ON RANDOM SAMPLING FROM A STOCHASTIC PROCESS!

By J. R. BLum AND JupAH ROSENBLATT
University of New Mexico and Sandia Corporation

1. The problem. Let {X,,n = 1, 2, --- } be a stochastic process which is
stationary and ergodic. Then it follows from the individual ergodic theorem
that we may estimate the entire probability structure of the process by an ob-
servation {2, 2z, - - - } on the process.

Assume from now on that the random variables of the process are two-valued,
ie. PIX, =0l =1—p=1— P{X, =1}, where 0 < p < 1. This is an
unessential restriction which serves to simplify the ideas involved.

Now suppose that there are physical reasons which prohibit us from observing
each of the successive random variables X, . If we are then forced to observe a
subsequence {X,, n = 1, 2, --- }, we may ask whether it is still possible to
estimate the probability structure of the original process from observing { X, ,
Xks 5 -+ }. In general the answer to this question is in the negative. For example,
if k is an integer, k¥ > 1, and k, = kn forn.= 1, 2, - - - ; then while the process
{ Xk, is still stationary and may also be still ergodic, it may be impossible to
estimate the joint distribution of X; and X, . Moreover in general the process
{X&,} may not be ergodic, or even stationary.

In this paper we shall consider what can be done with random sampling, that
is when we assume that {k,} is a sequence of random variables. To formalize
this notion we shall assume that in addition to the {X,} process we have at our
disposal a sequence of random variables {Y,, n = 1, 2, ---} where the {¥,}
process is independent of the { X} process and consists of positive integer-valued
random variables. We shall assume throughout that the {¥,} process is a sta-
tionary, ergodic process. In terms of the bivariate {X,, Y,} process we can de-
fine a new bivariate process {Y, , Z,} where the {¥,} process is as above and
Zn = Xney, where N(n) = > 7 ¥Y;, n=1,2, ---, and we assume that it
is the {Y, , Z,} process which is being observed. As we shall see below, it is easy
to prove that the {Y,, Z,} process is stationary. Under certain assumptions it
will be shown that this process is also ergodic. Assume for the moment that this
has already been done. Define

f(y,21,2) =0, ifys1
= 2122, ify = 1.
Then
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Ef[Y2 3 Z]_, Zz] = P{Yz = 1}E{Z1Z2| Y2 = 1}

=P{Y,=1}> P{Yy=4|Ys = BE{XXin|Y1i=14,Y, = 1}

i=1
= P{Yz = I}P{Xl = 1, X2 = 1}.
Now let
e =1, ifYV;=1

0, otherwise,

Il

and define W, by
Wa = ,;1 MWYin, Z;, Z,-+1]/]; € -

Then it follows from the individual ergodic theorem that W, converges with
probability one to P{X; = 1, X, = 1}, provided P{Y; = 1} > 0.

Clearly we may use the same technique to estimate all joint probabilities of
the {X,} process. Thus our problem is to give conditions which imply the er-
godicity of the {Y,, Z,} process. In Section 3 we shall assume that the {¥,}
process consists of independent random variables. In Section 4 we assume a
weaker hypothesis on the {¥,} process but a correspondingly stronger one on
the {X,} process.

2. Stationarity of the {Y,, Z.} process. For ¢ = 1, 2 let @; be a set, §: a
o-algebra of subsets of Q;, and P; a probability measure defined on ;. Further
let (2, §, P) be the cross product probability space of (21, &1, P1) and (2, J2,
Pz),i.e.9= Q]_ Xﬂz,%= %1 X %2,andP= P1XP2.

Now suppose there is a point transformation S mapping Q, into itself which
is measurable and measure preserving, i.e. if A,e . then S(A:) £ F. and
Py[S(A4:)] = PiAs). Suppose also that for each w, & 3y, there is a measurable
and measure preserving point transformation S., mapping €, into itself. Let T' be
be the point transformation defined on @ by T'(w:, we) = (Su,(w1), S(ws)), and
assume 7' is measureable, i.e. if A ¢ § then T'A ¢ §. Suppose further that

[S(wz) = S(wz)]= Su; = Su; ae. Py

for almost all wy[Py].

LemMA. T is measure preserving, i.e. P(TA) = P(A) for A ¢ §.

Proor. Since § is generated by sets of the form A = 4; X A, with 4, & §: it
is sufficient to prove the lemma for such sets. But, using Fubini’s Theorem,

PTG X 4] = [[[ dPu(e) dPian)

dP1(w1) dP3(w2)

‘/.‘/;(“’l:"’z) 101=8 g (@1*),0a=8(w2*) 0 *e A ]
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= f [f dPl(wl):I dPs(ws)
8(4g) {w1:01=84,s(w1*) forall wa* with w=8(w3*),wi*c4;}
N fS(A ) [P1{Su;(41)}] dP2(ws2) where S(ws) = w,
2
= /;(A ) Py(A;) dP3y(ws) = P1(A1)P2(SA4:) = Pi(A1)Py(4,). u
2

3. Independent {Y,} process. Let (2, §:, P:), 2 = 1, 2, be as above, but
suppose (Q; , §z , P2) has the following structure. There exists a probability space
(M, @, m) and (M, Gn, ma), n = 0, =1, 2, - - - are copies of (M, @, m).
Let

