INTERACTIONS IN MULTIDIMENSIONAL CONTINGENCY TABLES'

By Leo A. GoopmaN
University of Chicago

1. .Introduction and summary. In the present article, we shall propose a
definition of the rth order interactions in a m-dimensional d; X dy X «++ X dm
contingency table (r = 0, 1,2, ---, m — 1), and we shall present methods for
testing the hypothesis that any specified subset of these interactions is equal
to zero. In addition, we shall present simple methods for obtaining simultaneous
confidence intervals for these interactions or for any specified subset of them.

In the special case where the m-dimensional contingency table is a 2 X 2 X

. X 2 table (i.e., where d; = 2 for ¢ = 1, 2, -- -, m), the rth order inter-
actions defined herein are the same as Good’s interactions [9], but the tests
proposed by Good are different even in this case from those presented herein.
When d; > 2 for some values of 7, Good’s interactions are complex valued,
whereas the interactions presented here are real valued. We shall show herein
that the hypothesis H, that all rth order and higher-order complex interactions
(defined by Good) are equal to zero is equivalent to the hypothesis HY that
all 7th order and higher-order real interactions (defined herein) are equal to zero,
and that the test of H, within H, (r < s) presented by Good is asymptotically
equivalent (under H,) to the test of H * within HY presented herein. The tests
presented herein are, in some cases, easier to apply than Good’s tests. In addi-
tion, the methods presented herein are applicable to a wider range of problems
in the sense that Good’s methods can be used to test the null hypothesis that
all rth order and higher-order interactions are equal to zero, whereas the methods
presented herein can be used to test the more general null hypothesis that any
specified subset of these interactions is equal to zero.

The tests presented herein are generalizations of methods proposed earlier by
Plackett [13] and Goodman [10] for testing the null hypothesis Hj in a three-
dimensional table. The test proposed by Good [9] is a generalization of the
methods proposed earlier by Bartlett [5], Roy and Kastenbaum [14], and Dar-
roch [8] for testing Hj in the three-dimensional table. All of these earlier papers
were concerned mainly with the testing of null hypotheses. In the present article,
in addition to our treatment of hypothesis testing, we shall also present two
different methods for obtaining confidence intervals for the rth order real inter-
actions in the m-dimensional contingency table (r = 0, 1,2, -+, m — 1).

2. The 2" contingency table. We number the two classes in the kth dimension
of the m-dimensional 2 X 2 X --- X 2 contingency table 7, = 0 and 1 (for
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k=12 ---,m). Let p; denote the multinomial probability associated with
celli = {41,145, -+ , im} Of the contingency table. We have . p; = 1, and we
assume that p; > 0 for all <. Let b; denote the natural logarithm of p;; ie.,
b; = log p: . Let L,, = 2™, and let b denote the L,, X 1 column vector

b = {b;, with ¢ taking on all L,, possible values}.

Let |¢| denote the number of non-zero ¢ in 7. (Thus, for the 2™ contingency
table [i] = D padr.) Letj = {ji,j2, -+, jm} whereji = Oor 1fork = 1,2,
oo, m. Let w(s, j) = (—1)"% where i-j = D_p @4js. Let w(-, 7) denote the
L., X 1 column vector w(-, ) = {w(%,J), with 7 taking on all L,, possible values},
and let I(j) = b'w(-, 7). Good [9] defined the rth order interactions to be the
I(j) for all § such that |j| = r 4+ 1. The number of such rth order interactions
iS C:‘.H .

We shall now consider the problem of testing the null hypothesis H,,—; within
the alternate hypothesis H,, . (Following Good [9], for formal convenience we
write H, for the hypothesis that states nothing at all.) The null hypothesis
specifies that I,y = 2.: (—1)b: = 0, where (—1)* denotes (—1)"". If a
sample of size n is drawn from the 2™ contingency table, the maximum likeli-
hood estimator of Iy is Jm1 = 2.: (—1)°b;, where b; = log (n:/n), and n;
is the observed frequency in cell 7. Since it is assumed that p; > 0 for all 7, the
probability that the n; are all positive will approach one as n — «. However,
if any observed n; is actually zero, following Berkson [6] and Plackett [13] we
might replace the n; of zero by one-half when calculating the corresponding b .
Note that the factor n appearing in the formula for b: can be ignored when the
b, are used to calculate [,,_; . The asymptotic variance of b: is V(b:) = (pi* —
1)n7", and the asymptotic covariance between b; and b; (¢ = 5) is C(b:, b;) =
—n"? (see, for example, Plackett [13]). Thus, the asymptotic variance of I, is
(1) V(lws) = T @7 = = T (=D¥=nT) = X ()™
Note that I,._; is a contrast of the b:, and V(I,._1) can be calculated by regard-
ing the b; as uncorrelated and having a variance of (np:)™". To estimate V(Ina),
we take

(2) Vilp) = 2o m,
or
(3) Vo(Tn) = (n + l)n‘1; (ns + 1)

The estimators Vi(Fn_1) and V,(I,._i) are asymptotically equivalent. If any
observed n; is actually zero, the adjustment mentioned above (viz., the replace-
ment of zero by one-half) might be applied in the calculation of Vi(I ). For
the calculation of V3(T,_1), adjustments of this kind will usually not be necessary;
the bias of Vo(lm) is — v 2.: [(1 — p:)™/pi], which will be negligible for
large enough samples.
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When H,,; is true, the asymptotic distribution of I,._; is normal with mean
zero and variance V(I,_;) given above. For both ; = 1 and 2, we find that
Vi(Ime1)/V(Ina) converges in probability to one as n — «. Thus the asymp-
totic distribution of the statistic

(4) X =10/ Vi(Ins) (forj = 1or2)

is the chi-square distribution with one degree of freedom when H,,_; is true. The
statistic X* can be used to provide us with a simple test of the null hypothesis
Hpy.

