SOME ASPECTS OF THE RANDOM SEQUENCE

By D. E. Barron anp C. L. MaALLOWS

University College London and Bell Telephone Laboratories

1. Summary. This is primarily a review of combinatorial problems connected
with ballot problems, runs, records, and amalgamation, but numerous new re-
sults and applications occur throughout the paper. The early history of the
classical ballot problem is clarified, and many recent generalizations and appli-
cations are noted. For runs and records, the main emphasis is on the derivation
of the null-hypothesis distributions, with only passing reference to asymptotics
and non-null distributions. An appendix lists recent work on the Kolmogorov
and Smirnov statistics. There are 183 references.

2. Ballot problems.

2.1 The classical ballot problems. Suppose two candidates 4; and A, obtain re-
spectively a; and a, votes in an election. (a; = as, a1 + a2 = n). If the votes
are counted in a random order, what is the probability that the winning candidate
holds the lead throughout the counting? This is the classical ballot problem
(probléme du scrutin), priority in the posing and solution of which has often
been ascribed (e.g. by Dvoretsky and Motzkin (1947), Feller (1957b), Takacs
(1962a)) to Bertrand (1887). However, Whitworth had posed and solved the
problem in 1878 and included it in the fourth edition of his Choice and Chance
(1886). His method (which remained unchanged in the fifth edition (1901),
which has recently been reprinted) consists of setting up a recurrence relation
and verifying that it is satisfied by the proposed solution. Application of the
method of recurrence relations can often be simplified by the use of generating
functions; another powerful tool in this area is the reflection principle usually
ascribed to André (1887), which is essentially Kelvin’s method of images in an
enumerative context. For a thorough discussion of this principle and many of its
applications, see Feller (1957b) (in Chapter 3). An excellent historical survey
of the subsequent development of the Ballot Problem is given in Dvoretsky and
Motzkin (1947).

There are two versions of the basic problem, according as we do or do not
allow A4,’s partial total to equal A,’s during the counting; we call these the
weak-sense and strict-sense versions of the problem respectively. When m votes
have been counted, suppose the two partial totals are A;(m) and A.(m)
(41(0) = A2(0) = 0, A, (n) = a1, As(n) = a;). Then the events of interest are

Ew = {Al(m) = AZ(m)) m = 1’ 2’ )n}7
Eg = {Ai(m) > As(m), m = 1,2, --- , n}.
Obviously, there is a very close relationship between these two events; thus, £
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holds if, and only if, 4;(1) = 1 and E w holds for the remaining (a. — 1) + a,
votes. Whitworth’s result is

(1) PlEw|ai,a} = (a1 +1—as)/(a1 + 1)

from which it follows that P{Es| a;, a3} = (a1 — az2)/(a; + a2). We shall con-
sider several generalizations of these original problems; first, however, as an indi-
cation of the ubiquitous nature of our topic, we show that a result of Wine and
Freund (1957) enumerating the ‘“decision patterns’” of a set of » means is
equivalent to Whitworth’s ballot problem (with a; = a2 = n). Given a set of
n real numbers z; , - -+ , x. , & decision pattern is a system of subsets of adjacent
elements subject to the rule that no subset in the system may be completely
contained in any other. (The subset (z:, i11, - -+, ;) is in the system if the
means z; and x; are not judged to be significantly different according to some
test procedure, but the pairs (z:, ;1) and (x:_1, x;) are both significant.) A
number may lie in more than one subset; a subset may contain only one number.
Corresponding to any such decision pattern, we construct an arrangement of 2n
votes (n each for A; and A.) as follows: The rth vote for A, is to fall between
the sth and s 4+ 1th votes for A, if and only if x, is the largest number such
that z,, x, are in the same subset. (We use the obvious convention if s = n.)
Obviously, s will always be greater than or equal to r, so the arrangements of
the votes will satisfy E w . It is readily seen that the correspondence is one-to-one;
and since the total number of arrangements of the votes is (%), the number of
decision patterns must be (n 4+ 1)™* () which is the result obtained by Wine
and Freund.
2.2 Barbier’s generalization. In 1887 Barbier considered the event

Es(p) = {4:(1) = 1, Ay(m) > pdy(m), m = 1,2, -+ n}
for arbitrary u = 0, and published the result

(2) PlEs(u) | a1, 0 = (a1 — par)/ (a1 + a2).

In fact (2) is true only if u is integral, as was shown much later by Aeppli (1924).
The corresponding weak-sense result is

(3) PlEw(p) |a1, a2 = (&1 + 1 — paz)/(ax + 1).

Dvoretsky and Motzkin (1947) gave a simple proof of (2) and (3) (for integral
u) depending on the observation that if v;, v2, - - - , v, is any one arrangement
of the votes, then all » cyclic permutations of ,, --- ,v, are equally likely;
amongst these it is shown that exactly a; — ua, of these permutations are favor-
able to Eg(u), and (2) follows directly. Recently Takdcs (1962a) has extended

this method by showing that if &, , - - - , k, are any non-negative integers sum-
ming to k, and if X, ---, X, is a random cyeclic permutation of k;, --- , k, ,
then

(4) PXi+Xe4+ -+ X, <nrr=12-,n =1— (k/n).
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The result (2) follows by taking the k’s to be a; 0’s and as (g + 1)’s. Dwass
(unpublished; referred to in Dwass (1962)) obtained the same result.
Using the evident recurrence relation

N(a1,a) = N(as — 1,a5) + N(ay, a2 — 1)

for the number N(a;, a2) of permutations of the votes that are favorable to
Es(u), Takacs (1962b) has obtained the general formula

a2 - — )
® (") P aw) = Eo (eI 1)
ay i=0 as — 7
where the constants C; are determined by
b o
(6) Ci=1, 20 ([“b] T ‘J) =0, b=1,2 .
=

When u is an integer, C; = —u(j = 1,2, ---) and (5) reduces to (2). Hence,
Takécs obtains the distribution of sup(7,/n), where T, is the number of suc-
cesses in the first » of an infinite sequence of Bernoulli trials, the probability of
success being p at each trial. The result is

P{T./n < 1/1 4+ pn=1,2-}=(1—p) > ioCip’

where the C;’s are as in (6). In the case p = 1 and u rational, this problem was
solved previously by Newman (1960).

