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1. Summary. In this paper the problem of minimax point estimation of a
function g(8) of a parameter 6 is considered, when the loss function is of the
form W(u(z), g(0)) = |u(z) — g(8)|", (p > 1) and u(z) is an estimate with
bounded risk. When Conditions A and B stated later hold, it is shown that a
unique minimax estimate uo(x) exists and if {u.(z)} is any uniformly bounded
minimax sequence then the risk functions of u.(z) converges uniformly to the
risk function of u(x), so that no almost subminimax estimate can exist which,
though not a minimax estimate, has for a wide range of values of the parameter
9, a lower value of the risk than that of the minimax estimate. Under some addi-
tional conditions, it is shown that an approximation to the minimax estimate
uo(z) in the space F of functions with bounded risk, may be obtained by the
minimax estimate @y(z) in the finite dimensional linear space spanned by N basis
vectors vy , - - - vy of F&, so that the maximum risk of @x(z) converges to that
of us(z). This may help in finding an approximation to a minimax estimate in
non-standard problems, where it is difficult to guess a minimax estimate from
invariance or other considerations and specially when the problem is a perturba-
tion of a standard problem.

2. Introduction. It has been pointed out by Hodges and Lehmann [3] and
Robbins [8], that in certain cases there exist estimates which are not minimax
so that their maximum risks may be slightly greater than that of a minimax
estimate but their risk functions are considerably less than that of a minimax
estimate, for a range of values of the parameter 6. Such estimates have been
called e-minimax or subminimax estimates [8], [11].

Since ¢ is an unspecified small quantity above, the situation may be charac-
terised by the existence of a minimax sequence of estimates {u,(z)} (which is a
minimax solution in the wide sense in Wald’s terminology), whose risk functions
do not uniformly converge to that of the minimax estimate u(z). Frank and
Kiefer [1], have given examples from the theory of testing of hypotheses, of such
almost subminimax solutions. An example is given in the appendix where for any
¢ however small subminimax estimates of this type, exist for a squared error loss
function with unbounded range of the parameter. A second difficulty in the
choice of a suitable estimate arises when there is a multiplicity of admissible
minimax estimates.

In the first part of the paper it is shown that Conditions A and B stated later
ensures that a unique minimax estimate u,(z) exists and any minimax sequence
of estimates {u.(2)} converges with respect to a suitable norm topology (Theorem
1) to ue(z) so that the corresponding risk functions also converge uniformly to

Received 1 December 1961; revised 23 March 1964.
1031

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



1032 M. N. GHOSH

the risk function of the minimax estimate. Thus no almost subminimax estimate
can exist for sufficiently small ¢, which is substantially better than the minimax
estimate for any value of the parameter.

In the second part of the paper we consider the problem of approximating a
minimax estimate w(z) in the space F of functions u(z) for which
Sups E{|u(xz) — ¢(6)|” | 6} is bounded, by minimax estimates wy(z) in finite
dimensional linear spaces Vy, formed by the basis v1, vs, - - - vy of F. This
provides a sequence {x(x)} whose risk functions are such that {Sup, r(ix(z), 6)}
forms a monotonic decreasing sequence with the limit Supy r(u(2), ).

It is of course possible to approximate a decision problem by replacing the
space © of a priori distributions, the space of terminal decisions D’ and the sample
space X by finite number of points, when the problem is sufficiently regular.
Thus Wolfowitz [11] considers a finite number of distributions F; , F; - - - F, and
terminal decisions d* - -- d'™ which are e-dense in the spaces @ and D", in the
intrinsic sense and represents the risk function »(F;, 6) as a bounded convex
domain in an Euclidean space and then selects a finite number of points in the
periphery of the domain, to constitute an essentially e-complete class for the
decision problem. The choice of a finite number of points in the decision space is
possible by introducing e-nets in the sample space and for each cell C; in the
sample space, considering the distributions {pi;} j—1,... m:i=1,...,» On the terminal
decisions d* - - - d‘". For sufficiently smooth distributions, the decision problem
with distributions F;, --- F, and decision functions with distributions {p;;} on
the terminal decisions defined for each cell C; in the sample space, will be an
approximation to the original decision problem and a minimax estimate for the
reduced problem will be a e-minimax estimate for the original problem. The
reduced problem can be solved as a two person zero-sum game with finite number
of strategies for both players. However, the number of strategies, will have to
be very large for any reasonable approximation. Moreover, as in the reduced
problem the terminal decisions are discrete, the advantage of a convex loss func-
tion is lost and one has to consider probability distributions on d* - - - d*™ (mixed
strategies) in order that the minimax theorem holds, whereas in the linear spaces
considered in this paper, only non-randomised estimates (pure strategies) are
required. A second advantage of the method of approximating by minimax esti-
mates in finite dimensional subspaces is that when a problem represents slight
variation from a standard problem in which a conventional minimax estimate
v(x) is known, one could start off with a basis in which »(x) is the first element.
Thus in Example 1 in Section 5, we consider the problem of estimating the mean
of a normal population N (6, 1), (—b < 6 < b) and we chose a basis Z, &°, &, etc.,
so that at any stage in the approximation, the estimate is better than the con-
ventional estimate £ and the maximum risk gradually decreases to the maximum
risk of the minimax estimate. An appropriate analogy would be with the pertur-
bation methods in the solution of Schrodinger equation of a many particle system,
where one starts with a solution for a simpler system and then modifies it taking
into consideration the mutual interaction of the particles, rather than trying to
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solve the equation ab initio in which the advantage of a known solution for a
simpler problem is lost.