The null hypothesis H,,—; which we have considered here is a natural gener-
alization of the nult-hypothesis considered earlier by Bartlett [5], Roy and Kasten-
baum [14], Darroch [8], Plackett [13], and Goodman [10] for the special case
where m = 3. In this special case, the null hypothesis is that there is no second-
order interaction, and the statistic presented herein [viz. (4) for 7 = 1 or 2] for
testing this hypothesis is the following (forj = 1):

X' =TIV, = [; (—1)'log ni]z/; nit

(5) _ [log (7000 011 Ma01 M110/Mo0r Moro Mago Maxr)}?

B [n?)_olo + 7’15111 + "7:?011 -+ nﬁlo + n&111 -+ n0_110 + nl_OlO + nl_lll] ’
To test this hypothesis using the method originally proposed by Bartlett [5]
and later by Roy and Kastenbaum [14], the user is required to solve a certain
cubic equation in order to calculate the maximum likelihood estimator of p.
under H, . To calculate the maximum likelihood estimator of p; under H, using
the iterative solution presented by Darroch [8], the number of (non-linear)
equations to be solved iteratively is 12. Since the system of equations presented
by Good [9] for determining the maximum likelihood estimator of p; under H,
corresponds in this special case to the system of equations presented by Bartlett
[5], Roy and Kastenbaum [14], and Darroch [8], to apply Good’s system of equa-
tions in order to test the null hypothesis H, the user will presumably be required
to use either Bartlett’s method or the iterative solution given by Darroch.
Good [9] has noted that the required solution to Bartlett’s cubic equation is
known to lie in a certain range in advance, and is unique in that range, so that
calculation of the solution can be simplified somewhat. In contrast with these
earlier methods, we note that the user is not required to solve any equations at
all to calculate the X statistic (5) presented herein. With the aid of a table of
logarithms and reciprocals, the user can readily apply the methods presented
herein, and he will find them easier to apply in this case than the other methods
referred to above.

For m = 3, the X’ statistic presented here was given earlier by Woolf [19],
Plackett [13], and Goodman [10]. The results presented herein for m = 3 pro-
vide a generalization of this earlier work.

The system of equations derived by Good [9] for determining the maximum
likelihood estimator of p: under H,_; is a generalization of the system of equa-
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tions given by the earlier writers for the case where m = 3. In the more general
case, to determine the maximum likelihood estimator of p, under H, by a
generalization of the Bartlett method the user will be required to solve an
equation of degree 2" — 1. (The calculation of the required solution of this
equation is easier than the general solution of an equation of this degree, since
the solution in this case is known to lie in a certain range and it is unique in this
range (see [9]).) To calculate the maximum likelihood estimator of p; under
H.,.; by a generalization of the Darroch method, the number of equations to
be solved iteratively will be m2™ . To apply Good’s system of equations to test
the null hypothesis H,_;, the user will presumably be required to use either
the generalization of Bartlett’s method or the generalization of Darroch’s
method referred to above. We noted earlier herein that for m = 3 the test pre-
sented herein was easier to apply than Good’s test. Similarly, for m > 3 the
test of H,_, based on the statistic X” presented herein will also be easier to apply
than Good’s test. (The user applying the X” statistic (4) is not required to solve
any equations at all.) To determine which test is more accurately approximated
by the tabular chi-square probabilities when the sample size n is small or moder-
ate, further research is needed.

The null hypothesis H,—; is also a natural generalization of the hypothesis
H, of independence in a two-way contingency table (m = 2), and the hypothesis
H, that p; = % in a one-way table (m = 1). For m = 1, the statistic presented
herein for testing the null hypothesis H, is

(6) X* = [log (no/m)'nems/n

and for m = 2 the statistic presented herein for testing the null hypothesis
H. 1 is

@) X* = [log (nenma/noumo)l’/[ne + nit + nor + nil.

By the usual large sample approximation for the logarithm of a maximum
likelihood estimator, we find that for m = 1 the X statistic (6) is asymptoti-
cally equivalent under H, to

(8) Y = (ngntt —1)"nem/n = [2ne — nl'ne/nn,

which in turn is asymptotically equivalent under H, to

(9) Z" = [no — $nl'n/(ngm),
and to
(10) W? = [ny — inl’4/n.