Considering the special case a; = ka, a; = kB8, u = /B (with & prime to 8),
Grossman (1950) obtained the result

(7) P{Ew(a/8) | ko, kg} = 2 FFy' - [rist -
where the sum is over all numbers satisfying ¢ + sj + --- = k, and where
Fo— 1 (ra + rB)
" ra + r8 ro '

By considering cyclic permutations, Bizley (1954) supplied a proof of (7), gave
the corresponding strict-sense result, and showed that the number of arrange-
ments in which A;(m) > (a/B8)As(m) throughout with equality exactly ¢ times
is the coefficient of z° in [I — exp — (zF; + 2'F5 + - --)]". These results have
obvious interpretations in terms of enumerations of paths on the rectangular
lattice; Moser and Zayachkowski (1963) have shown that Bizley’s formulae can
be modified to cover the case where diagonal steps on the lattice are allowed.
See also Good (1958). Gobel (1963) has obtained two recurrences for the number
of paths lying completely below an arbitrary (specified) boundary. See also
Switzer (1964).

Here is another variation on the classical ballot problem. Consider any (fixed)
sequence of votes containing a; votes for A; and a, votes for As(a; + a2 = n).
We compare this sequence with another arbitrary sequence of n votes, and ask
in how many ways the second sequence may be chosen (different from the first)
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such that on the first occasion on which the two sequences disagree, it is because
a vote for A; in the first sequence has been replaced by a vote for A, in the second
sequence (and not the reverse). In terms of paths on the rectangular lattice, we
ask for the number of n-step paths from the origin which do not agree completely
with a given standard path, and first deviate from this path in the upward direc-
tion rather than downwards. Let us call these upper paths (relative to the
standard path). This problem has an elegant solution, as follows. Write the
standard sequence as a string of 1’s and 0’s (1 for A, 0 for A.). This gives the
binary representation of some number N, which is exactly the number desired.
Further, if

N = 2™ +2N2 + ... _|_2Na1(N1 >N, > - > Ng),
then the number of upper paths that end at the point (b1, bs) is

—d Nl N2 ) Nal
(8) N“’1>“<bl>+<bl—1>+ +(bl—al+1>'

Expressions of this type arose in the work of Dubins and Savage (1963) (which
suggested the present paragraphs); substituting a; for b; in (8) gives what
Kruskal (1963) calls the a;-canonical representation of the 'mteker N @, (except
that he omits the final term if N,, = 0: then the representation is unique).

Narayana (1959) has shown that the number of pairs of paths from the origin
to the point (a;, a2) such that the first never falls below the second is

1 <a1 + a2> <a1 + a + 2)
o+ a + 2 Wit a + 1 )

Narayana’s discussion is in terms of a partial ordering of the r-partitions of a
number n; one partition (¢) = (t, -, ) is said to dominate another (¢') =
et )i =t + -+t =t + -+t fori=1,--. r. Corre-
sponding to any such partition, we can construct a ballot sequence with a; =
n — r,as = r — 1 (and an equivalent walk on the rectangular lattice) by placing
the A, votes in positions s;, - - - , 8,1 . Then it is easily seen that (f) dominates
(t') if and only if the (t)-walk never rises above the (t')-walk.

2.3 Generalization to several candidates. Suppose now that k candidates 4,,
Ay, -++, A, obtain respectively a; = as = -+ = ar > 0 votes. Write n =

a1 + az + -+- 4+ ax . Then the events of interest are
Ew = {Ai(m) = Ae(m) = -+ = Ax(m),m = 1,2, --- , n}
Es = {A.(m) > A,1(m) whenever A,(m) > 0,
r=1---,k—1,m=12,---,n}.

Thus, for Ez two candidates are allowed to tie only in the initial stage, before
either receives a vote. There is a 1-1 correspondence between arrangements
satisfying E w (also known as lattice permutations) and standard Young tableaux
(see e.g. Littlewood (1950)) with the row-specification (a) = (a1, a2, -+ , ax);
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for example, the lattice permutation 12132112 (where 1 denotes a vote for A, ,
etc.; here a; = 4, a, = 3, a3 = 1) corresponds to the standard tableau

1367
258
4

(in which the position of the integer 6, for example, denotes that the sixth vote
to be counted was for candidate A, , and was his third vote). Evidently by inter-
changing the roles of rows and columns in the Young tableaux we obtain a 1-1
correspondence with lattice permutations for the specification (a') =
(ar’ ,as’, --+,a) conjugate to (a). In the above example k' = 4, (d') =
(3, 2, 2, 1), and the corresponding lattice permutation is 11212343. Thus the
number of lattice permutations is the same for the specification (a) as for the
conjugate specification (a’); let this number be N w(a) (= Nw(a)).

We remark that this number arises in the theory of the symmetric group S, ;
(see e.g. Littlewood (1950)); it is the simple character x(2, of the identity ele-
ment in the irreducible representation of S, corresponding to the partition (a).

