; and T, S: are two distinct
solutions. If S; = S, , we would necessarily have T, = T, since 2, ¥(k, (z; — t)/
S) is strictly monotone in ¢ so long as m; = 1. Hence we may assume S; = S, ;
put ¢ = (Ty — T1)/(S: — 8i). Let S vary from S; to S;, and put T(S) =
T: + ¢(8 — 8;). Consider the function

R(S) = 32 (¥ (k, (z: — T(S))/8) — B) + ¢ 2 w(k, (z: — T(8))/S)

which vanishes at S;and S; : R(S;) = R(S:) = 0. A straightforward calculation
shows that the derivative of this function is

R'(8) = =82 (c + (z: — T(S))/8),

where the primed summation sign denotes that the summation is extended only
over those indices for which |(z; — T(S))/S| < k. Thus, R'(S) has the same
sign for S; £ S £ 8;, and since R(S;) = R(S:) = 0, it must identically vanish.
This implies ¢S 4+ z; — T(8S) = 0 or z; = T — ¢S for all 7 such that |(z; —
T(S))/S| < k. In particular, this holds for 8 = S;, hence there would be a tie
of multiplicity ms = n(1 — B/k*) between the x, ; but this has expressly been
excluded. This terminates the proof.

Let mi, ms, ms be the number of observations satisfying «; £ T — kS, T

— kS <z, <T+ kSand T + kS = =z, respectively. Then (6) may be written
Z'x,- — moT + (m;’, - ml)kS 0
Sz — T) 4+ (my + ma)k’S* — n8S* = 0.

By determining 7' from the first equation and inserting it in the second, one
obtains the equivalent system

T =& + kS(ms — my)/me
8 = X (@i — &)/(B — (ma 4 ms + (ms — ma)’/ma)k")

where ¥ = mz' Y x;is the trimmed mean.
This may be used to compute T and S by iterations: start with some initial
values T, S, . Compute

Il

(6)

! -1\
r = Me xT;

St = 2 (wi— &)/ (B — (mu+ ms + (ms — m)’/ma)k’)

T,=%& + kSi(ms — my)/ma,
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where )’ denotes that the summation is extended over those indices for which
|(z; — To)/Se| < k, and m , ma, m; are the numbers of observations satisfying
2 = To— kSo, To — kSo < z; < To + kSoand Ty + kSy =< x;, respectively.
If Ty = Ty and S; = So, one has found the solution, otherwise do the same
again, with T, S; in place of Ty, So, etc. For automatic computation, it might
be wise to safeguard against too small values of m, and of the denominator in
the expression defining S3.

Since, for a fixed sample, the values of T and S; are uniquely determined by
the pair of integers m, , ms; , the process must either stop after a finite number of
steps, or it will repeat itself periodically. I do not know whether and when the
latter case occurs.

Ordinarily, the procedure converges rather fast, as an exploratory study with
Monte Carlo methods shows. For k = 1.5, sample sizes up to 100 and distributions
that do not have too heavy tails, the stationary value is on the average reached
after 1-2 steps, starting from sample mean and sample variance. For distributions
with heavier tails (Cauchy), somewhat more steps are needed (about 2 for
sample size 10, 4 for sample size 100). 4

Table IV gives sharp upper bounds for the asymptotic variance of n!T,if T and
S are computed according to Proposal 2, and F = (1 — ¢)® + e¢H, H symmetric.
These upper bounds can be determined as follows. The asymptotic variance of
T is Ew’(kS, x)/(Ewy' (kS, x))?, where S satisfies Exg*(kS, ) = S*8(k),
with 8(k) = Esp’(k, z). Hence, we have, with ¢ = kS,

aB(k)/K" = (1 — €)B(g) + eEnd’(q, ) = (1 — €)B(q) + ¢’
or
(7) B(9)/q" z (B(k)/K" — €)/(1 — e).
Since ¥*(q, ¢)/q¢" is monotone decreasing for increasing g, 8(¢)/q” is also monotone
decreasing, and equality in (7) determines a sharp upper bound gmayx for g.