For m = 2, the statistic (7) is asymptotically equivalent under H; to
Y* = [noona/name — 1/lne + nix + nal + 7o

(11)
= [nonu — namel’/{lnee + nii + nor + 70 1(nenw)’,
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which in turn is asymptotically equivalent under H; to

(12) 7' = [ngmy — n01n10]2/ [n01n10noonn(no_ol + ni + not + nﬁ)l)]
and to
(13) W = (nenu — Moner)*n/no.nyn.on.y

where n., = no + 7 and ng.. = N + M . For m = 1 the statistics (9) and
(10) are the usual large-sample test statistics for testing the null hypothesis
H, ; for m = 2 the statistic (13) is the usual large-sample test statistic for H; .
Thus, we have shown that the X? statistics presented herein are asymptotically
equivalent under H,; (for m = 1 and 2) to the usual large-sample test sta-
tistics for these hypotheses.

For m = 1 and 2, the W statistics (10) and (13) are the Lagrange-multiplier
test statistics (see Aitchison and Silvey [3]). This is also the case for the goodness-
of-fit statistic obtained by Bartlett [5], Roy and Kastenbaum [14], and Darroch
[8] for m = 3, and more generally by Good [9] for any m > 0. In other words,
the methods presented by the earlier writers, and the generalization given by
Good, all involve restricted maximume-likelihood estimation of p; under H,,
with its associated Lagrange-multiplier test. (For some general results relating
to the Lagrange-multiplier test, see Aitchison [1], Aitchison and Silvey [2], [3],
and Silvey [16).) The method presented by Woolf [19], Plackett [13], and Good-
man [10], and the generalization presented herein, all involve unrestricted
maximum likelihood estimation with its associated Wald test. (See Wald [17],
Aitchison and Silvey [2], [3], and Silvey [16].) The test presented herein involved
the unrestricted maximum likelihood estimation of I,,—; and the Wald test was
used to test the null hypothesis that 7,1 = 0. The proof of the asymptotic
equivalence of the Lagrange-multiplier test and the corresponding Wald test
(see literature cited above) can be applied to show that the test presented
herein is asymptotically equivalent under H,,; to the test given by Good [9].

We now consider the null hypothesis that a specified interaction, say I1(j), of
rth order is equal to zero (r < m). The null hypothesis states that I(j) =
> (=1)%b; = 0. The maximum likelihood estimator of I(j) is I(j) =
> (—1)"%; . Since I(j) is a contrast of the b:, by applying the asymptotic
variance and covariance formulas given earlier herein we find that the asymp-
totic variance of I(j) is

(14) VIIG) = Z, (nps) ™

Note that V[I(j)] is equal to V[I,_i] given earlier herein. Thus, the asymptotic
variance is the same for all interactions. The estimators Vy(In_1) or Va(ln_1)
given earlier herein can therefore be used to estimate VII()]. We let V denote
either of these estimators. As in our earlier study of I,_;, we find that the
asymptotic distribution of the statistic

(15) X = [I())/7,
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is the chi-square distribution with one degree of freedom. The statistic (15) can
be used to provide us with a simple test of the null hypothesis that I(j) = 0.
This test is a generalization of the test presented earlier in this section where
only interaction of order m — 1 was considered.

We now consider the null hypothesis that two specified interactions, say I(j)
and I(j"), of order r and ', respectively, are equal to zero (r < m, r' < m,
j # 7). The maximum likelihood estimator of I(j) and I(j) is I(j) =
> (=1)"%; and I(j) = D (—l)i"'rB,- , respectively, the asymptotic vari-
ances of [(j) and I(;") are V{I(j)] = VII(G"] = X (np:)™", and the asymp-
totic covariance between I(j) and I'(j") is

CU@, I = 22 (=1 ((p* — D™ — (—n7))
= Z (_l)i'(1+ﬁ)(,npi)—1‘

To estimate the variances, we take V as defined earlier herein; to estimate the
covariance we take

(17) CIIG), TGN = X (=1) 907t
or

(18) Gl TG = ln + D/ (=1 (e + 1)

The estimators Ci[I(5), I(j)] and Co[I(5), I(51)] are asymptotically equivalent,
and we let C[I(j), I(j1)] denote either of these estimators. Applying the usual
large sample multivariate normal theory (see, for example, [4]), we test the
null hypothesis that I(j) = I(j) = 0 by computing the statistic

(19) X' = (DO + FGHT = 201G/ (VL = oM},

where p = C[I(j), I(;")]/V. The statistic (19) provides us with a simple test
of the null hypothesis, since its asymptotic distribution under the null hypoth-
esis is the chi-square distribution with two degrees of freedom.

In the preceding paragraph, we gave simple formulas for the asymptotic
variances and covariance of I(j) and I(j"), where |j| = r + 1 and |51 = " + 1.
We noted that the asymptotic variance of I(j) is identical for all j regardless
of the order r of I(j), and that the estimated variance and covariance are easily
computed. Having obtained the estimated variance and covariance, it is possible
to apply the usual large sample multivariate normal theory (see, for example
[4]) to test the null hypothesis that a specified set of K different interactions,
say the interactions Iqy, I, - -, I(x) , are all equal to zero. Under the null
hypothesis, the asymptotic distribution of the X statistic obtained is the chi-
square distribution with K degrees of freedom. More generally, if we let H
denote the alternate hypothesis that a specified set of K' different interactions
are all equal to zero (K' = 0), and if we let H denote the null hypothesis that a
specified set of K + K interactions, including the K' interactions in H', are all



638 LEO A. GOODMAN

equal to zero; then by a direct application of the usual multivariate theory we
can test the null hypothesis H within H'. The X” statistic obtained will have
an asymptotic chi-square distribution with K degrees of freedom under H. The
hypotheses H and H' are generalizations of the hypotheses H, and H, (r < s)
considered by Good [9], and the X” statistic given here provides us with a test
of the generalized hypothesis. In the special case where H = H, and H' = H, ,
the number of degrees of freedom will be > j=r Cp1 . The test obtained here is
quite different from the test proposed by Good [9], though the two tests are
asymptotically equivalent under H, . We noted earlier herein that forr = m — 1
and s = m, the test given here is preferable for computational purposes. It is
easy to see that when » = 0 and s = m the test given by Good [9] will be pref-
erable.