3. Uniform minimax sequences. Let R, be the Euclidean space of n dimensions
which is the sample space, B, a Borel field of subsets of R, , on which a separable
o-finite measure u is defined (see Zaanen [12], page 74). Let f(z, ) be a class of
functions of x measurable with respect to B for any given 6 and so that f(z, §) > 0
holds except for a set P of points of u-measure zero, the set P being independent
of 6, and so that [, f(z, 6) du(z) = 1, for all 6. Here 6 is a parameter lying in a
space © and the problem is to estimate a bounded real function g(6) of 4, when
the loss function for an estimate u(z) is

where u(x) is measurable with respect to the Borel field B.

We may obviously restrict ourselves to estimates u(x) for which r,(0) =
Jlu(z) — g(8)’f(x, 6) du(x) is bounded. Denote the class of functions for
which Sups 7.(6) < K by & and the class of functions for which Sup,, 7.,(0) is
bounded by F2’. For any function u(z) let

(1) 6(u) = Sups r.(6).

We consider the following two conditions which will be imposed on the problem
wherever necessary.

Conpition A. There exists a § = 6, , so that for any bounded region M in R, ,
except for a set of u-measure zero, independent of 9,

(2) (1/A)f(z, 60) < f(z, 0) < Auf(z, 6o) for all 0
or alternatively
(3) (1/A%0)f(z, 6') < f(z, 07) < A’y f(z, 6') for all ¢’ and 6”

when z ¢ M, and A4y is a constant depending only on M. Condition A holds
e.g. when 6 is the mean vector of a nondegenerate p-variate normal distribution
and Q is a compact region in the Euclidean p-dimensional space. It may be noted
that Condition A prevents the type of situation described by Frank and Kiefer
[1] in which an almost subminimax solution exists, for the problem of testing of
hypothesis with (0, 1) loss function.

ConpiTioN B.

(i) g(8) is a continuous function of 6,

(ii) Q@ is closed and compact,

(iil) f(z, 6) is a continuous function of 6,
for given z, except possibly for a set of values of x of u-measure zero.

When range of values of g(8) is bounded, by a < g(8) < b, we shall consider
the truncated estimate «'(z) corresponding to any u(z), where
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' (z) = u(z) whena < u(z) < 0b
= u(a) when u(z) < o
= u(b) when u(z) > b.

We also consider the following condition for a set of functions.
ConprrioN U, . A setof functions {u;(x)} satisfy the Condition U, , when for
any given e > 0, it is possible to find a bounded region M (¢) in R, so that

(4) /;SR o lus(z) — g(0)|° f(x, 0) du(z) < ¢  for all §and 7.

We then prove the following lemma.

Lemma 1. If {u.(x)} is a set of uniformly bounded functions and the Condition B
holds, then the set {u,(x)} satisfy the Condition U, .

Proor. For any 6, we chose a region M in R, so that fR,,_ ay £, 0) du(z) < €.
Also as f aup f(x, 8) du(x) is a continuous function of 6,

[ #@,0) dut) = [ f5,6) duta)| < ¢
] ]
for 6’ ¢ N(0), a neighbourhood of 6. As [g,f(z, 6') du(z) = 1 we have [z,—u,

f(z, 6') du(z) < 2¢ when 6" ¢ N(9).
As u,(z) and g(6) are bounded,

(5) [un(z) — g(6)|° f(z, 6') du(z) < Supss [u(z) — g(0)]” - 2¢ = e
Ry~Mg
Since Q is compact we can cover it by a finite number of neighbourhoods
N(6,), -+- N(6;) and then

(6) / |ua(z) — g(8)|” f(z, 6) du(z) < e forall 6cQand all n,

where the integral is taken over R, — My U --- U M,, .

We now consider the following modification of the notion of a complete class
of estimates.

DEeriNiTION. An estimate () will be called uniformly strictly better than an
estimate u,(z) if the risk function r,,(68) of u, is less than the risk function r,,(6)
of u, for all 6. A class C of estimates will be called strictly complete if for any
estimate u(z) outside C, there is an estimate v(z) in C, which is uniformly strictly
better than u(z).