. . b b br o .
It is also the coefficient of x1*, 2o %, -+, &% * in the expansion of

(2x)"Alxy = (21 + -+ + 2) " ]Lici (2 — ;)

where b; = a: — 7 + k, and it has several explicit representations. In 1900
Frobenius found

Nw(a) = nla(e)A(c)/ILiei TLies L (es + ¢ + 1);

herec: = a; — 1,¢;/ = a;’ — 1 (i = 1,2, --- | [) wherel is the number of elements
in the leading diagonal of the graph of the partition (a); in the above example
l=2,(c1,c) = (3,1),(c/,c/) = (2,0). The concept of a lattice permutation
is due to MacMahon (1915); he found

(9) Nw(a) = nla®)/JL:ib: ! = nidet |1/(ai — i + 7) ]

(det = determinant). This form was found also by Young (1927). Hence,
MacMahon’s result for the weak-sense ballot problem

P{Ew| (a)} = JLici{l = (ai — i+ k)7'}.
MacMahon obtained his formula as the proper solution of the recurrence relation
(10) Nw(ar, a2, -+ ,a) = Nwlar — 1,00, -+, ax)
+ Nw(ar,a — 1, -, a) + -+ + Nwlay, az, -+, ax — 1)

which is obtained by considering the possibilities for the last vote counted. He
remarks on the asymmetry of the formula (9) as between the conjugate partitions
(a) and (a’); the situation was clarified by Frame, Robinson, and Thrall (1954)
(see also Robinson (1961)) who showed that

Nw(a) = ’n!/H;j hij
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where the hook-length h;; corresponding to the %, j cell in the Young tableau is
defined to be one more than the sum of the number of cells to the right of that
cell and the number of positions below that cell; i.e. hij = a: +a;/ — 7 — 7+ 1.
In this form, the result is obviously invariant under conjugation.

Narayana (1955), (1959) has found the number of lattice paths from the

origin to the point (a;, --- a;) where at each step, every coordinate must in-
crease by at least one unit, and the event Ew holds (here n is the number of
steps and a; = -+ = a; = n). The number is

P50
n+i7—373—1J|

An open problem is the determination of the probability that Ew (or Es) holds
when the votes are counted in batches of fixed size.

2.4 The strict-sense many-candidate ballot problem. The strict-sense problem
seems to have attracted little attention before it was posed by Grossman in 1950;
in 1952 Grossman solved the case k = 3, and Thrall (1952) established generally
that

a; — aj
(11) PiBsla, o w) = 1T (552
(see also Srinivasan (1963)). Both authors proceeded by showing that this form
satisfies the recurrence (10) (read Ns for Nw) and the appropriate boundary
conditions. An alternative formula can be obtained by using the reflection
principle as follows.

Let ¢ = (o(1), ¢(2), -+-, ¢(k)) denote a permutation of the integers 1, 2,
-+, k, with ¢, denoting the identity permutation. Let N (¢) denote the number
of arrangements in which the first vote is for 4 ,¢) , and now ignoring subsequent
votes for A,u the first succeeding vote for any of the remaining candidates is
for A, , and so on; thus the candidates’ partial totals first increase from zero
in the order specified by ¢. Let N'(¢) denote the number of arrangements in
N (o) that are unfavorable to E 5 . Then if N 4 is the total number of arrangements
favorable to Es, we have

(12) N(¢) = N'(¢) except when ¢ = ¢,
(13) N(¢)) = N'(¢) + Ns.
The total number of arrangements is N = (2 a;)!/]] @, !, and we have

det

(14) N(o) = NI e

=1 Qo) T Qg + -0+ Aoy )

Now fix ¢ and consider an arrangement in N'(¢). Since E fails to hold, there
must be a smallest integer mo = 1 such that at m = m,, two nonzero partial

totals are equal; and the corresponding pair of candidates must be adjacent in
the permutation ¢. Thus we can define 7, uniquely by
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Ay (mo) = Agyqn(me).

Now if in the first m, votes we interchange votes for A, with votes for 4,11 ,
we shall obtain one of the arrangements in N'(y), where ¢ is the permutation
obtained from ¢ by interchanging ¢(7,) and (7o + 1); denote this relationship

by ¢ = [roJe. Also this relationship between arrangements is biunique. Let
N.’(¢) be the number of arrangements in N'(¢) for which 7o = r; then
(15) NI(‘P) = Zr N/(‘P)

and theAabove argument has shown that
N,/ (¢) = N,/(Irle).
Thus if T(¢) denotes the number of inversions in ¢, we have for all ¢ and
0= (=1)™ N,/ (¢) + (—=1)" N, (Irlp).

Summing over r and ¢ and using (15), then adding N s to both sides and using
(12) and (13) we obtain

(16) Ns= 2 (=1)"”N(¢)

where N(¢) is given by (14).
If we define the indicators

X:; = +1 if A, receives a vote before A;does 1 =7 <j =k

= —1 if not
then we have (with E for expectation)
P{Es|ar, - ,a = [[ic; B(Xyj) (from (11))
= E(]Li<; X:5) (from (16)).

The simplicity of these results strongly suggests the possibility of direct proba-
bilistie proofs, but none has been found. The obvious conjectures regarding inde-
pendence amongst the X;,’s are incorrect, as are the natural conjectures generaliz-
ing (2) and (3) to the k-candidate case.

2.5 Considerations involving amount of lead. Another way in which the classical
ballot problems can be generalized is by consideration of events of the following
type:

E(Ol, /“) = {Al(m> + a> ﬂAZ(m)7 m = 17 2’ Tt n}

where we shall suppose « and u to be non-negative integers. Evidently E(0; u) =
Es(p), E(1; p) = Ew(u). The result

- P(E(as 1) |, @) = 1 — <a1 + a2> <a1 + a2>—1

0+ o (251

was given by Whitworth (1878) and is easily proved using the reflection princi-
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ple. Evidently P{E (e, )} vanishes unless a; + a > pas ; for o = 0 we have

PlE(a; u) | a1, e} = [a1/(a1 + a2)]P{E(a + 15 u) a1 — 1, as)
+ [a2/(a1 + a2)]P{E(a — M l-‘) Iala az — 1}’
whence we can establish

P{E(a; p) | a1, as}

Mo — Gy — 1 al(iu—a)az(i)
= ; (_1)]< ]: > (01 I ap) Urtia (o1 + @ — paz)

(where 2 = x(x — 1) --- (x — r + 1)). For the case a; = was , Korolyuk
(1955a), Kemperman (1957), and Blackman (1958) give different formulae. In
this case, enumeration of the permutations satisfying E(a; u) or alternatively
a > Ay(m) — pAs(m) > —B,m = 1,2, ... n yields the null-hypothesis distri-
butions of the Smirnov and Kolmogorov statistics. Following up this topic in
detail would take us rather far from our main theme: we refer to Darling (1957)
for the development up to 1957 and to Feller (1957b) (Chapter 14) for a dis-
cussion of the associated random walk problems. We have included an appendix
listing work in this area since Darling’s paper.

