THE DEPENDENCE OF DELAYS IN TANDEM .QUEUES
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Edgar Reich [1] proved that in single-server tandem queues, the durations
of time spent by a customer in successive systems are independent. In this
connection Reich stated ¢. . . if the waiting times are defined so as not to include
the service times .. .the question of mutual independence of these quantities
.. . 1is apparently an open problem.”

It is proved below that these waiting, or delay, times are not mutually inde-
pendent.

We assume two single-server queueing systems @; and @, in tandem that have

exponential service-time distributions with respective service rates u; and ps.

The customers arrive in a Poisson process at @, and as soon as their service is
completed in @, they enter @, . The arrival rate, or parameter of the Poisson
arrival process, is A; and A < p1, A < ue. We assume further that statistical
equilibrium obtains with respect to the distributions of the numbers of customers
in @ and in Q.. Under these conditions, it has been proved that the input to
@ is a Poisson process with parameter A ([2] or [3] p. 45). Although the further
assumption of order-of-arrival service is required for Reich’s proof of the in-
dependence of the times spent in the successive systems, the present result
holds for all queue disciplines that do not allow defections or pre-emption.

The method, in essence, is a comparison of the conditional delay distribution
in Q. , given that there is no previous delay in @, , with the unconditional (mar-
ginal) delay distribution in @, .

Let W, be the delay of a customer in @; . For W; to be independent of W,
it is necessary that their joint distribution function be factorizable into the
marginal distribution functions. In particular, if Pr{-} designates the prob-
ability of the event in the braces, it is necessary that Pr {W,; = 0, W, = 0} =
PI'{Wl = O}PI'{Wz = 0}, or PI‘{Wz = 0} = PI‘{W2 = OIW1 = 0}.

It will be proved that in fact Pr{W, = 0} < Pr{W, = 0| W, = 0}, and
hence that the necessary condition for the independence of W; and W, is con-
tradicted.

We know that Pr{W, = 0} = 1 — XN u,. We shall show that Pr{W, =

Consider, in @, an arrival epoch, T, of an undelayed call. By Jackson’s
theorem [4] the number of customers in @, at T has the unconditional equi-
librium state distribution. If N, designates the number of customers in @, at T,

Pr{N; =k = (1 — M) (Mu)".

Therefore the time for the customers in @, at T' to complete service in @, has
the distribution given by a mass at the origin, 1 — A/u,, and a density function,
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D) = 3 (1= Ma) O/ ™

where [- ], represents the k-fold convolution of the density in the square brackets
(with itself). It is well known that

[uoe e = pae " (uat)* ™Y/ (b — 1)!
Hence

(1) D(t) = (M) (s — Ne 7"

(This result can be written down almost at once if it is realized that Jackson’s
theorem implies the independence of the virtual delay in @. and the state of @,
at any instant.)

The customer entering @, at T’ will be undelayed in @ if and only if his service
time in @, is greater than the total time required to serve all customers who were
in Q; at T. The service time in @, has the density we™’; and hence the prob-
ability that this service time exceeds the virtual delay in @. at T is given by

A-I-A (ltz—}\)

A it
p=1-2 fe"lptdt=1— kS
u2+ 0 ® Mo Mo M1t g2 — A

and since A < g2, P> 1 — Mus.

But since P = Pr {W; = 0| W, = 0}, this contradicts the necessary condi-
tion for the independence of the delays, namely that P be equal to 1 — A/, .

It should be noted that the assumption of order-of-arrival service (or that of
any other queue discipline) does not enter the above argument. The only ran-
dom variables which are relevant are the service time in @, and the virtual delay
in Q. , neither of which depends on queue discipline.

If we now add the assumption of order-of-arrival service in Q. , we can easily
calculate the conditional delay distribution in @, for calls undelayed in @ .

The delay in @, will exceed some number ¢, given that the delay in @; was zero,
if and only if the service time in @, is less than the virtual delay in @ (at the
arrival of the call in question at @) minus . Therefore

Pr {W2 > tl W, = 0} = /; [1— e_”l(z_t)]-l (M2 _ )\)e_("z_)‘)“’ de

122

A < M1 ) Pl
B \p1 + g2 — A ’

and further routine calculation gives
PI' {Wz > tl Wl > O} = //'1(//11 + pe — )\)—le—(uz—)\)t.
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