SOME RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE
NORMAL AND PARETO TYPE 1 POPULATIONS

By K. V. MaRDIA
University of Rajasthan, Jaipur
0. Preliminaries. Let X; and R; be the minimum observation and the range
of the 7th variate, ¢ = 1, ---, k, in a random sample of size n from a k-variate
continuous population having the probability density function (p.d.f.)

f(x1, -+, 21). We require the following results which can be easily derived:
1°. The probability function (p.f.) for variables to exceed X;, ---, X;, is
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f h(ul,--~,uk)du1~--duk={f--- f(xl,”‘,xk)dxl"'dxk},
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where h(X;, -, X;) is the p.df. of (X, ---, Xi).
2°. The p.d.f. of (R1, ---, Ry), forn = 2, is
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where a; , b; take the values R; or O such that a; + b; = R;,2 =1, ..., k, and
> denotes the summation over all such possible combinations of a;, b;, 7 =
1, ...,k

3°. The p.d.f. of (Ry, ---, Ri), forn = 3, is

By B [t too (3
f f Z[[ [ {Hf(x1+au,"-,xk+akf)}
o () 00 00 7=1
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where a;;,j = 1, 2, 3, take the values R; or S; or 0 such that a;; + @i + as =
R;+ 8:,i=1,---,k and Y denotes the summation over all such possible
combinations of a;;,7 = 1, --. , k;7 = 1,2, 3.

1. Introduction and summary. The p.d.f. of the minimum observation X; in a
random sample of size n from a univariate Pareto population with the p.d.f.

f(xl 5 @y P) = Pap/xfﬂ, > a > 0,
= 0, nn=ap>0,

is again f(X;; a, np). It has been shown here that the distribution of
(X1, -+, X&) from a k-variate Pareto type 1 population (Mardia [7]) with the
p.d.f.
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(11) film, -,z ip) = (p+Fk— 1)('0)/(;:1%){(;: a?:q) _ha 1}p+k

2, >a;>0,1=1 -,k p>0,

is again Pareto type 1 with the p.d.f. fi(Xy, ---, Xi ; np) This remarkable
property of preserving the form of multivariate population in the joint distri-
bution of statistics is well known for the distribution of sample means from a
multivariate normal population.

The distributions of ranges for the random samples of size 2 and 3, drawn
from univariate normal population has been derived by Mackay [4] and Mackay
and Pearson [5]. These have been given here for the random samples drawn
from the multivariate normal and Pareto type 1 populations.

2. Distribution of mlmmums from Pareto type 1 population. Suppose
(21, ---, ) has the pdf given by (1.1). We have

-p
(2.1) f f f1(21,,~'"‘,zk;p)dzl <o dzy ={<Zla:1xc>—k+ 1}
£ R . =

On using (2.1) in the reg;flt 1°, we get the p.f. for variables to exceed X1, - -, X,
as :

) 0, . ) k —np
(22) f f Bo(ug, -, ug) duy -+ - dug, = Za:‘X,->—k+1} ,
- ~ ) .

=1

where hy(Xy, ---, X;) is the p.d.f. of (X;, -+, X}) in this case. On comparing
the right hand sides of (2.1) and (2.2), we find that

o 0
f o hl(ul’...’uk)dul...duk
X; X o °
=f ...f fl(zl,...’zk;np)dzl...dzk
X, Xk

So that the p.f. for variables to exceed Xy, - --, X}, is again Pareto type 1 with
the index parameter np instead of p and thus we have

TueoreM 2.1. If the parent population is Pareto type 1 with the p.d.f.
f1($1, ceey Xp ,p) then the p.d.f. Of (X1, teey, Xk) z'sfl(Xl, sy, X ;'np).

3. Distribution of ranges from the normal population. Let ¢(21, - -+, i) be
the p.d.f. of a multivariate normal population with the mean vector p =

(2.3)

(w1, -+, m) and covariance matrix = = (oy;). We can prove
LeMMma 3.1.
-+00 +o0 [ m
L f {Hd’(fh"‘alj,“’,xk‘l'akj)}dxl"'dxk
3.1) -V

— (@) "lzr'"‘”r*[ {——Z (&= 07 - o},

’ . —1
where a; = (a1, -+ -, akf),J =1, . D18,
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THEOREM 3.1. The p.d.f. of the ranges Ry, ---, R, for n = 2, in the case of
multivariate normal population, is the p.d.f. derived on transforming Uy, ---,Uito
Ry, - -, Ri, by the transformation R, = |Uy], - - = |Ux|, where Uy, ---, U,
are N (0 22) and O stands for the column vector of k 2eros.

Proor. On using Lemma 3.1, for m = 2, in the result 2°, we get the p.d.f. of
Rl 5 Rk , &8

k ..
(3.2) {(41r)'°]EI}_* > *exp {—i Z c.-c,-R.-Rja"} ,

%)
where =7 = (¢*), ¢, takes values +1 or —1, and >"* denotes the summation
over all possible combinations of ¢;, 2 = 1, k.

On utilizing Lemma 3.1 for m = 3, in the result 3°, we obtain .
TaEOREM 3.2. If the parent population is N (u, 2), the pdf of the ranges
Ri, ---, R, forn = 3, n the notation of the result 3°, is

(3% (2m)" (=)} [o L fo“

(33) , L '
Y <{ex - -2-231 (a; — a)'=(a; — i)} dSy -+ dSs,
=
where a; = (ayj, -+, ai);5 = 1,2, 338 = }(ar + a1 + a). :
If we put k = 1 in the above theorems, we obtain the results dlscovered by
Mackay [4] and Mackay and Pearson [5].

4. Distribution of ranges from Pareto type 1 population.
Lemma 4.1, If V(z) is an algebraic function of x then

f“ frv{(il a.ix,.) —k+ 1}01351 . dm
- [IiI “"/ (k= 1”] flw (z — 1)"V(2) da.

Proor. On using the transformations u; = a;#; — 1,4 = 1, --- , k, in the
integral in the left hand side of (4.1), the integral becomes

(;la,) /: /: V{(i:lu,)-{— l}du, oo duy. V

Now, the application of Liouville’s integral (see, Edward [2], 160-161), gives
the desired result.

We obtain the following theorem on utilizing the above lemma in the results
2" and 3°.

TaeoreM 4.1. If the parent population is Pareto type 1 with the p.d.f.
fi(wr, -+ -, 2 ; p) then the p.d.f. of the ranges Ry, -- - , By, for n = 2, 1s

(4.1)
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{®@ 4k — 1)} e [
- (de) >k

=1

(4.2) | —— |
[{“ + g (diRi/ai)} {u + i (1— d’i)Ri/ai}:Iﬂ-Hc

where d; takes values 0 or 1, and Y. ** denotes the summation taken over all possible
combinations of d;, ¢ = 1, .-, k; and thep.df. of (Ry, -+, Ry) forn = 3, in the
notation of the result 3°, is

{@+k—Dm} e
- 1)! (H az> f f“
(4.3) =t

3

I I:u + g (a: aij)

1~ _lk—l
/f (u ) du }ﬁk s, -+ dS,.
1

=1

When k¥ = 2 and p is an integer, the integral appearing in (4.1) can be evalu-
ated by the partial fraction method. Partial fractions of such integrands are
dealt with in Mardia [6].
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