The above definition imposes the condition r,,(8) < r4,(8) for all 6, so that
u; is uniformly strictly better than wu, , while in Wald’s definition ([10] page 26)
4y 1s uniformly better than u, if r.,(8) = 7.,(8) for all 8, and the strict inequality
holds for at least one §. This implies that while a complete class in the usual sense
may not contain all minimax estimates, e.g. minimax estimates which are not
admissible, a strictly complete class must contain all minimax estimates.

We may then restate the theorem of Hodges and Lehmann [3], for strictly
increasing loss functions.
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LemMma 2. If g(0) has values in a bounded interval (a, b) and C, the class of esti-
mates which have values in (a, b) except for sets of measure zero, and the loss function
W (u, g(6)) is a strictly increasing function of |u — g(8)| when u > ¢(0) and when
u < g(0), then the class C of estimaies 1s strictly complete and contains all minimaex
estimates.

Proor. The proof is the same as given by Hodges and Lehmann [3], noting
that W(u, g(0)) is strictly increasing so that if w(x) has values outside the
interval (a, b) with positive probability then the truncated estimate u’(z)
satisfies 7, (8) < r,(0) for all 4.

We now have

Lemma 3. If the Condition B holds, then a minimax estimate of g(9) exists and
18 unique.

Proor. The loss function |z — ¢(6)|” is continuous in z and 6 and thus the
space of terminal decisions which is a subset of the bounded interval (a, b) is
compact according to the intrinsic topology

R(21,2) = Sups [|ax — g(0)|° — |22 — g(0)]”].

Thus Wald’s assumptions [10] are satisfied and a minimax estimate u,(z) exists.
From Lemma 2, all minimax estimates are included in the class C' of estimates
lying in the range (a, b) except for sets of measure zero. Let u; and u, be two such
minimax estimates in C, then as |u — g(8)|” is a strictly convex function of u(x)

E{l3(u + w) — g(0)[" |6} < 3[E{lm — g()I”| 6} + Eflua — g(6)["|6}]

unless u; = u2 holds except for a set of measure zero with respect to f(x, 6) du i.e.
unless u; = ua(u).
From Lemma 1, there exists a set M ¢ R, so that

f |u(z) — g(6)|” f(x, 8) du < ¢ for all  and u(x) ¢ C.
Buy—M
Also as f(z, 6) and |u(xz) — g(0)|” are continuous functions of g except for sets of
measure zero of z, [ ulu(z) — g(6)|” du is a continuous function of ¢ and finally
Ef|u(z) — g(0)|”| 8} is a continuous function of 6. Since @ is closed and com-
pact, there exists a 6, for which

Supe B{|3(us + w2) — g(0)|”| 6} = E{|3(wa + us) — g(60)|” | 60}
< #{Eflus — g(60)|” | o] + Ellus — g(60)|" | 60l}
< 3{Sups Ellus — ¢(0)|”| 6] + Sups El|us — g(6)|” | 6]}

unless %; = uz(u). Thus the minimax estimate is unique up to sets of measure
zero.

For any given value of the parameter § = 6,, we consider functions u(x) for
which [|u(z)|?f(z, 6s) du(z) is bounded. The class of such functions form a
Banach space L with the norm,

1/p
(@) )b, = { [ 1) 62,00 dut)}
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We shall show that the Banach space Ls? is separable. As the measure  is sepa-
rable and ¢-finite, for any u-measurable set E of finite u-measure, there is a
p-measurable set F belonging to an enumerable family of sets S C B so that

W(E-ENF)U(F—-ENF), =uE —F) <e
Also since [f(z, 6,) du(z) = 1 and f(z, 6)) = 0

[ 16z, 00) dutz) < ¢

where N = [z:f(z) > M] when M is sufficiently large. Thus in the set

[ 16, 0) dutz) < Mu(cr)
1
when C is a set of the Borel field B. Thus
f f(z, 60) du(z) < Me + € < 2€
E—F

when e is sufficiently small. Hence the measure [¢f(x, 6) du(x) is separable and
thus the Banach space L is separable (see Zaanen [12] p. 75).
Now for the Banach space L{® , we have the inequalities

8) 3w + w)|f, + IF(wa — w)|f, = Flllwlf, + |lwllta]  whenp =2
and
9) 3w+ u2)”00 + (13 — wa) 1§y = {3lllaallfe + [Jwallf}*™ whenl <p <2

where p* 4 ¢ ' = 1. (See Zaanen [12], p. 130).

We thus have
(10) 3w + w) 5, = 3llwallfe + lluellfe] forl <p < .
Thus if |[wlf, < K, ||u2|l < K, ||3(u + w) |8, < K holds,i.e. if us , uz e 5,
then 4(u; + uz) e 5L . Also from (10)

l[ullg, = 27 {llu — g(6)lI5 + llg(60)ll3o}

11
(1) < 2" 4K + |9(6)|} when u e FZ.

As ¢(6) is bounded, u & F& implies that u ¢ L?’, and
(12) P < L.

