AN APPLICATION OF A GENERALIZED GAMMA DISTRIBUTION

By Gerawp S. RoGERs
University of Arizona

1. Introduction and summary. Let {z;1, - -, Ten;}, 2 = 1,2, -+« , k, kb = 2,
n; = 2, be random samples from stochastically independent Gaussian populations
with unknown means u; and unknown variances o7 . To test the hypothesis
Hy:oi = -+ = o = ¢, unknown, one may use a likelihood ratio test wherein
H, is rejected if A < Ao,

k

r=11 [NZ:I (@i — &)°/ns i i (w5 — fi)z]{mi,

=1 i=1 j=1

N=>Ykrin, a = D % xsi/ns and A is determined by the significance level.
Under Hy, Y, = > 1% (X:; — X;)?/o” are stochastically independent chi-square
variables with n; — 1 degrees of freedom (throughout capital letters denote
random variables and the corresponding lower case letters values in their ranges).
A general discussion of such derivations can be found in [2], pp. 183-195. The
distribution of A under H, is then obtainable from the extended form of the
corollary below with A; = N/n;, 8: = n:/2,d; = (n; — 1) /2.

The corollary is a particularization of results obtained from a generalized
gamma distribution, introduced by Stacy [3], with density

(1) fyis a0, di, i) = payt ™ exp [— (yi/a:) ™) /aF T (di/p:)

for y; = 0, a;, d;, p; all positive. (Throughout, only the nonzero portions of
densities will be indicated.) Inconveniently, formulas (4) and (6) below must be
evaluated by numerical methods. Since the case & > 3 follows by induction from
that for & = 3, only the cases k = 2, 3 will be given here.

2. The case k = 3. ][] and > will always have indices 7 = 1, 2, 3.

LemMma 1. Let Yy, Y., Y3 be stochastically independent with densities (1) and
piall equal top. Let Z = Y1+ Yo + Y3, W, = Y,/Z. Then the joint density of
Wi, Waisg(w, ws) =

(2) T (Oody/p) [[Twh ™/ a%T(di/p)]/ 12 (wi/a;)?)Z%'®

where wy + w2 + ws = 1,0 S w; = 1.
Proor. For any p; > 0, the density of W, W, , Z is

2P {pawt™/a¥ T (di/pa) exp [~ (wiz/ad)™ ]

Since 0 < z < «, when the p; are equal, a simple integration yields the form (2).
LEmMMA 2. Let Y;, W, be as in Lemma 1 with p = 1, a1 = as = as . Then the
Mellin transform of W = WRWEWSE = WIWE(1 — Wi — W)™ with 81, Be,
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B:s > 071s
(3) (2 d)ITIT(Bi(s — 1) + da)/T(d)B/T( X [Bi(s — 1) + dil).

Proor. E[W*™] = [§ [¢7"*w g(w; , ws) dw; dw, which is easily evaluated to
obtain the result.

The simplicity of proof in the above lemmas is not obtained for less restricted
p’s and a’s so that the procedures here do not extend to the consideration of the
distribution of A under alternative hypotheses. The density (2) can be termed
that of generalized dependent beta variables.

LemMa 3. Let V be the ordinary beta variable with parameters Dy, Dy . Let W =
V(1 — V)% a > 0,b > 0. Then the density function of W is h(w; Dy, Ds , a, b) =

(4) {71 — )™ Yla — ar — br]
— ™71 = )™")/la — at — bt}}/B(Dy, D)
for
0 <w < [a/(a + b)I'[b/(a + b)]",
w=r"1—=r"=e0-"%r <a/(a +0b) St
Proor. P(W £ w) = P(V £ r) 4+ P(V = t). Differentiation with respect to
w yields the result.
The Mellin transform of W in Lemma, 3 is
(5) M(s;D1,Ds,a,b) = B(a(s — 1) + Dy,b(s — 1) + D;)/B(Dy, Dy).

This particular pair of inverse Mellin transforms, (4) and (5), does not seem to be
in the literature. Other pairs of inverse transforms can be derived from these. For
example, substitute in (4) using the relations
P(V é 7') = Br(Dl ) D2)/B(Dl ) D2)
= TDIF(DI , 1 - D, 5 D1 + 1, T)/DIB(DI , Dz)

and
(d/dr)F(Dy,1 — Dy ; Dy + 1;7)

= Dl(]. - Dz)F(Dl + 1, 2 — Dz ,Dl + 2, T)/(Dl + 1),
where B, B,, F are the beta, incomplete beta and hypergeometric functions,
respectively. (See [1], p. 58 and 87). Or, letting w = exp f and s = ¢ + ¢, one
finds (27)*h(exp f; Dy, D:, a, b) exp of and M (¢ + i; Dy, Ds, a, b) are inverse
Fourier transforms (see [4], p. 60). (The author wishes to thank Professor A.
Erdélyi for his comments on Lemma 3, communicated privately.)

TaroreM. Under the conditions of Lemma 2, the density of W is m(w) =

T

h(w/y; dl + d2 ’ d3 ) Bl + 62 ) 63)h(y) dl ) d2 ) :31 ) :32) dy/y)

(6) w/K
K = (B + )"0/ (0BT, T = gl (B + 81,
h(-; Dy, Ds,a,b) givenby (4),0 < w < KT.
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Proor. From (3), the Mellin transform of W is
B([81 + B2)(s — 1) 4+ di + da, Bs(s = 1) + d3) B(Bi(s — 1)
4+ di, Be(s — 1) + dy) + B(dy + do, ds)B(dy, ds)
= M(s;di +dy, ds, B+ B2, Bs)M(s5d1,dz, Br, Ba).

Hence the conclusion follows by the well-known convolution theorem for Mellin
transforms. (See [4], p. 8.)

Application of a simple transformation yields the following

COROLLARY. Under the conditions of Lemma 2, the density of A = [] (Aaw:)® =
AW with A; > 0, [T (4% = A, ism(NA)/A,0 <\ < KAT.

3. The case k¥ = 2. When analogous Lemmas 1 and 2 are worked out, it is seen
that W; is an ordinary beta variable so that Lemma 3 applies directly and the
density of W = Wi'(1 — W) ish(w;dy , dz, B, Be).
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