The preceding discussion was concerned solely with hypothesis testing. We
shall now present a simple method for obtaining confidence intervals for the
interactions 7(j). Since I(j) is asymptotically normal with mean I(j) and
variance V given by (14), we have the following approximate two-sided con-
fidence interval for 7(j), at the level of probability 1 — a:

(20) 1G) = o(1 — )V,
where ¢(1 — «) is the [(1 — 3a) X 100]th percentile of the unit normal variate.
For any specified set of K interactions, say Iy, I@, -, Ik , we then have

the following approximate two-sided simultaneous confidence intervals, at a
probability level which is at least 1 — a:

(21) Ioy % ¢x(1 — )V (k=1,2, -+, K),

where ¢x(1 — ) is the [(1 — «/2K) X 100]th percentile of the unit normal
variate. (For related results, see, for example, Wilks [18], p. 291.) The follow-
ing approximate two-sided simultaneous confidence intervals are also at a
probability level of at least 1 — «:

(22) i(k) + XK(I - Ol)V% (k = 17 2) Tty K))

where xx(1 — a) is the [(1 — a) X 100]Jth percentile of the chi-square dis-
tribution with K degrees of freedom. The confidence intervals (22) can be de-
rived by a method similar to that used by Scheffé [15] to derive his simultaneous
confidence intervals. For K = 1, the confidence intervals (21) and (22) are iden-
tical; but for K > 1, the confidence intervals (21) are shorter-than the cor-
responding (22), for the usual probability levels (« = .05 or .01).

If any of the K confidence intervals (22) exclude the value zero, then it can
be shown that the chi-square statistic X* (with K degrees of freedom), presented
earlier herein for testing the null hypothesis that the K interactions
Ig (k=1,2,---, K) are equal to zero, will be larger than xx(1 — a), and
thus the test based upon this statistic will lead to rejection of the null hypothesis
at the level of significance «. The statistic X° will be less than or
equal to xx(1 — a) if and only if all the confidence intervals (22) include zero,
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and the corresponding confidence intervals for all linear functions of the I,
(k=1,2, .-, K) also include zero. (For somewhat related results, see Scheffé
[15].) The simultaneous confidence intervals referred to above, for all linear
functions of the I'yy (kK = 1, 2, ---, K), are computed as in (22), using the
constant xx(1 — «). Since linear functions of the Iy are also contrasts of the
b:, to determine the estimated variances to be used in the calculation of the
simultaneous confidence intervals, we can regard the b; as uncorrelated with
variance (np;)”~, as was the case earlier herein. If a specified set of K* linear
functions of the Iy, are of interest, in order to obtain simultaneous confidence
intervals for these functions, the square roots of the estimated variances are
multiplied by the constant xx+(1 — a) or by xx(1 — @) as in (22), or by ¢xs
(1 — a) asin (21), whichever is smaller.

3. Interactions in the m-dimensional d; X d2 X --- X d. contingency table.
We number the dj classes in the kth dimension of the m-dimensional d; X dy X
.-+ X d, contingency table from ¢ = 0Otod, — 1 (k =1,2,---,m). Asin
the preceding section, we let p; denote the multinomial probability associated
with cell ¢ = {4, %2, - -+, 7m} of the contingency table, and we assume that
p: > 0 for all <. Let log p; = b; and L., = [[#=1 di, and let b denote the L,, X 1
column vector b = {b;, with ¢ taking on all L,, possible values}. Let j = {ji, sz,
-+ -, Jm}, where the values of j; run from jy = Otod;, — 1fork = 1,2, --- , m.
Let w(s, ) = ]Ip-1 wi*™, where wy is the primitive root of unity, w, = exp
(2rv/ — 1/dy). Letw(-, j) denote the L,, X 1 column vectorw( -, j) = {w(<, j),
with ¢ taking on all L,, possible values}, and let I(j) = b'w(-, j). Good [9]
defined the rth order complex interactions to be the I(j) for all j such that
|7l = r 4+ 1. The number K, of these rth order complex interactions is the sum
of the products of dy — 1,d; — 1, -+, dn — 1 taken (r + 1) at a time. We
shall now define a different set of K, real interactions of rth order.

Let 7 = {7;1, iz, ey 'lm} andj = {jl,jz, ,jm}. We deﬁnef(z',j) =0
unless, for each %, either 7, = j; or 4, = 0 or ji = 0, and then f(<, j) = (—1),
where » is the number of & for which 4j: 5 0. Let f(-, ) denote the L, X 1
column vector f(-, j) = {f(%, j), with ¢ taking on all L,, possible values}, and
let I*(j) = b'f(-, 7). We define the rth order real interactions to be the I*(;)
for all  such that |j| = » + 1. There are K, real interactions of rth order.