In the class §& we now introduce a metric p where

Up
(13) p(ur, uz) = Supe l:f lur — wsl? f(z, 0) dp(x)] .

Then p(uz , uz) satisfies the conditions of a metric since
1) p(ur, us) = p(ur, u2) + p(uz, us)
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(i) p(ur, u) = Sups [[lur — wl”f(z, 0) du(z)]'"" < 277 () + d(w)] is
bounded for all u;, up ¢ F&

(iii) p(u1, uz) = O implies u; = u, except for a set Q of u-measure zero, since
f(z, ) > 0 except for the set P of u-measure zero. Identifying all functions u(z)
which differ in sets of u-measure zero, we find that p(u;, u2) = 0 if and only if
U = U .

We shall denote the metric given by the norm of L{¥ as ps, . Then the topology
defined in & by py, is weaker than the topology defined by p. We now introduce
the following definitions.

Definition.

(i) A sequence of estimates {u.(z)} will be called a minimax sequence when

lim ¢(un) = Infusw o(u).

(ii) If the minimax estimate is unique and the risk function of u, converges
uniformly to the risk function of the minimax estimate, then we call {u.(z)} a
uniform minimax sequence.

(iii) An estimation problem in which a unique minimax estimate exists and
there is a class C of estimates, which is a complete class and so that every minimax
sequence of elements of C is a uniform minimax sequence, will be called a regular
C-uniform problem.

We shall prove the following theorem.

TreorEM 1. If the Condition A holds, then any minimaz sequence which satisfies
Condition U, , converges to a limit u. & 5P according to the metric p, where U, is @
minimax estimate.

Before proving the theorem we shall prove the following lemmas.

LemmaA 4. E{|u — g(0)|" | 6} is a continuous function of u according to the metric
pforp > 1, when u ¢ 5L and is uniformly continuous when u e . If a sequence
{Un} where Uy € T comverges to ue according to p, then E{|un — g(8)|”| 6} con-
verges to Ef{|ue — g(0)|" | 6} uniformly for 6.

Proor. For any two elements u; , us in L we have
(14) easlle = llwallol < llr — wallo -

Thus if u, , us e 52, wy — g(0), us — g(6) & L§”
B — g(8)|” | 1" — [E{|uz — 9(6)I” | 611"

< [Bflws — wl”| 817" = p(ur, u).

Thus [E{|u — ¢(6)|”| 6}]"* is a uniformly continuous function of u according
to p. Since the mapping z — z” is continuous for 2 > 0, it follows that
E{ju — g(0)|”] 6} is a continuous function of u. Also as z” is a uniformly con-
tinuous function of z for x < M < o, it follows that Ef|u — g(6)|”| 6} is uni-
formly continuous in %, when u & gL,

The last part of the lemma follows from the fact that the right hand side of the
inequality (15) does not involve . (This proof was suggested by the referee.)

LeMMmA 5. ¢(u) is a uniformly continuous function of u & F& according to the
metric p.

and

(15)
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ProoF. Let s, us ¢ 5 then from
(16) é(us) = Sups Ef|u; — g(6)|" | 6} t=1,2
we can find 6, , 6, so that for all 6,
(17)  Effui — g(0)7 | 6} < ¢(us) < Ef[ui — g(6:)["| 04 + ¢ for ¢ = 1, 2.
From Lemma 4, if p(uy, u2) < 1
(18)  |B{lu — g(0:)[”| 04 — Bl — g(0)["| 03] < ¢  for i =1,2.
Thus from (17) and (18)
Efluz — g(6:)|” | 03} < E{|lus — g(62)|” | 6}
(19) + € < Bfjur — g(61)]"] 04
+ e+ ¢ < Eflus — g(0)[" | 01} + ¢ + 2¢.
From (17) and (19)
|E{uz — g(62)|" | 02} — Ef{fue - g(6)[7 ] 6:}] < e+ 2¢.

Thus
lo(ue) — ¢(us)| < |Effur — g(61)[7] 6 — Eflus — 9(62)|" | 6:}
(20) + 2¢ < |B{lus — g(62)[" | 62} — Eflua — g(60)[" | 64}
+ |B{fus — g(80)[" | 0} — Efluz — g(0)[" | 61}| + 2¢ < 3(e + €
hence the result.

Proor or TaEOREM 1. Let {u,} be a minimax sequence satisfying ConditionU, .
Since {u,} is 2 minimax sequence

(21) lim ¢(us) = Infusw o(u) = @ we may take un & F&

for some K.
When p = 2 we have, considering the elements u, — ¢(6) and up4r — g(6),
from (8)

I3 (un — Uns)f = 3lllwn — g(O)IE + lltinir — g(6) 5]

(22)
— 1% (un + wnsr) — (0|15 .

Since 1 (un + Unir) € FE we have

¢[%(un -+ un-l—r)] = Illfugsf‘(op) ¢(u) = Q
Since ¢(u) = Supy |lu — g(6)|[5, we can also find 6 so that
(23) O3 (Un + Unir)] < ||3(tn + Ungr) — g(O) |5 + %e

ie.,
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(24) I3 (tn + wnir) — g(OIle = @ — 3e.

