SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL
DISTRIBUTION FUNCTIONS!

By Mixkiés Cs6rad
Princeton University

1. Summary. Let F,(z) denote the empirical distribution function of a
random sample of size n drawn from a population having continuous distribution
function F(x). In Section 3 the limiting distribution of the supremum of the
random variables {F,(z) — F(z)}/Fa(2), |Fa(z) — F(2)|/Fa(z), {Fa(z) —
F(z)}/(1 = F(2)), |Fu(z) — F(2)|/(1 = F(2)), {Fa(z) — F(x)}/(1 — Fu(2)),
|Fo(z) — F(2)|/(1 — Fa(x)) is derived where sup is taken over suitable ranges
of z respectively. Relevant tests and some combmatlons of them are also dis-
cussed briefly in Section 3.

2. Introduction. Let &, &, -+, £, be mutually independent random vari-
ables w1th the same continuous distribution function F(z) and let
5% < 5" - < & be their order statistics. Let us define the empirical dis-
tribution functlon

Fo(z) =0 if z<g*
(2.1) = k/n it %<z <&y
=1 if £* <2

In his paper [5] A. Rényi proves the following theorems:
THEOREM 1.

lim,se P{n% SUPa<r@ {Fn(z) — F(2)}/F(z) < y}
= (2/m) 1 exp (—2/2) di,

(2.2)
ify > 0,0 < a < 1 and zero otherwise,
= d(yf{a/[1 — al}}).
THEOREM 2.
liMpaw P{n} SUPasre |Fu(z) — F(z)|/F(z) < y}
- =4/ i=0 {(—1)*/(2k + 1)} exp {—(2k + 1)%x*(1 — a)/8ay?},

ify > 0,0 < a < 1, zero otherwise,
= L(yla/[1 — al}’).
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THEOREM 3.
(24) limp.o P{n} sUPagrmy < {Fu(z) — F(2)}/F(z) < y} = N(y; a, b),

where —© <y < +o,0<a<b<1.
For the form of N( ), we refer the reader to (3.6) of [5].
THEOREM 4.

(2.5) it P{n! SUPasrenr v [Fu(e) — F(2)|/F(2) < y} = R(y;ab)

ify > 0,0 <a <b <1, zero otherwise.
For the form of R(-), we refer the reader to (3.7) of [5].

3. Some combinations of Rényi’s theorems to provide symmetrical and con-
sistent tests.

THEOREM 5. 1/F(x) of Theorems 1, 2, 3 and 4 of Section 2 can be replaced by
1/F.(x) and the same limit statements hold when sup is taken over all x’s such that
a < Fo(zx) ora < F,(x) < b respectively in the appropriate theorems.

Proor. That when sup is taken over all 2’s such that ¢ < F,(z) ora £ F,(z)
< binstead of ¢ < F(z) ora = F(z) = b respectively in the appropriate theo-
rems then the same limit statements hold is a part of the proofs of Rényi’s
original theorems.

To prove the validity of the replacement of 1/F(z) by 1/F,(z) we could use
Rényi’s method of proof of his original theorems (this was done in [3]) or we can
use the following extension of a theorem of Cramér suggested by the referee.
First we state a simplified form of Cramér’s theorem [2]: If an arbitrary sequence
of random variables {X,} converges in distribution (in law) to X as n —
written as X, — X, and if another sequence of random variables { Y.} converges
in probability (in measure) to 1 as n — o, written Y, —, 1, then Z, =
XY, —1 X asn— . This theorem extends to the following situation: if X,(z)
—, X uniformly in z and Y,(z) —, 1 uniformly in z then Z,(z) = X,(2)Y.(x)
—; X uniformly in z. In our case we put X,(z) = n%{Fn(x) — F(x)}/F(z),
Yo(z) = F(z)/F.(x) say in Theorem 1 of Section 2. Then we know that
P(X.(z) £ y) — ¥y(a/(1 — a))¥] of Theorem 1 uniformly in z over all
2’s such that F,.(z) = ¢,0 < a < 1,asn — « by Theorem 1 and V,(z) —, 1
uniformly in z over all ’s such that F,(z) = a,0 < a < 1, as n — « by the
Glivenko-Cantelli theorem. Therefore P(X,(z)Y.(z) < y) — ®y(a/(1 — a))}]
uniformly in & as n — . Similar statements hold for Theorems 2, 3 and 4 of
Section 2 and thus Theorem 5 is verified.

In his paper Rényi noted the possibility of replacing F(z) by 1 — F(z) in
the denominator of his random variables and also showed how a substitution of
—z for x gave the required result. This works for the two cases where absolute
values of the differences are considered. In the other two cases a repetition of
Rényi’s proofs, mutatis mutandis, produces the required results. In particular, we
have:
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COROLLARY 10 THEOREM 1.
g1y e P{n sups < {Fa(z) — F(2)}/{1 — F(2)} < v}
' = a(y{[1 — bI/b})

where ®( - ) 1s as it was defined in Theorem 1, and 0 < b < 1.
CoROLLARY TO THEOREM 2.