In the special case where d, = 2 fork = 1,2, --- , m, we have I(j) = I*(j);
but the real interactions given here are quite different from the complex inter-
actions defined by Good [9] when d; > 2 for some k. In the case where d;, > 2
for some k, the real interaction I*(j) of order » < m is a sum of interactions
defined for the 2 X 2 X --- X 2 subtables of size 2" of the m-dimensional
di X dy X -++ X d, contingency table. For example, for r = m — 1 let S(5)
denote the subtable of size 2™ formed by restricting the indices of the m-dimen-
sional dl X d2 X - X dm table to (0’ jl 5 07 j2 y Tt Oy jm)1 where IJI = m.
Let I, denote the interaction of order m — 1 in a table of size 2™, and let
I,.1(j) denote the interaction I, calculated for the subtable S(j). We can
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write I,_1(j) in the following terms: Define g(z, ) = 0 unless, for each & either
% = jr or 4 = 0, and then ¢(¢, j) = (—1)’, where » is the number of k for
which 7 % 0. Let ¢( -, j) denote the L,, X 1 column vector g( ,]) {g (z 7,
with 7 taking on all L,, possible values of ¢}. Then I,,_,(j) = b'g(-, ) = I"(4).
Thus, for |j| = m the interaction I*(j) is the interaction of order m — 1 calcu-
lated for S(j). For m > 1, note that I, 1(j) = Ins2('|0) — Inos(i' | jm),
where j' = {51,752, -+, j,,,..l}, and I,._5(j'| k) is the interaction of order m — 2
calculated for the subtable S(j'| k) of size 2" formed by restricting the in-
dices of the m-dimensional table to (0, j1; 0, j2;--- ; 0, jm—1 ; k). Thus the
real interactions of order m — 1 can be obtained from the interactions of order
m — 2 calculated for the subtables S(j'|0) and S(j'|jn) of size 2", when
m > 1.

The results presented above can now be extended to cover the case where the
interactions are of order »r < m — 1. For the sake of simplicity, let us first con-
sider j = {j1,72, - " ,J,,,} wherejk > 0 fork = -, 7+ 1, and j; =
otherwise. Let ;' = {jri2, jrss, -+ » jm} and let S(] ] 7') denote the subtable
of size 2" formed by restricting the indices of the m-dimensional table to
0,71;0,72; -+ 50, Jra [ PR P ;j,',.). Let I, denote the interaction of
order 7 in a table of size 2", and let I,(j|;) denote the real interaction I,
calculated for the subtable S(j|j') of size 2"*'. We can write I,(j |j') in the
following terms: Define ¢(<, j ]j’) = O unless, fork = 1,2, ---,r + 1 we have
either =jkor7,'k =0,andfork =r + 2,7+ 3,---, m we have 4 = ji,
and then g(z, 717) = (—=1)" where » is the number of % for which ikjk # 0.
Let g(-,7|4’) denote the L, X 1 column vector g( ,ild ) g(z,y |5'), with
i taking on all L, possible values}. Then I.(j|7) = b'g(-, j|4'). The real
interaction I*(j) is easily seen tobe Y, I,(j | j'), where the summation is over
all d,42 X drys X -+ X dn, possible values of ;. For » > 1 note that I,(j | i) =
LG 10, 5) = Ll ljra, ), where j' = i, g2, -, jd, and

LG k ) 1s the interaction of order » — 1 calculated for the sub-
table S(j" | k, j ) of size 2" formed by restrlctmg the indices of the m-dimensional
table to (0,71; 0,725 -+ ; 0, Jr; k’ .77+2 ) .7r+3 y T Jm) Thus, I* ) = Z:'
LG 0,5 — Z i I,_l(jT | jr41,7 ), which indicates that the real interaction
of order r can be obtained from the interactions of order r — 1 calculated for
the subtables S(;'|0, /) and S(j'|jr41, 7) of size 2, when r > 1. Similar
results can be obtained for any j such that |j| = » + 1.

Again for simplicity let us take j = {51 ,72, -+ ,jm} Where gz > Ofork = 1, 2,

.-, 7+ 1, and jx = 0 otherwise. Let [[iZi (dx —1) = D,. There are D,
values of j. For each of the D, values of j, we can calculate I*(5), and all linear
functions of the I*(j) can be written in the form

(23) I*(Ot) = Z a«;li2...i,+l b,

where the summation is over all L,, possible values of 7 = {41, %2, -, ¢n}, and
where foreach &k (k = 1,2, - -- , r + 1) the following conditions will be satisfied:
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(24:) Z ailiz'“ir-'-l = O,
ik

this summation being over the d; possible values of 7, . Conversely, all functions
of the form I™(a), where the Qiyige.iy,, Satisfy (24), will be linear functions of
the I"(j). In particular, if we take a,s,...., 1 = f(4, 7), we see in this case that
I*(a) = I*(j). More generally, if for each possible value of 7 the constant a;
is of the form a; = asy...;,,, Where the o; satisfy (24), then o = {a;, with ¢
taking on all L,, possible values of 7} represents a point in a D, dimensional
vector space spanned by the D, vectors f(-, 7) = {f(<, 7), with < taking on all
L., possible values of 4}, and I*(«) = D_; a:b: is a linear function of the I*(5).