Also

(25) o — ()18 < @(un),  llttnsr = g(O)E < ¢ (unsr).

If n > ny(e) we have

(26) ¢(Unti) < Q + e for 1=0,1,2,8, .
Thus we have from (24), (25), (26)

(27) [3(un — Unse) B < & P, [[un — Unie[f < 2% = €.

When 1 < p < 2 we have from (9)
gy 10 = 5eiF 5 Gl = 9O+ I = o@D
— [13(tn + Unsr) — g(0) ",

Substituting from above we get

(29) [3(un — wng) ™ < (@ + 3V —(Q — 3"V =
i.e., when e is small.
(30) l[un — sl < €

when n is large.
Thus in any case for some 6

(31) ”un - un-i-r”g’ S e for n > nl(e').

Since {u,} satisfies the Condition U,

(32) j}; o [thnir — g(0)|” f(2, 0) du(z) < € for all 9 and ¢

f Iun+r - unlp f(x, 0) dﬂ(x)
Ry—M (¢
(33)
<27 [l = gOF + lnsr = 9(0)P11(s, 0) duz) < 2
Ry,—M (€)
Now as Condition A holds we can find a constant A y so that for any 6
(34) flz, 8') < Alof(z, 0) when z & M(e).
Thus from (31), (33) and (34)
E{{tntr — ual? | 8} < 2%+ Alyo fM( e = wf? 12,6 du (2)

(35)
S22+ Ay é =€

which holds for all 6, i.e.
(36) 0" (Un y Ungr) S € when n > n(e”).
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Thus the sequence {u,} converges according to the metric p and therefore
converges also according to ps, and from the completeness of the Banach space
L§? there is an element u,, ¢ L”, which is the limit a.e. (1) of a subsequence
{un;} and is the limit of {u.} according to ps, . This limit is determined up to sets
of u-measure zero. From Fatou’s lemma

[ 1o = wn I (2, 0) du() < Tim inf, [ Tt = wa 7§, 0) dua)

< maXyzo pp(un y un+r)

Il

(37) Tim, Sups f |t — un [? f(z, 8) du(z) = 0.

Thus {u,} converges to u, according to the metric p and thus from (10)
(38)  Sups luw — g()[IF < 277 {Sups [lue — uallf + Supe [lun — (0115}
s0 that u., ¢ F& for some K'. Also from

(39)  Sups lun — g(8)]f < 27 {Sups [lues — unll§ + Sups [lue — (0[5}

uy € 5 holds uniformly for N. Thus from Lemma 5, ¢(u) is a uniformly con-
tinuous function of « and

¢(Ue) = lim¢(us) = Infusmr  ¢(u) = Q.

Thus 4, is & minimax estimate and {u,(z)} converges to u. according to the
metric p.

CoroLLARY 1. If the Conditions A and B hold, then a unique minimax estimate
exists and the problem is regular C-uniform, where C is the class of estimates which
lie in the range (a, b) of values of g(6), except for sets of measure zero.

Proor. From Lemma 3, a unique minimax estimate exists as Condition B
holds and this estimate is in the class C, i.e. lies in the interval (a, b). Also from
Lemma 1, any minimax sequence in C is uniformly bounded and thus satisfies
U, . Thus from Theorem 1, any such minimax sequence in C' converges to the
unique minimax estimate according to metric p and the problem is regular
C-uniform.

4. Approximations to minimax estimates. The minimax problem in the func-
tion space & may be an intractable one and we consider here a method of ap-
proximating a minimax estimate in &’ by minimax estimates in finite dimen-
sional vector spaces. As shown before, the Banach space is separable and we
suppose that it has a basis z;, @2, 23 - - - . We consider vector spaces V, of esti-
mates i a:x; . In the vector space V,, we can find an estimate @, = 2 i1 ay s
of g(8) so that

(40) &(,) = Infuw, o(u) + € where ¢, — 0.

As z; ¢ Léf,’) all linear functions Z oL € Léf,’) so that V,, C Léf,’). In the Banach

space Li? with the basis #; , 22 , @5 - - - we can express any element u as the limit
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according to pp, Of a SeqUENCE Un = D imy Gn,is, 6., [U — D imy Gn,ilills, — O.
We consider conditions under which ¢(%,) — Inf,.s2 ¢(u).

TarEoREM 2. If for every element u & 52 the sequence U, = ZLl Qn,iT; CONVErges
to u according to the metric p, for suitable constants {an,:}, then the sequence of
estimates {@,} 1s @ minimax sequence.

PROOF. Since un = i1 Gn,i; converges to u according to the metric p, from
(38) and (39) u, ¢ F& for some K and thus from Lemma 5

(41) Lim ¢(un) = ¢(u).
Thus ¢(an) é InfueV,. ¢(u) + €n é ¢(Um) '+‘ €n ,1e
(42) lim ¢(@,) < ¢(u).

