ESCAPE PROBABILITY FOR A HALF LINE
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Let {X,}, n > 0 be a sequence of independent, identically distributed random
variables. Suppose E|X;| < « and EX; > 0. Then the strong law of large num-
bers assures us that from any initial point S, , the random walk

Sn=SO+X1+"'+Xn

lies in the interval (— «, 0] for at most a finite number of values of n with prob-
ability one, and thus the non-positive axis is a transient set for this Markov
process. Let M, = min (S;, S;, -+, S.). As M, is non-increasing, we have
that M = lim,., M, = inf,; M, , exists, and as P(M = — ) £ P(S, <0
1.0.) = 0, we have that M is finite with probability one. Starting at a point =
on the non-positive axis let us define the escape function e(x) as the probability
that a particle, initially at x, will in the first step enter the positive axis and
thereafter never return to the non-positive axis. It will be convenient, and in
accord with the potential theory for Markov processes, to define e(z) = 0 for
x > 0. More precisely then, we define

e(x) =P(M >0|8 = z) ifx =0
=0 ifx > 0.

Our principal aim in this note will be to establish the following result.
TrEoREM L. If E |Xi| <  and EX, > 0 and if Z 4s the first positive partial
sum starting from Sy = 0, then

(1) e(x)/EX, = P(Z > —zx)/EZ ife <0
and
(2) [: e(z) dr = EX, .
Proor. For the sequence {S,} with S, = 0 let
W = inf {k > 0: S; > 0}, if for some positive integer n, S, > 0,
= o, otherwise;
W' = inf {k > 0: S; < 0} if for some positive integer n, S, < 0,
= o, otherwise.

On the event [W < «]let Z = Sy, and on the event [W’' < «]let Z' =
Sw: . A basic identity in the fluctuation theory for sums S,([4] Theorem II1.6—
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II1.9) asserts that for A real and |{| < 1 we have

1 — E(™t", W < »)] = exp [— > *Ele™*; 8, > O]k'l]

k=1
(3) w
1 — Ele™t", W < ] = exp[— > *E[e™F 8, < O]k_l:l ,

k=1
where here and in the following, for an event A and a random variable f we shall
let [4 fdP = E[f; A). Thus, for example

E(ei)\sk; Sk > 0) — f ei)\sk(w) dP(’w) = f eiMP(Skedx)
o+

18 (w)>0]
and

E[ei)\z'tW'; W < o] = f MW@ Dy

[W' (w)<w]

- f S #e™P(Z ¢ da, W' = k).
0

k=1
From (3) we obtain, '
(4) [ = B W < )] [l = (™t W' < )] =1 — tB(e™™).

Under the condition we are assuming here, Spitzer ([5] Theorem 3.4) showed that
EZ = EWEX, and EW < «. If we set A = 0 in (4) we obtain the identity,

1—E")YA—=E{l";, W < »)) = (1 —1t)
and by dividing both sides of the above by (1 — ¢) and then taking the limit as
t — 17 we obtain the identity, EWP(W' = «) = 1, and thus EZP(W' =
©) = EX;.Again from (4) (with ¢t = 1) we obtain the identity
(5) (1 — E(™)]l — E(™; W < «)] 1 — E(™)

EZ PW' = «) B EX,

By Corollary III.10 of [4] we have for A real and [f| < 1 that

1~ 3B (exp (WMR)) — E(exp (WM 1)

(6) = (1~ 0% "Blexp (M)

=[1—E@"; W < «)/Il — E(t"; W < )],

where here and in the following, M, = min (0, M,), and M, = 0. Now with
probability one, we have, lim,. M, = min (0, inf,>; M,) = min (0, M) =
M~ and lim,., M3 = lim,.,, max (0, M,) = limp.e (Mn — M7) = M — M~
= M*. At t = 1, the series on the left hand side of (6) becomes the series
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1 - ngol [E(exp (1\M3)) — E(exp (i\M,41))]

= limy.o E(exp (?AM7)) = E(exp (t\M™))

while at ¢ = 1 the expression on the right in (6) becomes P(W' = «)[1 —
E(™; W < )]\ Thus we have the identity,

