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1. Summary. In [1], [2] we construct for each integer n = 2, a real-valued,
bounded, uniformly continuous statistic defined on R", nondecreasing in each
real argument, which is a minimal sufficient statistic for the family of all proba-
bility distributions defined on the Borel field 8" in R™ and dominated by Lebesgue
measure )\, . In this paper let { P;} be a family of probability distributions domi-
nated by Lebesgue measure and defined on the restriction of 8" to a Borel set
AC Rn' Letf = (fl y o '7fk) a‘ndg = (gll s gy Gk, gkﬂk) be contin-
uous sufficient statistics for { Py} defined on A, with f;and g,; real-valued. If there are
k functions A :R' — R™, 4 = 1, - -+, k so that (gi, - -, gin;) = huofi ae. (),
then is g everywhere a continuous function of f, i.e., g = h o f for continuous
h:fl[A] — g[A]? If in addition n; = 1,7 = 1, ---, k and each A, is a 1-1 function,
are f and g identical, i.e., g = & o f for bicontinuous h:f[A] — g[A]? Now if (1) 4
is connected, (2) A has a dense interior, and (3) almost every linear section of
each f; (and g, in the second case) satisfy Lusin’s condition (N), the answer to
the above questions is affirmative (see Section 2 for definitions). But if at least
one of (1), (2), or (3) is not satisfied, an affirmative answer is not in general
possible (see Examples, Section 3). In Section 5 we show that this implies it is
not possible to find a real-valued continuous minimal sufficient statistic f defined
on R" such that almost every linear section of f satisfies Lusin’s condition (N),
for some familiar probability distributions.

2. Definitions. If the set A C R! and the function f: A — R! are such that
M{fIN]} = 0 for each Lebesgue set N C A such that \{N} = 0, then the function
f is said to satisfy Lusin’s condition (N) on A. The definition of sections of
functions and sets will be found on p. 134 of [6]. Let the real-valued function f
be defined on 4 < R", n > 1, and let Pr[{A] be the image of A by each of the n
projections of R"” onto R*™,j = 1, - - -, n. A linear section of A4 at z & Pr{4] will
mean a subset of R'. A linear section of f at z ¢ PrA] means a section of I
defined on the linear section of A at z & Pr'4]. Let the Borel set A € R", n > 1,
and let B’ = {z:the linear section of f at z ¢ Pr'[{A] satisfies Lusin’s condition
(N)}. If B is a Lebesgue set with \,1{Pr{d] ~ B} = 0,5 = 1, .-, n, we will
say that almost every linear section of f satisfies Lusin’s condition (N). Let

= (a1, -, x8), 2 = (21, -+, 22)e R". Let P(2', 2°)  R" denote the union
of the possibly degenerate segments (see, e.g.,p. 155 of [3]) joining (21, - - -, %)
with (2}, @5, ---, @), («}, @3, ---, @n) with («f, «3, 23, ---, 2), ---, and
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(21, -+, @4y, @) with (2}, -+ -, 22). Fora', -- -, 2™ ¢ R" we define P(z", - - -,
xm) — U';n—llp(xa xH—l)
Z , .

3. Requisite lemmas. In the following two lemmas f and g are real-valued
continuous functions defined on [a, b] € R', B C [a, b] is a Lebesgue set such
that M{[a, b] ~ B} = 0, and £ is a real-valued function defined on f[B] such that
g = hofon B.

Lemwma 1. If f(a) = f(b), if f is greater than or equal to f(a) on neighborhoods
of @ and b, and if f satisfies Lusin’s condition (N), then g(a) = g(b).

Proor. Since f[B] is dense in f[[a, b]], we need consider only the case where
each neighborhood of @ and each neighborhood of b contains at least one point
where f is strictly greater than f(a). Fix ¢ > 0 and choose « ¢ (a, b) so that
fla) > f(a) and |g(a) — g(y)| < e for y e (a, ). Choose 8¢ (a, b) so that
f(B) > f(b), lg(b) — g(y)| < efor ye (B, b), and f[(, b)] C flla, a]l. There
exists ez ¢ B N (a, «) and 8 ¢ B N (N, b) such that

Y] flan) = f(B).

For if (1) is not true then f[B N (a, «)] N f[B N (8,b)] is empty and so
fIB N (8, b)] © fl([a, ] ~ B) N [a, o]l. Now f[([a, b] ~ B) N [a, o]l
and f[([a, b] ~ B) N (B, b)] have measure zero and since f(8) > f(b) a contra-
diction follows. Thus by (1), g(a1) = h(f(a1)) = h(f(B1)) = ¢g(B:1), and the
continuity of g gives the assertion.