There is an elegant generalization of (17) to the case of several candidates;
writing

E((a)) = E(ar, a2, -, )

(18)
= {Ai(m) + ar > As(m) + 02> -+ > Ap(m) + o, m=1, -+, n}
with ey > a9 > -+ > a1, we have
' a;!
(19) P{E’((a))|al, "',ak} = det m .

A rapid proof of this result can be obtained from a much more general theorem
of Karlin and MeGregor (1959), which concerns the probability that the sample
paths of % simultaneous independent Markov processes do not intersect one
another. We consider k simultaneous independent Poisson processes X(¢), with
common density A, with X:(0) = a: (+ = 1, 2, ---, k). By the theorem of
Karlin and McGregor, the probability that by time ¢ these processes have reached
the positions a: 4 a; respectively without being equal at any time in (0, ¢) is

(}\t)aﬁ-ai_aie—“
(ai —|— oy — a,)!

The unconditional probability is the product of the leading diagonal elements of
this determinant, so the quotient (19) is the probability that there are no equali-
ties in (0, ¢), conditional on the given end-points. But once the end-points are
fixed, all arrangements amongst the several processes of the n points of increase
within (0, ¢) are equally likely; so (19) gives the solution to our ballot problem.

det |P{aj—>a,~ + a,}| = det




244 D. E. BARTON AND C. L. MALLOWS

If all the o’s in (18) are equal, and if (as before) we accept the convention
that the event E((a)) occurs if the strict inequalities A;(m) > A;p(m) hold
whenever 4;(m) > 0, we retrieve the strict-sense ballot problem of the previous
section. The mixed case, where some but not all o’s are equal, seems difficult;
we can easily obtain relations of the type exemplified by

P{E(a, B8, B, ’Y) lal, G, 03, 04}

S50 66w

(223

~—-—P{E(a—|—b1,6+1,6,7—|—b4)|a1—b1,a2—l,a3,a4—b4}
n-—bl——b4

X
in which the probabilities on the right can be obtained from (19), but these
expressions do not seem to reduce in general.

H. T. David (1958) has used an ingenious reﬂectlon argument to find the
probability of the event

Ai(m) — Azx(m) > a Ax(m) — Az(m) > e, Az(m) — Ay(m) > «

with @1 = as = a3 . There seems to be little possibility of extending this method
to cases involving more candidates.

2.6 Some other problems. We refer to Feller (1957b) (Chapter 3) for a detailed
discussion of a variety of problems concerning returns to equality and first
passage epochs; the derivations are remarkably simplified by employing the
basic ballot results. We shall not attempt to cover this topic in any detail, but
will merely indicate some recent work and point to some open problems.

One of the simplest results in Feller is that if a; = a; = @ and if we count
the occasions on which either 4;(m) > Ay(m) or A;(m) = As(m) and A;(m — 1)
> Ay(m — 1) (m = 1,2, ---, 2a), then this number (N', say) is uniformly
distributed on the set 0, 2, 4, - - - , 2a. Engelberg (1963) and Gobel (1963) have
extended this result to the case a; # a, ; supposing a; > a, , the result is

P{N' = 2j|ai1, az}

_ <a1 + a2>_1 i 1 <2@> a1 — Qg (al + a; — 21>
ay it 1\t /) + a— 2 ay — 1 '

Gobel investigates some asymptotic properties of this result; Engelberg studies
also the distributions of the number of oceasions on which A;(m) > pds(m)
(resp. A;(m) = uAs(m)) for pintegral. Takécs (1963) has found the distribution
of the number of occasions on which 4;(m) > pd:(m) — ¢ (¢ is a non-negative
integer); for u = 1 and all ¢, corresponding results have been obtained by
Riordan (1963).

Feller (1957b) shows that in the symmetric random walk, the probability
that by the nth step there have been exactly r returns to the origin is 2 ey
this is also the probability that there is a return at the 2nth step, this being at
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least the rth return. If R, is the number of returns, then as n increases, the limit-
ing distribution of R,./(2n)! is a standard half-normal. Barton (1957) demon-
strated an analogous result for the asymmetric walk; if the probability of success
at any trial is A\/(A + &) (A, u relatively prime) and if now R, is the number
of times the ratio of successes to failures has equalled \/u by the nth trial, then
R.\u/n(N + w))! has the half-normal limit. With A = 1, it is not difficult to
establish the exact result

P{A(m) = udA.(m) at least r times | a; = ku, g2 = k}
= (1 4+ w)'"a W™

Another problem that yields to the reflection principle is that of finding the
number of times the lead changes hands during the counting. Smirnov (1939)
and Dwass (1961) give some asymptotic results; Mihalevic (1952) and Feller
(1957a) give some exact formulae. The corresponding problems with more than
two candidates are not solved, and seem to be difficult.

2.7 Applications to queue theory. Consider the simple queue (M /M /1) with
Poisson input with density A, and exponential service times with mean u. Suppose
a customer arrives at time ¢, = 0 and finds the server idle. His arrival thus initi-
ates a busy period (b.p.); suppose that during this b.p. the successive services
end at times s;, s, « -+, while further customers arrive at times ¢, t», - - - .
Then the b.p. will last for exactly n customers, and will end in (s, s + ds) if

h <8, ta<S8, ,tha<sa, $<8 <s+ds s <t,.
The probability of this event is
Pf{exactly n — 1 arrivals in (0, s)}Q, dP{s, = s}

where @, is the conditional probability that t; < s;, 7 =1, ---, n — 1, given
that s, = s and that there are exactly n — 1 arrivals in (0, s). But, given this
conditioning, the times ¢, - -+ , tu—1, S1, * * * , S,—1 are equally likely to occur in
any order; so by Whitworth’s result (1) we have @, = 1/n, and the probability
is found explicitly.