Since this holds for all u ¢ &, we get lim ¢(%,) = Infu.s2 ¢(u).

CoroLLARY 1. If C is a complete class of estimates and for some {@n,}, un =
Sty @n,ss converge to u according to p, for u e FL N C, then {@,} s a minimax
sequence.

Proor. This immediately follows from Theorem 2, as we need consider only
admissible estimates u, which are all in the complete class C and which contains
a minimax estimate so that '

(43) Infus? ¢(u) = Infusnc $(u).

ReMARK. It should be noted that Theorem 2 does not imply that i, converges
to a minimax estimate u ¢ F& according to metric p or even according to metric
po, - Thus {@,} may not be a uniform minimax sequence.

We prove the following lemma

LemMa 6. If the right hand side of Condition A holds and {u,} ts a sequence of
elements of LY, which satisfies the Condition U, and converges according to the
melric ps, , then it also converges according to metric p.

Proor. Since {u,} converges according to py, ,

(44) B{|thnyr — ual® | 00} < € for r > 0.
From the right hand side of Condition A and Condition U, , we get as in (35)

E{[un+r - unlp I 0} <2% + AM(e) [ |un+r - unlpf(x, 00) d[.l,(il:)
(45) zeM (€)
< e+ Ay € = ¢

i.e., Sups B{|[unir — ua|" | 6} < € when n is large, hence the result.

Applying Lemma 6, we get the following

COROLLARY 2. If the right hand side of inequality A and Condition B hold and
the sequence u, = > ot n,it; boundedly converges a.e. (u) and according to the
metric pa, for all u & & N C, where C is the class of estimates for whicha < u(z) < b
except for sets of measure zero, for suitable constants {@.,:}, then {4,} is @ minimax
sequence and the truncated estimates {1y} form a uniform minimax sequence.

Proor. As in Corollary 1, we need consider only the complete class C. Since
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Un = D oey n,i%; converges boundedly to u a.e. (u), u, lies in an interval
(=M, M) a.e. () and thus from Lemma 1, it satisfies the condition U, , as B
holds. From Lemma 6, the sequence {u,} therefore converges to u according to
the metric p, and from Theorem 2, Corollary 1, {#.} is 2 minimax sequence. Again
from Theorem 1, Corollary 1, {@,} is a uniform minimax sequence.

COROLLARY 3. If the right hand side of inequality A and Condition B hold and
if for some {an.s}, the sequence un, = iz @n,s; boundedly converges to u a.e. (1)
and according to metric ps, , when u belongs to a set V of functions dense in P NC
according to the metric p, where C is defined in Corollary 2 above, then {i.} is a
minimax sequence and {1} is a uniform minimax sequence.

Proor. Let u ¢ 2 N C. As V is dense in §& N C according to the metric p,
we can find a sequence {v,} where v, ¢ V, so that p(u, v.) — 0, and thus from (38)
and (39) v, ¢ F2 for all n and some K. Thus from Lemma 5, there is a v,, so that
¢(vm) < ¢(u) + e Asin (42) of Theorem 2 and Corollary 2,

(46) lim ¢(@,) = ¢(vm) < ¢(u) + e
As this holds for all  and arbitrarily small e,
lim ¢ () = Infus? ¢(u).

Thus {#,} is a minimax sequence and as before {i,} is a uniform minimax se-
quence.

REMARK. It is more convenient to deal with the Banach space L¢? than §3
and since $& < L, it is sufficient to verify the conditions stated in Theorem 2
and its corollaries hold when $& is replaced by Li?, for any 6 .

b. Illustrations. We shall now consider two examples for illustration.

Ezample 1. Consider the problem of estimation of the mean of a normal dis-
tribution N(m, 1) where a < m < b from a sample of size n where the loss
function is (u — m)® By taking m’ = m — %(a + b), the problem is equivalent
to estimating the mean of a normal distribution N (m', 1) where m' < 3(b — a)
(see Hodges and Lehmann [3]). We may thus consider without loss of generality
a = —b, and z measured in units of n

In this case & = z is a sufficient statistic so that the class of functions of Zis a
complete class. (See Lehmann and Scheffé [6]). The problem of estimation of m
is also invariant with respect to the transformations m — —m, z — —=z so that
we need consider invariant estimates only, since if there is a minimax estimate
there is always an invariant minimax estimate. (Kiefer [5]). We thus consider
the class of odd functions u(—2z) = —u(z), whose squares are integrable with
respect to exp { — (z — m)?/2}. Such a class of function formsa separable Hilbert
space which we denote by H,, . Obviously when m > 0, H, C H, .

We shall now show that the functions z, 2°, 2°, - - - form a basis of the Hilbert
space H, , and also of H,, . Suppose g(z) ¢ Ho and

(47) f () dze = 0 r=20,1,273---
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then
[ €lo) = o= ag = 0
as ¢g(2) is an odd function,
fo " gg(s)e dg = 0.