X Mn, %2= X @n, &nd P2= X My .

n=—c0 n=—co n=—co

Qe

Ifwe,w= (-, %, Y, %, ) with y;e M, for all 7, we let S(w) =
(“* s %, Y1, Y2, ), e Sis the shift operator defined on Q, . In that case S
is one-one onto, bimeasurable, measure preserving, and ergodic. Now suppose
for each w; & Q; there exists a point mapping S,, of @ into itself which is bi-
measurable and measure preserving. Just as above we define a mapping 7 of Q
into itself by T(wi, we) =8u,(w1), S(we). Assuming that T is measurable it
then follows from the lemma that 7' is measure preserving. Following Kakutani
[1], we shall say that a set A& §: is invariant with respect to the family
{Su, , wo e} if Pi(A1A40,41) = O for almost all w, £ R, where AAB is the
symmetric difference of 4 and B, and we shall say that the family {S., , v £ %}
is ergodic if every A; e 1 which is invariant with respect to the family {S.,,
wy € 2} has probability zero or one. The following theorem is proved in [1].

TaEorEM 1. (Kakutani). Suppose for we = (-, Y1, Yo, Y1, **+ ), Su, de-
pends only on yo . If the family {S., : w2 € R} 18 ergodic then the transformation T
18 ergodic. :

Now let us return to our {X,} process discussed in the introduction. We may
and shall assume that the process is embedded in a process {X,} with # running
through all integers. Let {Y,, n = 0, 1, &2, - - - } be a sequence of positive
integer valued random variables such that the {Y¥,} process is independent of
the {X,} process. Let S; be the shift operator defined on the {X,} process and
let Sx = S} for every integer k. Further let S be the shift operator defined on
the {Y,} process. Now assume that the {Y¥,} process consists of independent,
identically distributed random wvariables, and let (2, &1, P1) be the prob.
ability space generated by the {X,} process and (Q,, ., P;) the probability
space generated by the {Y,} process. Then each (w;, w) € 2 consists of two in-
finite sequences, w; = (---, Ty, o, X1, " ")y we = (*** , Y1, Yo, Y1, ***)-
Now define T (w1, w2) = (8Sy,(w1), S(wz)). Since Y, is a discrete random variable
it follows that T is measurable and hence we may apply Theorem 1. But note
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that when we apply the transformation 7' to the {X,., Y.} process we get pre-
cisely the {Y, , Z,} process of Section 1. Thus we have

TuarEOREM 2. If (a) the {X,} process is stationary and ergodic, and (b) the {Y .}
process 1s independent of the {X,} process and consists of independent, identically
dustributed random variables which are positive and integer valued, and (¢) P{Y, =
1} > 0, then the {Y, , Z,} process is ergodic and we can estimate consistently all
joint probabilities of the {X,} process by means of observation of the {Y, , Z,}
process.

4. Dependent {Y,} process. In this section we take the probability spaces
(2, §:, P:) as in the previous section, except that instead of assuming that
P, is a product measure and S the shift operator, we merely assume that S is
measure preserving and ergodic with respect to P, . As before suppose for each
w2 € Oy we have a measure preserving transformation S,, of @ into itself. We
assume here also that

[S(ws) = S(wz)]=> Su; = Suy a.e. Py

for almost all ws[Ps]. We shall say that the family {Sa,, w: €@} is uniformly
strongly mixing if for each A;, By ¢ §: and each ¢ > 0 there exists a positive
integer ng such that for n = ny we have

[PilA1 N Ssn=1up)Ssn=2(ap) = * * SswpSu,Bil — P1(A1)P1(By)| < e

uniformly in an we-set of probability one.
Defining T’ as before we have
THEOREM 3. If the family {Su, , w2 € Do} is uniformly strongly mizing then T s
ergodic.
Proor. It will be sufficient to show that
n—1
limy.e n 'Y, P{A N T*B} = P(A4)P(B)
k=0
for sets of the form A = A; X Ay, B = By X By with 4;, B; ¢, .
For such sets we find, after some computation, that

P{4; X Ay N T*(By X By)}

- f PufAs N Ssi-1op Ssi-2ayy - - - Suy Br} dPylwn).
AgNSkB,

Hence
n—1 ‘

limp,en Y, P{A; X Ay N T*(B; X By)}
k=0

n—1
= limn,e n_Ik; PI(AI)PI(BI)P2(A2 n Ssz) = Pl(Al)Pl(Bl)Pz(Az)P2(Bz)

since S is ergodic.
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If we apply this result to the problem at hand we obtain

THEOREM 4. If () the { X,} process is stationary and mizing, and (b) the {¥,}
process s independent of the {X.} process and s a stationary, ergodic process with
positive integer valued random variables, and (¢) P{Y, =1,---, ¥V, =1} > 0
for every positive integer m, then the {Y , , Za} process is ergodic and we may estimate
conststently all joint probabilities of the {X.} process from observation of the {Y, ,
Zn} process.

In this paper we have considered only discrete parameter processes. However
the case of a continuous parameter process X (¢) is likely to be of considerably
greater interest, since in practice such processes are always observed via dis-
crete sampling schemes. We believe that the methods of this paper will apply
to such processes and hope to consider them in the near future.
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