Returning now to Good’s definition of interaction given earlier herein, note
that foreach k (k = 1,2, -+, r 4 1) the following conditions will be satisfied:
(25) Suid) =0
this summation being over the dj possible values of 4. (Recall that we are
considering the case where j, > O fork = 1,2, .-+, r 4+ 1, and 5z = 0 other-
wise.) Thus, the w(z, 7) satisfy (24) for both the real parts and for the complex
parts of w(z, 7). Considering the real and complex parts of w(-, j) as two real
vectors, we find therefore that these vectors represent points in the vector space
spanned by the D, vectors f( -, 7). Furthermore, it is possible to show that this
space is also spanned by the D, vectors w( -, 7), considering the real and complex
parts of w(-, j) as two real vectors. (The D, complex vectors w(-, 7) yield 2D,
real vectors, but only D, independent real vectors.) Thus, the condition that
I(j) = b'w(-, j) = 0 for the D, values of j is equivalent to the condition that
I*(5) = b'f(-,7) = 0 for the D, values of j.

The results presented above were concerned with the case where the first
r + 1 entries in the vector j were positive and the rest were zero. These results
can be generalized in a straightforward fashion to cover the case where a speci-
fied set of r 4 1 entries in the vector j are positive and the remaining m — r — 1
entries are zero. Thus, suppose that the r + 1 entries ji, , j4,, - -+, Ji,,, are
positive, and the remaining m — r — 1 entries in j are zero. Let [[iX} (dy, —1) =
D(t), wheret = {t;, %, -+, try1}. There are D(¢) possible values of j. From the
results presented above we see that the condition that I(j) = 0 for all D(t)
values of j is equivalent to the condition that I*(j) = 0 for all D(¢) values of ;.
Thus, the hypothesis H, considered by Good [9] is equivalent to the hypothesis
HY that all rth order and higher-order real interactions are equal to zero; i.e.,
that I*(j) = 0 for all j such that |j| = r + 1. To test the hypothesis H, we
shall test instead the equivalent hypothesis H; .

4. Statistical methods for the m-dimensional table. We first consider the
problem of testing the null hypothesis that a specified real interaction, say I*(5),
of rth order is equal to zero (r < m). The maximum likelihood estimator of
I*(4) is I*(j) = b'f(-, 7), where b is the maximum likelihood estimator of b.
Since I*(j) is a contrast of the b;, by applying the asymptotic variance and
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covariance formulas given earlier herein we find that the asymptotic variance of
I*(5) is

(26) VI = 25, 5) ()7,

where ¢(4, 7) = 0 when f(4, j) = 0, and ¢(¢, j) = 1 when f(3, j) = =1. This
variance can be estimated by replacing (np;)™" in the above formula by n7 or
by (p + 1)/In(n; + 1)], as earlier herein. We denote the estimated variance
by VII*(j)]. The statistic

(27) X' = [I*)OT/VIT*G))

will have an asymptotic chi-square distribution with one degree of freedom
when the null hypothesis is true, and it can be used to test the null hypothesis.

The covariance between two estimated interactions, say I*(j) and I*(s"), of
order r and ', respectively, is

(28) CIU*(@), TGN = 2216, PFG, 31 (npa) ™

which can be estimated by C[T*(j), T*(;1)], which is obtained by replacing (np:) ™
in the above formula by 77" or by (n + 1)/[n(n: + 1)], as earlier herein. Having
obtained the estimated variances and covariances, it is possible to apply, as in
the preceding section, the usual large sample multivariate theory to test the
null hypothesis that a specified set of K different interactions are all equal to
zero, or more generally to test the null hypothesis H that a specified set of K + K
different interactions (K' = 0) are all equal to zero within the alternate hypoth-
esis H' that a specified subset consisting of K' of these interactions is zero. The
X* statistic used to test H will have an asymptotic chi-square distribution with
K degrees of freedom when H is true. Since the hypothesis H and H' are gen-
eralizations of the hypotheses Hy and H¥ , respectively, the X given here can
also be used to test these hypotheses, which are equivalent to the hypotheses
considered by Good [9]. As earlier, the test obtained by the method suggested
here is quite different from Good’s test. To illustrate this difference, we shall
now consider in somewhat more detail the tests for the null hypothesis H,—
within the alternate hypothesis H,, for the m-dimensional dy X d; X -++ X dn
table. (Note that K' = 0 when the alternate hypothesis is H,, .)