Again €% = > [(—6)"/sl]&" is a uniformly convergent series for 0 < 6 <
A < . Thus we have

* r —0f 1 —3t _ (_6)8 © r+s 3\ 3¢ =
8) fo getg(e)e ™ de = T fos (e dg = 0
foralldgin0 £ 6 < A.

From the uniqueness of Laplace transformation it follows that g(&*) = 0 a.e.
(Lehmann and Scheffé [7]). Also 2" & H,, for all r, thus 2, 2°, 2°, also form a

basis of H,, .
Hence for every element u(z) ¢ Hy , we can find a polynomial Y g aar22” T,
so that

(49) [[#0) = & e e e <
0 =0
Putting z = —=z

© n 2
-1 2
f [u(z) — > Qa1 22'“] ¢ dp < ¢,
0 —0

ie.

r=1 r=0

© n 2 © 727 2
[ [u(z) — 2 Gah z2'+1:| (E 1(727?) l> e dp < e
] 2r 2r'

© n 2
_ 2r-+1 m-z —322 | b2
(50) _/_-w [u(z) Z:oazrﬂz ] (r=0 (27)!) e de < e-e

© n 2
2 —3(—m)? 2
[ [“(Z) - Za2r+1zr+l] M Ay < ed® = ¢
] r=0

when |m| < b.

Let now @i(z), @2(2), @s(2), - - - be a system of orthonormal elements of H; ob-
tained from the basis 2, 2°, 2° - -+ by orthogonalisation. We then have for any
element u(z) € Hy , u(z) ~ 2 CQi(2), so that u, = D iy C:Qi(2) converges
to u(z2) according to the metric p; . It follows from (50) that u.(z) converges
to u(z) according to the metric p. Thus from Theorem 2 the estimates {1,} in the
vector spaces V, satisfy

(51) lim ¢(%,) = Inf,s ¢(u).
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Since Conditions A and B hold in this case, from Corollary 1, Theorem 1, the
truncated estimates {4,} form a uniform minimax sequence.

Evaluation of a,,; . The constants {ae11,;} in the minimax estimate of m in the
vector space Vo of estimates {api1,8 + -+ + a1 2@ Y}, when
—b < m < b, may be evaluated for any k as a maximisation problem in 2%
variables.

When k = 0, the risk function for the estimate «;,:Z and for the a priori dis-
tribution @ over m*(0 < m® < b*) is

b2

r(on, G) = f E[(aug — m)* | m] dG(m®)

0

b2
f [031 <,'1—?: + m2) —2anm + m{l dG(mz)
0

2

= Ml(au - 1)2 -+ au
n

Il

(52)

where y, = ﬂ;z m* dG(m?).

For given @, r(ay , G) is minimised for ey = w1/ (u1 + n ') and this is maxi-
mised for G, when @ is a one point distribution at m* = b°. Thus the minimax
estimate of m in V, is b’&/(b° + n™") = &(1 + 1/nb") 7.

When k = 1,

b2

(53) r(as, o, G) = fo Ef(an &+ an @ — m)’ | m} dG(m®)

=Cy as + Cys o33 + 2015 as ass — 2amps — 2a3(pe + 3u/n) + m
where
Cu = m + 1/n, Cis = pz + 6u/n + 3/n°
Css = ps + 15ps/n + 45u/n° + 15/7°.

The values of as and a3; which minimise 7(as , s , G) for given G are solutions
of equations

I

Cuéds + Ciséizs — = 0
Cusds + Cusdgs — (p2 + 3ua/n) = 0
and the minimum value of the risk is
p= dn p1 — ds(pz + 3w/n)

(54) o — s [Cu(us + 3w/n) — Cy pl*
Cu CulCu O3 — (] '

We have to maximise the above risk for distributions G over (0, b*). Since s
occurs only in Cs;, and Cyy > 0 and CyCss — C% > 0 holds, the maximum of
the above risk for given u; and y. is obtained by putting the maximum possible
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value of s for given w; and p, . As shown in [2] the maximum of w3 for given
w1 and pe is obtained for a two point distribution G in which one of the points is
b, and has the value b° — (b* — pg)?*/(b* — 1) + b’y — bs .

‘We may now maximise the above for u; and u, satisfying the moment conditions
0 S m SV i £ e £ wbor maximising for parameters A and p, where
P\ 4+ (1 — p)b™(0 =X = b°,0 £ p £ 1). Similarly for any %, the prob-

[

Hi
lem of determination of aspia,1 * -+ ctor41,9641 reduces to the problem of maximisa-
tion of a function of p; - powt1, for parameters Ny «-- Ay, p1 -+ pr where

pi= 2 apihi+ (1 — 2 p)b", (0= N 20,0 p; <1, 2 p; < 1).