Combinatorial arguments such as this have arisen only recently. Champer-
nowne (1956) used the result (1) for the queue M/M /1. Pyke (1959) studied
the queues D/M /1 and M /D/1 using an argument similar to the above; Tanner
(1961) used this method explicitly for M/D/1. Takdcs has used his result (4),
and some variations, extensively to derive expressions for (i) the distribution of
the length of a b.p. for the queues M /G/1 and G/M /1 (1961), (ii) the proba-
bility that a customer finds the server idle for the queue M/G/1 (1962¢), (iii)
the distribution of the number served in a b.p. for the queue M /M /1 with batch
arrivals or batch service (1962b), (iv) the distributions of queue size, waiting
time, number served in a b.p. and length of a b.p. for the queue G/M /1 (1962d),
and (v) for the queue M /G/1, the probability that the server is idle, the distri-
bution of an initial b.p., and the distribution of the occupation time, i.e. the total



246 D. E. BARTON AND C. L. MALLOWS

service time of all those customers who arrive in some given time-interval
(1962e).

3. Amalgamation, records and Simon Newcomb’s problems.

3.1 Introduction. Suppose X, - - - , X, is a sequence of symmetrically depend-
ent random variables whose joint distribution function is absolutely continuous,
or more generally satisfies P{E} = 0 where E is the event

. E=Uwwi{Xw = Xe
(where (a),b) denote disjoint subsets of {1, - -+, n} and

Xy = Dietr Xi/ Doietar 1.

Thus in particular the X’s could be independent and identically distributed, or
could be a random permutation of n general fixed numbers. We denote this as-
sumption by H, . In the Simon Newcomb group of problems we study properties
of the sequence S, , --- S, where S; = sign (X; — X,_;); in the Records group
the concern is with the derived sequence S, - - - , S, where ;" = sign (X; —
max (X1, ---,X:1)); and the Amalgamation group relates to what amounts
to the Records in the sequence of cumulative means Xi , - - , X,, where X =
Xi+ - + X,

It is easily seen that the Records and Simon Newcomb’s problems are purely
combinatorial (i.e. they do not depend on the particular distribution assumed);
this is true also (rather surprisingly) in the Amalgamation group of problems.

We will not do more than briefly mention in this review the contributions to
the theory of these statistics under alternative hypotheses, as these are mostly
asymptotic and of relatively minor combinatorial interest.

3.2 Simon Newcomb’s problem. If we consider a typical sequence of signs
S; such as

ot — At — =

one aspect of interest is the number, m say, of +s, or, equivalently, the number
of ascending sequences in the sequence X, , - -+ X, where, if X,; > X, > X,41,
X, comprises an ascending sequence of length one. These sequences are called
strings in the theory of sorting and their study is basic to the distribution theory
arising from ‘‘string merging”’ algorithms.

The distribution of m under H, was obtained by MacMahon (1908) and later
tabulated by Wallis and Moore (1943). It has the form

Fu(m) = (1/n1) 227 (F)(=1)(m + 1 — j)™

This, incidentally, is a very curious distribution function; for integer values of
m it is identically equal to the d.f. of one less than the sum of » independent
random variables each uniformly distributed in (0, 1)—as obtained by Laplace
(1820). Paradoxically, the first n» cumulants of this d.f. are the same as those
of a sum of n + 1 such uniform variables (as noticed, e.g. by Barton and David
(1962)).
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This suggests that there might be some means (awaiting discovery) of ex-
pressing m in terms of the sum of n independent and identically distributed
random variables. Such an analysis might well shed considerable light on the
more complex distributional problems noticed later.

It should be noted that tabulation can easily be performed by means of the
recurrence

(n + Dfan(m) = (m + Dfa(m) + (n + 1 — m)fau(m — 1)

(where f,(m) is the density function), which was also given by MacMahon.

Stuart (1952) examined the power of m as a test against trend and found it
a very poor test for this type of alternative (see Cox and Stuart (1955) and also
Levene (1952) for a comparative discussion).

The more general case where some of the {X} are equal to each other has
been considered by Riordan (1958) but we have not seen any statistical ex-
ploitation of his results (or those of MacMahon (1915) which are rather less
explicitly cognate to the problem).

3.3 Runs. Another problem of interest is the number s, say, of runs of +’s
and ~—’s. This is equivalent to the number of extrema (maxima and minima)
also called turning points (peaks and troughs) in the X sequence. Bienaymé
(1874) gave, without proof, the mean and variance of s and stated the normal
limit. The first four cumulants of s (obtained from Kendall (1946)) are

Ki=2n+1) —1, K, = (8/45)(n + 1) — 4,

K, (—352/4725)(n 4+ 1) + 1.

(—16/945)(n + 1), K,

Bienaymé (1875) was well aware of the statistical importance of s and this paper
stimulated Bertrand (1875) to produce a simple reason for the leading term in
K, . A little later André (1879), (1881), (1883a) studied the probability of a
sequence with the maximum number (n — 1) of runs, which he called alternating
sequences, and subsequently, (1883b), (1884) he studied the connexion with
Bienaymé’s problem and produced the recurrence

(n + Dfan(s) = &fu(s) + 2fa(s — 1) + (n — s + Dfa(s — 2)

for the density function of s. It was this recurrence that Gleissberg (1954) and
Moore and Wallis (1941) used for computing tables of f,(s). André later (1894),
(1895) investigated the number of sequences with one less than the maximum
number of runs, (quasi-alternating sequences) and Netto (1901) gathered the
results thus far in his book. Generating functions for f,(s) were obtained by
Kermack and McKendrick (1937a, b) and Barton and David (1962). Levene
and Wolfowitz (1944) justified the normal limiting form of the distribution of s
using a general Central Limit theorem, Wolfowitz (1943), (1944). In fact, (see
Barton and David (1962)) it may be shown that therth cumulant is of the form

K.=(=DTa(n+1) +bl, 1=r=(n-1)/2
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where a, and b, are the rth Taylor Coefficients in % log (1 — ¢ *) — log cosh™¢’
and —21log (1 + ¢*) respectively, so that Frechet and Shohat’s Second Limit
theorem may be applied.