There are Dy, = II# (dr — 1) real interactions I *(4) of order m — 1. For
m > 1 we noted earlier herein that the real interaction I*(j) of order m — 1
can be obtained from the interactions of order m — 2 calculated for the sub-
tables S(j'|0) and S(j'|jm) of size 2", where it = {5, 5, ", jma} and
7 = {3, ju}. In particular, I*(j) = In-s(j'|0) — Iu-s(s'|jm). Therefore, the
null hypothesis that I*(j) = 0 is equivalent to the hypothesis that .—( o) =
Ins(5"| jm). Writing j = { 7', im}, we see more generally that the null hypothesis
that the d, — 1 interactions I*(j', 1), I*(j', 2), .-+, I*(j',dm — 1) of order
m — 1 are all equal to zero (for a given vector 7" is equivalent to the hypothesis
that the d., interactions Im_a(j' | 0), Ins( | 1), - -+ , Im—2(j'| dm — 1) of order
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m — 2 are all equal to each other. Denoting the maximum likelihood estimator
of Tms(7 | %) by Im-a(5'| k), the dy, statistics Tno(s" | k) (for k = 0, 1, -+,
d. — 1) are contrasts of mutually exclusive sets of b; . By applying the asymp-
totic covariance formulas given earlier herein, we find that the Ino(j" | k) and
I.—2(j'| k') are asymptotically uncorrelated for k = k. (Similarly, Tm(3'| %)
and I, _»(j* | k) are asymptotically uncorrelated for k = k', when 7* = {5, 7 ,
oo, j% 4} and |j%| = m — 1.) Thus, to test the hypothesis that the d,, — 1
interactions I*(j', k) of order m — 1 (fork = 1,2, ---,dn — 1) are equal to
zero (with ;' given), we can apply the usual chi-square test to determine whether
the d,, statistics Tn—s(j' | k) differ significantly from each other (k = 0, 1, ---,
d, — 1). To compute the usual chi-square statistic (with d,, — 1 degrees of
freedom ), we note that the estimated variance of I..—2(j"| k) is calculated readily
by applying the results presented in the preceding section since Ins(f | %) is
the estimated interaction of order m — 2 in the subtable S(j* | k) of size 2™,

Let Dms = JIi5 (de — 1). There are D,_, possible values of i = {j1, j2,
.+, jma} such that |;| = m — 1. To test the null hypothesis that
the D, _s(dn — 1) interactions I*(f%, 1), I*(J', 2), -+, I*(f", dm — 1) are all
equal to zero (for all D, possible values of 41, we can apply the usual multi-
variate test to determine whether the dn vectors Im—s(+, 0), Tm-a(-, 1),
eoo, Ins(+, dm — 1) differ significantly from each other, where Tmoa(-, k) =
{Ins(s', k), with 4" taking on all D,,_; possible values}. The chi-square test thus
obtained will have D, = H;'Z;l (di — 1) degrees of freedom. To calculate
this chi-square test, estimates of the variances and covariances of the Tns(G' )
are required. Noting that I _a( 41, k) is a contrast between the b;, we find by a
straightforward generalization of the results presented earlier herein that the
variances and covariances of the I_»(j', &) can be calculated by regarding the
b; as uncorrelated and having a variance of (np;)™" (see Plackett [13], and Good-
man [10]). Estimates of the variances and covariances of the I._s(5', k) can
then be calculated by replacing the (n_p;)—l in the formulae by one of their
consistent estimators, as earlier herein.

From the results presented above, we see that to test H,— we can apply the
usual large sample multivariate theory to determine whether all Dy interac-
tions I*(j) with |j| = m are equal to zero, which would require that the user
invert one estimated variance-covariance matrix of side Dn_; ; or equivalently
we can apply the usual large sample theory to determine whether all d., vectors
I(-, k) fork = 0,1, -+, duw — 1 differ significantly from each other, which
would require that the user invert d, + 1 matrices each of side Dm— . Thus, in
the special case of an m-dimensional contingency table with d;; = 2 fork = 1,2,

.,m — 1,and d = 2, the method given above for testing the null hypothesis
H.._: is as simple as the usual large sample test of whether d. independent
sample means differ significantly from each other. (In this special case, the
user need not invert any matrices at all.) This generalizes the earlier results by
Plackett [13] and Goodman [10] for the case where m = 3.

The case where m = 3 and d; = d» = 2 has also been studied by Norton [12]
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and Kastenbaum and Lamphiear [11]. To apply their methods for testing H,,
the user is required to solve a set of d; — 1 simultaneous third-degree equations
in as many unknowns. To apply the iterative solution given by Darroch [8] in
this case, the user would be required to solve iteratively 4(d; + 1) non-linear
equations. Clearly the method of analysis presented herein is simpler to apply
than these earlier methods.

For the general three-way table, the user applying the method suggested
herein to test the null hypothesis H, will be required to invert ds + 1 matrices
each of side (d; — 1)(d» — 1) [or if he prefers he can invert only one matrix of
side (dy — 1)(dz — 1)(ds — 1)]. It is also possible to make still further simpli-
fications so that the user would be required to invert only one matrix of side
(dy — 1)(dy — 1) and d; matrices each of side ¢ — 1, where ¢ = min [d;, dy]
(see Goodman [10]). To apply the methods of Roy and Kastenbaum [14] for
testing Ho, the user is required to solve a set of (dy — 1)(dz — 1)(ds — 1)
simultaneous fourth-degree equations in as many unknowns. When min
[di, dz, ds] = 2, these equations reduce to third-degree equations. To apply the
iterative solution given by Darroch [8], the user is required to solve iteratively
dideds Y o—1 di" nonlinear equations. (See Good’s related remark on iterative
scaling methods, [9] p. 927.) Again we find.that the method presented herein is
simpler to apply than the earlier methods presented in the literature.