TABLE IV

Sharp upper bounds for the asymptotic variance of niT, if T and S are computed according
to Proposal 2, for symmetric contamination

e = 0.000 0.010 0.020 0.050 0.100 0.200
k=1.0 1.107 1.138 1.172 1.276 1.490 2.15
1.1 1.088 1.120 1.155 1.265 1.495 2.23
1.2 1.072 1.105 1.140 1.258 1.506 2.35
1.3 1.058 1.093 1.131 1.256 1.526 2.50
1.4 1.047 1.084 1.124 1.257 1.557 2.70
1.5 1.037 1.077 1.120 1.264 1.592 2.97
1.6 1.029 1.072 1.117 1.275 1.639 3.36
1.7 1.023 1.068 1.117 1.288 1.697 3.92
1.8 1.018 1.066 1.118 1.306 1.769 >4
1.9 1.014 1.065 1.121 1.324 1.859 >4
2.0 1.010 1.065 1.127 1

.353 2.029 >4
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Now we have to find a sharp upper bound for the asymptotic variance

Ery'(g,2) _ 7B(k) /R
(Be¥'(g,2)) (1 — e)alq) + eEn¥'(q,2))?

where a(q) = Es¥'(q, z). This is solved if we can find a sharp lower bound for
(1 — e)a(q)/q + eExd’ (g, )/q. But a(q)/q s monotone decreasing for increasing
¢ (notice that a(q)/q is the average of the normal density in the interval (0, ¢)),
hence this expression is bounded from below by (1 — €)a(qmax)/qmsx - Hence it
follows that the asymptotic variance of n!T is bounded from above by

qlznax 6(’9)/]62 - (1 - e)f;((_lmax) + CQrznax
Q- €)a(gmax) ) (s €)a(qmax) ) )

This bound is sharp: it is attained for contaminating distributions H that put all
their mass outside the interval [—gmax , gmes]. Hence, one may determine the
upper bound gmax from (7) and enter Table 1 with &k = gu.x and e to determine
the upper bound for the variance. This was done, using linear interpolation, to
obtain Table 4.

12. A generalization. (M)-estimators T, = Tn(zx1,---, %,) have been
defined by the property that they minimize an expression of the form
> iip(zi — T,). More generally, one may define (M,)-estimators by the prop-
erty that they minimize an expression of the form > ro(xr — T,) where p,
is a symmetric function of r arguments, the summation is extended over the

<:") subsets I = {41, ---, %} C {1,2, ---, n} containing r distinct elements,
and (z; — T,) stands short for (z;;, — Th, -+, x;, = Th).
Let ¢.(xzr — T) = —(8/8T)p,(xr — T), and assume that Ey¥, = 0. Then

define Y(z1) = [yr(21, -+, 2,)F(dxs) --- F(da,).

It follows from Hoeffding’s work on U-statistics (1948), that the suitably
normed sum . (z; — T) behaves asymptotically like div(z; — T). In
particular, one shows in much the same way as in Section 2, and under analogous
regularity conditions, that 7', — 0 in probability, and that T, is asymptotically
normal, with asymptotic mean 0 and asymptotic variance V(y,, F) =
EY/(EY')'.

Since the amount of computation needed for determining the value of an
(M, )-estimator increases with the rth power of the sample size, they will hardly
be of practical use for r > 2.

Example. Take r = 2, and ps(t, ) = |t + t|. It is easy to see that
> 1 pe(xr — T) is minimized by T(x) = {sample median of the z;; = %(z. + z;),
1 < j}, ie., by the estimator proposed by Hodges and Lehmann (1963). If the
underlying distribution has a symmetric density f, we end up with an asymptotic
variance V(¢2, F) = 1/(12( f f*dt)?). In the contaminated normal case, F =
(1 — €)® + eH, H symmetric, we have the sharp upper bound V(y., F) <
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(1 — €)~*x/3 for this particular ¥ ; the bound is approached when H spreads
its mass toward infinity. Numerically :

¢ = 0.000 0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.200 0.500
V = 1.047 1.051 1.056 1.068 1.090 1.135 1.286 1.596 2.557 16.76

The reader is invited to compare this with Tables 1 and 4; apparently, the
Hodges-Lehmann estimator and the estimators proposed in the preceding sec-
tions of the present paper are close competitors.

For the conventional model of contamination F(t) = (1 — €)®(t) + d(¢/3),
these estimators have practically equivalent performances also:

e=0.0 0.010.020.050.10

Hodges-Lehmann: ¥V = 1.047 1.07 1.09 1.17 1.31
Proposal 2,k = 1.5: V = 1.037 1.06 1.08 1.16 1.30

I would like to express my thanks for a number of stimulating discussions with
Professor E. L. Lehmann on robust estimation and with Professor L. LeCam on
asymptotic efficiency.
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