(7) E(exp (WM™)) = P(W = ) [l — E(¢™; W < =)™
On the other hand,
(8) E(exp (i\M7)) + E(exp (iA\M7)) = E(exp (i\M,)) + 1.
It is a well known fact (see [6], Section 2) that
(9) E(exp (i\M,)) = E(exp (iAMn_1))E(exp (i X1)).
From (8) and (9) we obtain (by letting n — « ) the following relation,
(10) [1 — E(exp (4AX1))]E(exp (iA\M7)) = 1 — E(exp (iAM™)).
If we substitute (7) into (10) we obtain
1 — E(exp (WM™)) = [l — E(™™)P(W' = ©)[l — E(™”; W < «)]7,
and from (5) we then have,
[l — E(™)/EX, = [1 — E(e™))/EZ.
The uniqueness theorem for characteristic functions then gives us that
(11) P(M* > z)/EX, = P(Z > z)/EZ, for all z = 0.

Finally, from the definition of e(z) for x < 0 we have e(z) = P(M > —z) =
P(M™ > —z), which establishes (1). (2) follows at once from (1).

As a consequence of the proof we have the following

CoROLLARY 2. If E|X;| < « and EX; > 0 then

(12) P(M* > z) = EX\P(Z > z)/EZ
and thus
(13) EM™T = EX,.

The relation (13) was first found by Dwass [1] for the special case when the
X, are integer valued. Relation (12) then offers an explanation of this phenomena.
Let A be a Borel set on the positive axis, and let H(z; A) be the probability
that a particle initially at x first hits the positive axis at a point in 4. In precise

terms,
H(zx; A) = 6,(4), x>0

|

D P8, 4,8, 20,1<r<n|S==z), z=0.

n=1

We then have
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TaeoREM 3. Assume E|Xi| < » and EX; > 0. Then if X; has a non lattice
distribution,

14 i L>—00 H = / e( _x)
( ) llIIl H ( z ) A ) 4 E Xl
while if X1 has a lattice distribution, we may with no loss in generality, assume that
the smallest additive subgroup of reals which contain the points of increase of the dis-
tribution of X to be the group of all integers. In this case we have for any positive
integer k,

(15) limp,—w H(n; {k+1}) = e(—k)/EX; .

Before giving the proof of the above assertions, let us offer the following heuris-
tic explanation of say (15) which was suggested by T. E. Harris. Consider the
path of a particle which starts at — « and first enters the positive axis at the
point %, backwards. This is just the path of a particle which starting from —k
escapes the negative axis on its first transition and thereafter drifts to .

Proor. Let {Z,} be the positive ladder random variables for the sums S, (see
[4], Section III). We then have that {Z;} are independent, positive, random
variables each with the distribution of Z. The sums, Z;, Z; + Z», -+, Z; +
-+ 4+ Z,, -+, thus constitute a positive renewal process. Let V; be the “ex-
cess” random variable for this renewal process, i.e., V. is the amount over a
barrier at ¢ by which the sums Z;, Z; + Z., - - -, first exceed that barrier. A
little reflection shows for any positive Borel set A we have, for z < 0 that,
H(z; A) = P(V_,¢cA).

Consider the case when X; has a non lattice distribution. Then Z also has a
non lattice distribution. A well known theorem in renewal theory (see [3]; I)
then asserts that

dx

P(Z1 > .’L‘)
EZ,

from which we obtain (14) at once by Theorem 1.

When X; has a lattice distribution as described above, we then have that the
sums Zi, Z1 + Z,, ---, constitute an aperiodic, discrete, renewal sequence.
If U = 2 o1 P(Zy + -+ + Zi = n), then the fundamental theorem of re-
current events asserts that lim,.. . = (EZ;)~". (For details on recurrent
events see Chapter 13 of [2].) It is readily seen that

limse P(Vied) = dz,

r~—1

P(V,=sr) = k=Zo UnsrtP(Z1 > k)

and thus
limyo P(V = 1) = P(Z1 2 1)/EZ; .
Use of Theorem 1 now establishes (15).
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