This form of cumulant, linear in n, is suggestive also of an analysis of the
distribution of s in terms of a sum of independent symmetrically distributed
random variables. The power of s as a test against trend has been studied by
Stuart (1952), (1954) and Levene (1952), the general conclusion being that it
is very poor in respect of such alternatives (see also Cox and Stuart (1955)).
Moran and Chown (1951) noticed that s is effectively a serial correlation co-
efficient (of lag one) applied to the series s, , - - - s,_; and obtained its expected
values under normal serial correlation. Against such alternatives it has a rela-
tively high efficiency. Grant (1952) found the mean of s in a series smoothed by
a moving average. This is of interest as s, under the alternative here, is also
distributed independently of the structure of the elements averaged and the
distribution of s under the alternative hypothesis is also an unsolved combina-
torial problem.

Kermack and McKendrick (1937a) were initially interested in the sequential
version of this problem; namely the distribution of the number of elements in
the first s runs of an indefinitely long sequence. This is equivalent to solving
the problem of the distribution of s for fixed n by virtue of the usual principle:

(20) P{s or less runs in the first n}
= P{n or more elements in first s runs}

and Kermack and McKendrick found it necessary to consider the problem of
the number of runs for a given n as a basis. They also considered the number of
runs in a circular arrangement of n elements.

Various modifications, number of peaks, number of runs of +’s, and so on are
dealt with in detail in Barton and David (1962).

The problems of the distributions of the number of pairs of consecutive ele-
ments and of the lengths of runs of consecutive elements will not be considered
in detail here. (Two elements form a consecutive pair if all other elements are
either greater than both or less than both.) Apart from Euler’s initial contribu-
tion giving the chance of no pairs, and so no runs, in an ordered random subse-
quence of a given length, and a later proof that the chance of no consecutive
pairs in the whole random sequence tended to ¢ ° as n approached infinity
(Aiyar & Fortey, 1894), the basic combinatorial analysis and Poisson limits are
due to Wolfowitz (1942) and Barton & David (1962).

3.4 Lengths of runs. The problem of lengths of run was first considered, and
solved in principle, by MacMahon (1908), (1915). He showed by an elementary
combinatorial argument, in respect of ascending runs, that the probability that
a random arrangement of n elements gave a sequence of ascending sequences of
lengths ry , 72, - - - , 7w respectively (so that 7, + 7, + -+ + 7» = n) was
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1 1 1 1
| n!
1 1
falre, <o tm;m) = 1
0 1 —
7'31
0 0 0o .- 1
Tm !

where ;) = rj 4 140, 1" = r; 4 rip1 + 74, ete.

We remark that this result can be obtained from (19) above; we identify
Ty, +c y Tm With @, , -+, a; respectively, and put a, = (a1 + a2 + -+ + ar).
Then the event E((a)) occurs if and only if the first vote for A; comes before
the last vote for A;y1, ¢ = 1,2, ---, m — 1. The inequalities implied here are
exactly those needed for the run-specification r;, - -, 7, .

MacMahon pointed out that if we have a sequence of runs up and down of
lengths w; , we, - - - ws, this is the same as a set of ascending sequences of lengths
wr + 1, 17" wy 4+ 1, 1971, ... (if the initial run is up) and of lengths 1°*™
we + 1,197 wg + 1, - - (if down) so that the probability of (w, ws, =+ , ws)
is also given by this determinant. However, for n above about 10 this is not a
computational possibility (by hand, at least).

Later the emphasis became more statistical and interest focussed on the rela-
tive frequence of runs (up or down) of a given length. Besson (1920) obtained
the mean number of runs of length p for various values of p and Fisher (1926)
obtained a general form for the leading term of this mean. This is the proba-
bility that an arbitrary run chosen from an infinite sequence is of length p signs,
which has the form

Jfp) =31/(p+ D! =2/(p+2)!+1/(p+3)], p=1,2,---.

In papers on sorting Goetz (1961), (1963) has focussed attention on the dis-
tribution of the length of the kth ascending run and the rate at which it tends
(as k — ) to have its limiting distribution. The limiting distribution is of course,
for runs of r elements

fry =2[1/rt =2/r + D)+ 1/(r+2)1}, r=1,2 ---,

with mean 2 (see Moore (1957)) and it is possible to show that the p.g.f. of the
kth run 7, (¢) say, obeys the recurrence

1 — mea(t) = (1 — )71 — m(8) — m(t)me
where tm(t) = 1 + (¢t — 1)é’, ms = = (1). Hence we can establish

(21) S 6 = 6(e — &) (e’ — ).
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Levene and Wolfowitz (1944) made a systematic study and obtained the co-
variance matrix of the numbers of runs of lengths p = 1, 2, 3, - - - and also that
of runs of p or more. They did not use the slightly more general combinatorial
proofs possible (cf. Barton and David (1962)). Using the asymptotic normal
theory of Wolfowitz (1943), (1944) they proposed the correspondmg chi-
squared statistic as a goodness of fit test for H, .

The distribution of ‘“phase-length”, that is the distance between successive
peaks or the total length of two successive runs, was studied by Kermack and
MecKendrick (1937b) (see also Palmer (1957)) and the relative frequency of
given phase-length in long series was found.