To test Hn_ using the system of equations given by Good [9], for the general
m-dimensional table (m > 2), applying a generalization of the Darroch method,
the number of equations to be solved iteratively is i1 di > m,dy'. Applying
a generalization of the Roy-Kastenbaum method, the user would be required
to solve a set of [[im (di — 1) simultaneous equations of degree 2™, (When
min [dy, ds, -++, dw] = 2, the degree of these equations is reduced by one.)
To test Hn_; using the method presented herein, there will be d, + 1 matrices
each of side J[;= (di — 1) to invert, or alternatively one matrix of side ) § |
(dy — 1) to invert. Thus, for the more general m-dimensional table (m > 2),
we also find that the test of H,_, presented herein is simpler to apply than
Good’s test of this hypothesis.

The results presented above concerning interactions of order m — 1 can be
extended to the case where interactions of order » £ m — 1 are of interest. Let
us now consider the interactions I*(j) of order r where ji > 0 for k = 1, 2,

-, r =+ 1, and j; = 0 otherwise. Let S*(- |5') denote the (r + 1)-dimensional
complete subtable formed by not restricting the first » + 1 indices {1, 22, -+,
4,4} at all, and then restricting the remaining m — » — 1 indices {Trio s Tris,

-, im} to be equal to F o= {Gran, Jrasy 0 ju}. From the results presented
earlier herein, we see that the interaction I *() isasum of dry2 X drys X -+ Xdm
interactions I,(j |7 ), where I,(j | 7') is an interaction of order r calculated for
the (r + 1)-dimensional subtable S*(- |4). For a given value of 7, there are
D, = TIi* (d. — 1) interactions I,(j | ') of order r, and the results presented
herein for testing Hn_; in an m-dimensional table can be applied directly to test
the null hypothesis H,(j') that all D, interactions I,(j|j') in the (r + 1)-
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dimensional table S*(- |;') are equal to zero. For different values of j, the
8*(- |4') are mutually exclusive subtables. Denoting the estimator of I,(j | ;)
by I.(j | ), for different values of 5’ the I.(5 | ') are asymptotically independent.
Since I*(5) = 2.7 I.(j | §), the test of H,(j') can now be modified in a straight-
forward fashion to provide a test of the hypothesis that all D, interactions
I*(j) are equal to zero.

The hypothesis that all D, interactions I*(j) are zero is the hypothesis that
the rth order interactions between the first » + 1 dimensions [1, 2, ---, r + 1],
summed over the remaining m — r — 1 dimensions, are equal to zero. For any
set of » + 1 dimensions, say [6:, 6, + -, 8,41], we can in a fashion similar to
that described above test the hypothesis H [6] that all rth order interactions
between the dimensions {6;, &, -+, 84} = 6, summed over the remaining
m — r — 1 dimensions, are equal to zero.

The results presented earlier in the present section were concerned solely
with hypothesis testing. As in Section 2 herein, it is also possible to obtain
simultaneous confidence intervals for the interactions I™( 7) in a multidimensional
table. The simultaneous confidence intervals for the 2™ table given in Section 2
can be generalized in a straightforward fashion to obtain confidence intervals
for the dy X d» X - -- X dn contingency table. To save space we shall not present
the details here.

In closing, we take note of the fact that the results presented herein pertain
to interactions defined in terms of certain linear functions of the b;. Similar
results could have been obtained if, for example, instead of the definition of the
D, interactions I*(5) of order r given herein (where for simplicity we took j; > 0
fork=1,2, ---, 7+ 1, and ji = 0 otherwise), we had taken as our definition
any given non-singular transformation of these interactions, or if we had taken
these interactions as a basis for a more general (and more symmetric) definition
of the interactions given by the linear functions (23) satisfying the condition
(24). For interactions I*(5) of order r, where the » + 1 entries j;, , 74, * -+ , s, "
are positive, and the remaining m — r — 1 entries in j are zero, similar kinds
of modifications can be made.

A somewhat different formulation of the concept of interaction, obtained by
writing the b; in terms of a general mean plus “interactions” of order r» (» = 0,
1, .-+, m — 1), in & manner similar to the usual analysis of variance model
(see, for example, Birch [7]), would probably have seemed more familiar to
analysis of variance users. The hypothesis H, considered by Good [9] and the
hypothesis H; considered herein are equivalent to the hypothesis that all rth
order and higher-order ‘“‘interactions” in the analysis of variance model are
equal to zero, but there are a number of reasons why the usual analysis of vari-
ance techniques can not be applied directly to test this hypothesis: (i) The as-
sumption of constant variance which is made in the usual analysis of variance
cannot be made in the present context where the variance of the b; depends upon
the value of p; . (ii) Since Y :exp [b;] = 1 in the present context, the general
mean is subject here to a restraint which does not appear in the usual analysis
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of variance model. (iii) The assumption that the observations are independent,
which is made in the analysis of variance, cannot be made here since the b; are
correlated. (However, when dealing with contrasts of the b;, we can regard the
b; as asymptotically independent, as earlier herein.) It is possible to modify
some of the usual analysis of variance techniques so that they can be applied
in the present context, but we shall not go into these details here.
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