Lemma 2. If f(a) = f(b) and if f satisfies Lusin’s condition (N) then g(a) =
g(b).

Proor. By Lemma 1 we need consider only the case where at least one point,
say a, can be approximated by points y, z ¢ [a, b] which are arbitrarily close to a
and so that f(y) < f(a) < f(2) (if f £ f(a) about a and b use Lemma 1 on
—f). Fix ¢ > 0 and choose intervals (a, «) and (8, b) so that [g(a) — g(y)| < €
for y ¢ (a, ) and Ig(b) — g(y)[ < efory e (8,b). The assumptions grant oy , as €
(a,b)sothat oy ¢ (a,a), a2 € (an,a) and f(an) = f(a), f > f(a) on (a1, az).
Let 2 = sup{y:y ¢ (a2, ], f(y) = f(a), for each interval [w, y] f is strictly
greater than f(a) at some point in [w, y]}. An ab contrario argument shows the
supremum is over a nonempty set. Evidently x; belongs to the above set and
f(z1) = f(a). Thus there is [zy, 23] C [az, 1] such that f(x:) = f(a),f > f(a)
on [x:,xs),and [g(x1) — g(y)| < efory e (22, x;]. Lemma 1 then implies g(oy)
= g(z3) and hence g(a1) = g(x3) and hence |g(a) — g(x1)] < 2 If x, =
b continuity of g gives the assertion. If x; < b then f is easily checked to be
less than or equal to f(a) on [, b]. Since f(x;) = f(b), Lemma 1 applied to — f
gives g(z,) = g(b). Again |g(b) — g(a)| < 2¢ and the assertion is proved.

LemMmA 3. Let A © R’ be an interval and let B C A be a Lebesgue set such that
M{A ~ B} = 0. Let f and g be continuous real-valued functions defined on. A and
let h be a real-valued function defined on f[B] such that ¢ = h o f on B. If f satisfies
Lusin’s condition (N) then g = ¢ o f on A for continuous ¢ defined on flA].

Proor. Lemma 2 implies ¢ = ¢ o f on A for some function ¢. For each [a, b] C A
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the restriction of ¢ to f[[a, b]] is continuous (see, eg., p. 95 of [5]). The convexity
of the set f[A] then ensures the continuity of ¢ on f[A].

Lemma 4. Let A C R" be a product of n open intervals and let B C A be a Lebesgue
set such that M{A ~ B} = 0. Let f and g be continuous real-valued functions
defined on A and let h be a real-valued function defined on f[B] such that g = hof
on B. If almost every linear section of f satisfies Lusin’s condition (N') theng = ¢ o f
on A for continuous ¢ deﬁned on flA].

Proor. For fixed y', 4 A and ¢ > 0 there are z', -- -, 2" ¢ A such that:
(1) Iyt — 2Y| < ¢ |[¥* — 27| < e and the linear sections offon P, -+, ™)
satisfies Lusin’s condition (N); (2) each linear section of P(2', - - -, ™) has all
its linear Lebesgue measure on B N P(z', - - -, z™); (Fubini theorem). Lemma, 4
ensures the assertion (f[A] is still convex).

REMark. No analogue of this result seems available—for the entire set A—
when continuous f and g take their values in R", n = 2. For letting 4 = (—4%, 1
X (0, 1), f(z,y) = (2", xy’), and g(z, y) = (v, y), wehaveg = hofon A ~
{0} X (0, 1) but not on A.

From Lemma 4 and a well-known property of connected open sets in R" (see,
eg., problem 4, p. 90 of [3]) we obtain

CoRrOLLARY 1. Let the Borel set A C R" have a connected dense interior and let
B C A be a Lebesgue set with \y{A ~ B} = 0. Let f and g be continuous real-
valued functions defined on A and let h be a real-valued function defined on f[B]
such that g = h o f on B. If almost every linear section of f satisfies Lusin’s condition
(N) then g = oo fon A for continuous ¢ defined on f[A].

Corollary 1 yields

CoroLLARY 2. If in Corollary 1, A is only assumed to be a connected Borel set
with a dense interior, the conclusions of Corollary 1 hold.

Remark. Corollaries 1 and 2 hold for non-Lebesgue sets. There are connected
non-Lebesgue sets with connected dense interiors—start with a connected open
set in R® with a frontier of positive measure.