The determination of the coefficients {as1,;} involves a large volume of com-
putations and would be feasible for small values of & only. The method suggested
here would therefore be useful as a perturbation method when a conventional
estimate (£ in this case) is given and a few additional terms &, Z°, etc. are needed
to get a good enough approximation to the minimax estimate.

Example 2. Consider a set of distributions {f(x, )} where the range of z is
(0, 27) for all 6 with probability one. We assume that the right hand side of
Condition A and Condition B are satisfied. As a concrete instance, we may con-
sider the problem of estimating 6, when the distribution f(z, ) is

IIA

27
(55) f(z,0) = ¢ ™2™ / f e 2" dc where0 <0< L, 0=z = 2r,
0

i.e., we have a truncated I'-distribution with the parameter 6 lying in a bounded
range. The Conditions A and B are satisfied, when we consider the estimation of a
continuous function ¢(#), where a < ¢g(8) < b, with the loss function
[u(xz) — g(0)]%. As g(6) lies in the range (@, b), we have a strictly complete class C
of estimates u(z) for which @ < u(x) =< b. Now as u(z) is bounded it belongs to
L®(0, 2r). The functions {sin nz, cosnz}(n = 0, 1, 2, ---) form a C.O.N.
system in L® (0, 2r) and we have the property that the Fourier Series of an
absolutely continuous function is boundedly convergent. (Titchmarsh [9] p 408).
Also for any u(x) ¢ C, we can find an absolutely continuous funetion u;(x) so
that u;(z) ¢ C and |u(zx) — ui(z)| < e except for a set B with Lebesgue measure
less than &', (arbitrarily small), thus

(56) f [u(z) — w(@) ] f(z, 6) do < & + 4(a® + b%) & = ¢.

Since the Condition B holds, the class C also satisfies the Condition U, from
Lemma 1, and since the right hand side of Condition A holds, we get as in the
proof of Lemma 6

(57) Supe / [u(z) — w(x)] f(z, 6) de < ¢

which can be made arbitrarily small. Hence the class of absolutely continuous
functions is dense in the class C, with respect to the metric p. The conditions of
Corollary 3, Theorem 2 are satisfied and an approximate minimax estimate can
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be found by considering minimax estimates in Vo, , where Va,q is the vector
space of functions > 1 (@, cos 7z + b, sin rz).

6. Appendix.

Ezample. Consider the estimation problem, when we have normal distribu-
tions with mean m and variance f(m), where f(m) = 2 when m is not an integer

(58) =(1+km)'<1 when m is an integer.
The problem is to estimate g(m), where

g(m) =m when m is not an integer

=m—1 when m is an integer.

The estimate z of g(m) has the risk E{(z — m)*|m} = 2, when m is not an
integer and f(m) 4+ 1 < 2, when m is an integer. According to a result of Karlin
[4], for a set of normal distributions with mean m and variance unity, the esti-
mate z is admissible and minimax and in fact unique minimax. Karlin’s proof
also holds if we omit integral values of m from its range so that x remains an
admissible minimax estimate when m does not assume integral values. Since
g(m) differs from m only for integral values of m, and the corresponding risk
function of the estimate x for integral values of m is less than 2; it follows that z
is the unique admissible minimax estimate of g(m) in this problem. We shall now
show that by modifying the estimate z in the neighbourhood of an integer we
can get an estimate whose maximum risk is less than 2 4 ¢, but whose risk for
some integral values of m is less than .01 4 e.
Consider the estimate u,(x) where

U(z) =2z — 1 when n — 6, <z <n-+d,
(60)

=z otherwise’

where n is an integer and §, = 3[f(n)]%.
Then the risk of u.(z) at m = n, r,,(m) is given by

ruali = 1) = sy [ i) = (0= DF expl— (2 — /2 (n)] @
_ ) [ e _
o0 =t L e e [ e

expl— (z — n)¥/2f(n)] dz < f(n) + 2[f(n)]} + .01 < .01 + ¢

when n is large.

When m is not an integer
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1 (=2
ru,(m) = = (x—1—m)%e "™ gy
T Jz—n|<b,
+ 1 (x — m)% @™ dy
(62) T Jjo—n| 28,
1 ()2 2 (g
=24 = e Ty — 2 (x — m)e ™" dy
T J | 2—n <y T2 J | z—n| <oy

< 2 4+ ¢ when n is large since §, — 0.

Also for large n, the distribution of z is concentrated at x = n and thus the risk
of u, at a point m = n + r differs from the risk of the estimate z at m = n + r
by a small quantity.

Thus the sequence of estimates {u,(x)} of g(m) hasa maximum risk tending to 2
as n tends to infinity and the risk of w,(x) at m = n an integer is less than
01 4 ¢, when n is large.

The author believes that this phenomenon is not uncommon and a simpler and
less pathological example may be given but mathematical difficulties stand in the
way.

Acknowledgment. The author is indebted to the referee for helpful criticisms
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