The asymptotic theory of run-length statistics was developed by Levene
(1952) under quite a wide class of alternative hypotheses but detailed com-
putations were given only for trend alternatives and no comparative study
made. The mean run length in long series is of course equal to lim,.e
[(mean number of runs in n)/n]~". This ergodic device also gives mean phase
length and was used by Kendall (1945) to find the mean phase length in long
series under general serial correlation.

Concise expressions for the distribution of the run lengths in a finite sequence
(analogous to MacMahon’s distribution for ascending sequences) have not yet
been found.

Long runs have always been a salient feature of observed sequences and Fisher’s
paper (1926) was stimulated by the need to assess the significance of long runs in
meteorological series. It is possible, for small n, to use MacMahon’s distribution
of run lengths to determine this numerically. Olmstead (1946) produced a re-
currence relation which slightly reduces the labour of this and gave tables, es-
sentially, of the distribution for » < 12. This served to confirm the accuracy of
approximation of the asymptotic theory of Wolfowitz (1943), (1944) (who
showed that the extreme value distribution for independent variables extended
to this case) so far as the upper tail of the distribution was concerned. Barton
and David (1959) who were systematically investigating the application of
Bonferroni’s inequalities to combinatorial distributions (a device of H. A. David
(1956)) showed that the integer valued upper “percentage points” for the long-
est could be found exactly by these inequalities for most values of n. (Where
the upper 100a% point is the smallest integer such that the probability that the
longest sum exceeds it is not greater than «).

The chance that the longest ascending run does not exceed k was shown by
Barton and David (1962) (using Feller’s theory of recurrent events) to be the
coefficient of " in the reciprocal of

2o /() 1 — W/ (Rj + D)1}

The corresponding generating function for the longest run up or down has not
yet been found. ‘

The power of the longest run test has not yet been investigated explicitly so
far as we are aware though Levene’s (1952) results are plainly relevant.
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Tables of the integer valued functions: n! times probability for most of the
distributions discussed above are collected together in Barton, David and
Kendall (1964).

3.5 Records. In the sequence X, --- X, we may distinguish those elements
which exceed (or are less than) all preceding values as upper (or lower) records,
following Chandler (1952). It will be convenient to consider X, as the first upper
and lower record. We may further qualify these as forward records when we
wish to distinguish them from the backward records (i.e. the records in the series
read in reverse order). The distributional problems related to records are recog-
nisably combinatorial, depending only on the n! permutations of the original
sequence, although the two main papers in this field, Chandler (1952) and Foster
and Stuart (1954), derived their results under slightly more restrictive assump-
tions (cf. Barton and David (1962)).

The joint distribution of the numbers, » and v say, of upper and lower (for-
ward) records respectively was found by Foster and Stuart. The distribution of
either (say u) has density function f,(u) = S,“/n! where the {S,"} are Stirling’s
numbers of the first kind (in modulus).

The rth factorial cumulant of u is

Kin = (r—=1D(=1) 2t

so that the standard cumulants above the second order tend to zero and w is
asymptotically normally distributed. However, both mean and variance are
0(log n) and the asymptotic distribution is a very poor approximation for
n £ 1000 say, which is the only region of much statistical importance. It follows
that approximations to the Stirling numbers are of some importance both for
this distribution and that of the next section on amalgamation (which has the
same form) and we shall briefly discuss this problem at the end of the next
section.

From symmetry it is plain the distributions of numbers of lower records and
of backward upper and lower records (u’ and v say) have the same form.

Foster and Stuart were concerned with number of records as a test of H,.
They also considered the ‘“round trip”’ statistic D = (u — w) — (v — ).
Although, as shown in Barton and Mallows (1961) the joint distribution of
numbers of forward and backward upper (or lower) records has the same form
as that for upper and lower forward records, the joint distribution of (u, u’, v, v")
and so of D, is as yet unknown. It is clearly symmetric but the form of the var-
iance of D suggests it is likely to be very complex. The distribution is of some
interest though, since any asymptotic normality (assumed but not proved by
Foster and Stuart (1954)) will be approached as slowly as in the case of w and
so will not be of use for approximative purposes.

Little is known of the power of tests based on u or D. Foster and Stuart con-
ducted a sampling experiment to examine the power under a trending alternative
(see also Foster and Teichroew (1955)) and concluded that whilst they were
better than s and m they were far from good.
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Chandler (1952) was concerned with the intervals between upper records or,
equivalently, with the ordinals of upper records. The distribution of the ordinal
of the rth record may be found by the argument noticed above ((20)), since this
is just the sequential form of the problem of the number of records and it is not
surprising that its distribution is also simply expressible in terms of the Stirling
numbers. Chandler showed the surprising result that the average interval be-
tween the rth and the r + 1th records was 0(log n)"*" so that in an indefinitely
long series the average interval is infinite. The joint distribution of the ordinals
is given in Barton and David (1962).

3.6 Amalgamation. For the purposes of discussing the amalgamation problem
we shall consider the additional restriction that no average (arithmetic mean) of
any set of the {X,} is equal to the average of any other set.

The amalgamation process may be described as a process of successively
averaging adjacent elements in descending order. More precisely, at the ith
stage, 7 = 1,2, --- (and 7 = 1 initial stage) of the process the series of initial
elements will have been partially amalgamated into groups of adjacent elements.
We compare the means of any two adjacent groups, X, , Xo41, say; if X, > Xop
we amalgamate these groups (i.e. form one group from them) whereas if X, <
X .41 no action is taken. This operation is repeated until a resultant series of
groups is obtained whose means are in increasing order. Miles (1959) showed that
the resultant is unique, irrespective of the order of amalgamation. The sequence
of m numbers is then replaced by a resultant set of, ¢ say, group-averages, with
1=2¢=n

Sparre Andersen (1953) showed that the distribution of ¢ under H, was in-
dependent of the particular set of {X,} and that the density function of ¢ was
fu(£) = 8.°/n! that is, just that of the distribution of number of upper records.
Spitzer (1956) gave a different proof of this, later improved by Wendel (1958).
(See also Baxter (1961), Chacko (1963), and Brunk (1964)).