1ix_nMP{n* SUPr <5 [Fu(z) — F(2)|/{1 — F(2)} < y}
= L(y{[1 — b]/b}})

where L(-) 1s as it was defined in Theorem 2, and 0 < b < 1.

If in these two corollaries we put b = 1 — a, 0 < a < 1, then their results
coincide with those of Theorems 1 and 2 respectively.

COROLLARY TO THEOREM 3.

iMoo P} sUPazren o {Fa(z) — F(2)}/{1 — F(z)} < 9}

= o [US exp (—u?/2) [[1¥ exp (—£/2) df] du,

where h(y, ) = [{(1 — a)/a}' — u]-[(1 — B)(1 — a)/(b — a)],
= N'(y;a,b), o <y+ ©,0<a<b<l.

(3.2)

(3.3)

COROLLARY TO THEOREM 4.
(34) limesw P(n} supssro <o [Fale) — F(@)|/{1 — F(2)} <y} = R'(y;a,b)

where R'(-) is obtained from R(-) of Theorem 4 by inserting b = 1 — a and
a=1-—50.

We note here that N'(-) of (3.3) cannot be gained from N(-) of Theorem 3
this way.

A statement analogous to Theorem 5 is obvious here in connection with (3.1),
(3.2), (3.3) and (3.4).

On the basis of these theorems symmetrical statistical tests can be constructed
as follows. Let 4,” and B,’ be the events of Theorem 2 and its corollary respec-
tively. Rényi showed in [5] that

lim,.w P(A,° 0 B.)”) = Lyla/[1 — a]}?)
+ L(y{[l — b/b}Y) — i (—1)F exp (—2k%7).

Similar statements can be made using the other theorems. Using similar notation
in connection with Theorem 4 and its corollary we get for example

limy.o P(4." 0 B,') = R(y; a, b) + R'(y; a, b) — ex(y; a, b)
where ¢(y;a, b) = lim,.. P{n’ SUPa<r@ <b |Fn(z) — F(z)| < y} and its form
was derived by Manija and is given in [4].

Symmetrical tests giving more weight to deviations in the middle can be
constructed on the basis of the following theorems.
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Let
55) M, = max {n' supreq (Falz) — F(z))/(1 — F(z)),

) n* SUPj<r@ (Fn(z) — F(x))/F(x)}
and
(3.6) D, = max {n’ SUP r(z)<3 |F,.(:v) - F(x)l/(l — F(z)),

n} Supscre [Fu(z) — F(2)|/F(x)).

Then, using Theorem 1 and its corollary (3.1), we have

THEOREM 6.
(3.7) lim,,, P{M, < y} = &(y), y > 0, zero otherwise.
And, using Theorem 2 and its corollary (3.2), we have

THEOREM 7.
(3.8) lim,,., P{D, < y} = L*(y), y > 0, zero otherwise.

Proor or THEOREM 6. (3.7) follows immediately from Theorem 1 and its
corollary (3.1) if we can show that random variables in { } of (3.5) are asymp-
totically independent. Using the Glivenko-Cantelli theorem it can be easily shown
that in the limit M, of (3.7) can be replaced by
max {n' supr,e<t (Fa(z) — F(2))/(1 — F(a)),

! Supy<cr,@ (Fa(z) — F(2))/F(2)}

and the same limit theorem holds. From an adaptation of Rényi’s proof of
Theorem 1 to prove (3.1) directly, it follows that the asymptotic behavior of
the first random variable of (3.9) is the same as that of

(3.10) n} maxi <i<in Zk (1 = &)/ (n+1—k)

and from Rényi’s proof of Theorem 1 in [5] we conclude that the asymptotic
behavior of the second random variable of (3.9) is the same as that of

(3.11) n} maXyucrgn Dot [(Fniie — 1)/K]

where 6., k = 1, ---, n of (3.10) are mutually independent, exponentially
distributed random variables with mean value 1 and are defined as

(3.12) & = (n — &k 4+ Dilog [(1/(1 — 2*) — (1/(1 — ni)]},

(3.9)

and 5'n+1_k ,k=1,---,n,of (3.11) are also mutually independent, exponentially
distributed random variables with mean value 1 and are defined as

(3.13) Sniik = k(log (1/n*) — log (1/nif4n)

where, in both cases, n.* = F(£*),k = 1,2, --- , n, with n,* = 0 and M = 1

by definition.
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It follows then from mutual independence of random variables of (3.12)
and that of (3.13) and from their definitions that the two sequences of variables
(3. |1 £ k < n/2} and {841k | n/2 < k < n} are independent and when put
together they form a new sequence of mutually independent random variables.
This implies that the random variables of (3.10) and (3.11) are also independent.
From the independence of (3.10) and (3.11) it follows through (3.9) that random
variables of M, of (3.5) are aysmptotically independent and this terminates the
proof of Theorem 6.

A similar argument shows that random variables of D, of (3.6) are also in-
dependent asymptotically and this in turn implies Theorem 7.

Using Theorem 5 we can replace weight functions 1/F(z) and 1/(1 — F(z))
by 1/F.(z) and 1/(1 — F,(x)) respectively in Theorems 6 and 7.

Reasoning, similar to that of Chapman’sin [1], can be used to prove consistency
of above mentioned statistical tests.
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