ExampLes. Here is a real-valued continuous function f defined on [0, 1] such
that f(0) = f(1) = 0, f(3) = 3, and the restriction of f to a Borel set B [0, 1]
with \i{B} = 1 is one-one. With g(z) = z for z ¢ [0, 1] we have ¢ = ko f on B.
Let ¢ be a real-valued, continuous, and strictly increasing function on [0, 1],
$(0) =0,¥(1) = Land ¢/'(z) = Oa.e. (\1), andleth = (1 — ¥)/2(1 — ¥(1/2)).
Let the Borel set D C [0, 1] with M{D} = 1, M{h[D]} = 0, (see, eg., p. 271 of
[7]) and let B" = ([0, %) ~ &[D]) U (D N [, 1]). Let the Borel set B © B’ with
M{B} = 1 and define f(z) = zfor z €0, 1), f(z) = h(z) for z ¢ [%, 1].

The reader can quickly construct two real-valued continuous functions on
(0, 1) U (1, 2) so that (2) and (3) of Section 1 are satisfied and Lemma 3 is
false.

Let ¢ [0, 1] be a Cantor-type set with \{C} > 0 and let y [0, 1] ~ C.
Let D = ([0, 1] X €) U ([0, 1] X {}) U ({0} X [0, 1]) U ({1} X [0, 1]). The
reader can easily find continuous real-valued f and g on D so that g = hof a.e.
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(A\z) but not everywhere, and every linear section of f and g satisfy Lusin’s
condition (N). -

4. A Theorem. From Corollary 2 we have the

THaEOREM. Let { Ps} be a family of probability distributions defined on a connected
Borel set A C R" with a dense interior. Let f = (fi, ---, fs) and g = (gu, - -,
Gings ** % Giis * 5 Giny,) De continuous sufficient statistics for {Ps} such that
fitA — R' and gi;:A — R'. Let B C A be a Lebesgue set with \{A ~ B} = 0
and let hi:fi{B] — R"™ so that (gu, -+ -, gin;) = hi o fi on B. If almost every linear
section of each f; satisfies Lusin’s condition (N) then g = h o f on A for continuous
h:f[A] — g[A].

COROLLARY. If in the above theoremn; = 1,4 =1, .-, k, fi = ;0 g; on B for
¥::glB] — R and if almost every linear section of each g; satisfies Lusin’s condition
(N) then g = ho fon A for bicontinuous h:f[A] — g[A].

6. Applications. Let f be a real-valued continuous minimal sufficient statistic
for the uniform distribution. That is, if g(z:1, ---, ») = (min; z;, max; ;)
then g = hofa.e. (\,) for some h. We show that not almost every linear section
of f satisfies Lusin’s condition (N). Arguing ab contrario, by the Theorem,
g = hof for continuous h. ‘

Assume 2; = min; z; < max; x; = x, and let z; € [a1, bi], z. € [a,, bs] With
b1 < a,.

Let C = [a1, bi] X {@} X +++ X {@ua} X [@n, bs]. Then f(z) = f(y) for
z, y € C implies g(z) £ g(y), i.e.,f = Y o g on C for some . It follows (see, eg.,
p. 95 of [5]) that on C ¢ = h o f for bicontinuous k:f[C] — ¢[C]. This is a contra-
diction—f[C] is 1-dimensional and ¢[C] is 2-dimensional (see, eg., p. 24 of [4]).

Let D C R" contain a connected Borel set B with a dense interior and let
{Py} be a family of probability distributions defined on the restriction of 5" to
D and dominated by Lebesgue measure. Assume that g(zi, ---, %) =
(>onalt, oo, Doiaal®), n = k> 1,4, < jua positive integers, is a sufficient
statistic for { P} and if f is any minimal sufficient statistic for { Po} then g = ho f
a.e. (\,) on B, for a function A. If f is a real-valued continuous minimal sufficient
statistic for {Ps} then not almost every linear section of f satisfies Lusin’s con-
dition (N). For example, there is not a real-valued continuous minimal sufficient
statistic defined on R" for the normal distribution, meeting the Lusin condition
(N). The proof, which mimics the preceding except for a routine use of Jacobians,
is left to the reader.

Remark. If the Borel set A C R" is such that M,{R" ~ A} = O then the
probability space (4, 8"(4), \,), where 8"(4) is the restriction of 8" to A4, is
equivalent for all statistical purposes to (R", 8%, \»). Using [2] one can construct
such an equivalent probability space for which there is a statistic possessing all
the properties described in Section 1 and in addition the property that every
linear section satisfies Lusin’s condition (N). Suppose for arbitrary ¢ > 0 we
are given not the value of the statistic but only that the value lies in (@, @ + €)
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for suitable a ¢ R'. Then in both cases, (R", 8°, \,) and (4, 8*(4), \,), we have
no information.
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