In a statistical context, Bartholomew (1959), (1961) found that, in mini-
mizing Y rey (X, — u)’ with respect to p, -+ - , pnsubjecttomy S wp < -+ =
according to an algorithm of Van Eeden, it was necessary to successively average
pairs of successive X’s which were in descending order. He conjectured and
Miles (1959) proved that in whatever succession this was done the resultant set
was the same and that { was distributed as above. Miles showed that if the
averaging were done with a set of n weights w; , ws, - -+ , w, in random order the
distribution of £ over the (n!)® permutations of [w,][X,] the result was the same
as for equal weights. Barton and Mallows (1961) showed the result held over the
n ! permutations of { (w, , X,)}, the statistical rationale being extended by Barton
(1961). They also gave reasons for the same distribution arising as in the records
distribution (as noticed above). Recently Brunk (1964) has made a deeper
analysis and has laid bare the essential mathematical connexion in a series of
theorems with wide statistical application.

The power of £ as against a trend alternative hasbeen discussed asymptotically
by Brunk (1961), and comparison made with other tests.
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Asremarked above, and discussed in more detail in Barton and Mallows (1961)
and Barton, David and Merrington (1963), for series of typical length in sta-
tistical contexts, 20 < n < 500 say, some approximation for 8,’ is required for
the use of [ as a statistical test. The extreme upper tail may be well approximated
by Moser and Wyman’s (1958) method and the extreme lower tail by the ap-
proximations in Barton and Mallows (1961). Broadly these are for £ = 0(n)
and ¢ = 0(1) whereas, of course, what is required is £ — log n = 0(logn)}; the
normal approximation is insufficient since log n is still quite small for n < 500.

Barton and David (1964) have developed the following series

(/o) SHE ~ fuN) + (1/20)Py(D)fu(N) 4+ (1/40)Pu(D)fu(N) + -

u u T — dr 1 —
where A = log v, fu(A) = 2t ()N Gur, gr = L%—r ﬂx—_{_ﬁ],r = 1,2,
(tabulated by Bourguet (1883)) and P,(D) is a polynomial in the operator D
which has the property

D"fu(N) = U fuem(N), m=1,2 ..

The polynomials P, are given by

_ (2r)! < Bp1+1 )n o < Bovt1 >n
P2r Z T I Ty ! pl(lh + 1) pv(pv + 1)

where the summation is over all partitions (py'--- p,°) of r, and where
B.(x) = B,(—z) — B,(0) in terms of the generalized Bernoulli polynomials of
order 1.

This looks formidable, but for fixed u, it gives S.77 as a sequence of poly-
nomials in A multiplied by ascending powers of v™*. It promises considerable
accuracy in the relevant range.

Some of the problems considered in this paper are closely connected with the
problem of efficient sorting on computers; we refer to Gottlieb (1963) for a
description of the main sorting methods. We hope to discuss some of the com-
binatorial problems arising in this area at another time.

APPENDIX

Recent work on the Kolmogorov-Smirnov Statistics (since Darling’s
1957 Review Paper)

Blackman (1958) and Kemperman (1959) gave exact formulae for D, ., and
Hodges (1957) studied the asymptotic behavior; he claimed that Korolyuk’s
results (1955b) were incorrect. Vineze (1961) and Reimann and Vincze (1960)
studied the joint distribution of D,., and R, , the index of the observations at
which a deviation D, is attained. We remark that these two-sample results
imply easily some one-sample results in sampling from a finite population.

For the 1-sample, 1-sided case Birnbaum and Pyke (1957) studied
(R., F(R,)), and Kuiper (1959) gave a simple proof that F(R,) is uniform.
Dwass (1958) used Sparre Andersen’s results to show this, and also that the
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measure of the set [F: F,, > F] is uniformly distributed. The asymptotic behavior
of the 1-sample statistics has been studied by Kemperman (1959) (for D,"),
and Darling (1960) (for D,, and also for the number of zeroes of
F, — F — a/n* and the sum of the vertical sections of F, exceeding F — a/n}).

Carvalho (1959) gave a new derivation (by reflection) of the distribution of
D, ; Chapman (1958), Pyke (1959), Dempster (1959) and Dwass (1959) all
found the probability that F, < a 4+ vF(x). (The result for a = 0 was given by
Daniels in 1945.) Pyke (1959) suggested a modified version of the D, statistic,
namely max (i/n + 1 — F(X)); Brunk (1962) considered the modified
D' + D. Similar work was done by Kuiper (1960) and Watson (1961), (1962).
H. T. David (1961) considered augmenting D, with supplementary statistics;
Ishii (1959) and Tang (1962) studied Rényi’s modifications. Whittle (1961) ob-
tained some new exact results for D,; Schmid (1958) considered discontinuous
populations; and Becker, Codding and Cron (1962) and Judah Rosenblatt (1962)
studied the power of the tests.

Turning to the several-sample problem, Ozols (1956) considered
max (D7.D5;) Chang and Fisz (1957) considered the Kolmogorov test, Fisz
(1960) gave a simple way of achieving some exact results, and Gihman (1957)
considered the statistic sup > (F: — F)>. H. T. David (1958) found the distri-
bution of max (Df., Di;, Di1) by an ingenious reflection argument. Birn-
baum and Hall (1960) tabulated the distribution of max (D12, Di3, Dsys).
Kiefer (1959), Dwass (1960) and Fisz (1960) each considered several different
statistics.

The bivariate versions of D, and D," are not distribution free, as was shown
by Simpson (1951). Kiefer and Wolfowitz (1958) found the asymptotic distribu-
tion of D, and D,", and Vincze (1960) studied the two-sample statistics. The

-titles of Kiefer (1961) and Blum, Kiefer, and Rosenblatt (1961) are self-ex-
planatory. Finally, we mention that Durbin (1962) has found some novel uses
for the distance statistics.
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